Automatic Control 2 Loop shaping

Prof. Alberto Bemporad

University of Trento

Academic year 2010-2011

Automatic Control 2

Feedback control problem

Feedback control problem

Objective: make the tracking error $e(t) = r(t) - y(t) \simeq 0$, despite

- the dynamics of the open-loop system G(s) (slow, unstable, etc.)
- disturbance d(t) affecting the process
- model uncertainty $\Delta G(s)$ (the system is not exactly as we modeled it)
- ٥ measurement noise n(t)

Feedback control problem

To achieve the objective, we want to design a feedback control law satisfying a number of requirements:

- stability in nominal conditions ($\Delta G(s) = 0, d(t) = 0, n(t) = 0$)
- stability in perturbed conditions
- static performances (tracking error for constant r(t))
- dynamic performances (transients and frequency response)
- noise attenuation (be insensitive to measurement noise n(t))
- feasibility of the controller (strictly proper transfer function C(s)) ۲

Feedback control problem

Closed-loop function

• The *closed-loop function* is the transfer function from r to y

$$W(s) = H_{yr}(s) = \frac{C(s)G(s)}{1 + C(s)G(s)}$$

• We call *loop function* the transfer function

$$L(s) = C(s)G(s)$$

- For $|L(j\omega)| \gg 1$ we get $|W(j\omega)| \simeq 1$, $\angle W(j\omega) \simeq 0$
- For $|L(j\omega)| \ll 1$ we get $|W(j\omega)| \simeq 0$
- Given G(s), we will choose C(s) to shape the loop function response $L(j\omega)$

Sensitivity functions

• The *sensitivity function S*(*s*) is the function

$$S(s) = \frac{\partial W(s)/W(s)}{\partial G(s)/G(s)} = \frac{\partial W(s)}{\partial G(s)} \frac{G(s)}{W(s)} = \frac{1}{1 + L(s)}$$

• The sensitivity function *S*(*s*) is also the transfer function from *d* to *y*

$$\frac{Y(s)}{D(s)} = \frac{1}{1+L(s)} = S(s)$$

• The *complementary sensitivity function T*(*s*) is the transfer function from *n* to *y*

$$T(s) = \frac{Y(s)}{N(s)} = \frac{L(s)}{1 + L(s)} = W(s)$$

Prof. Alberto Bemporad (University of Trento)

Performance specifications: frequency domain

$$S(s) = \frac{1}{1 + C(s)G(s)}$$

complementary sensitivity transfer function from n to y

$$T(s) = \frac{C(s)G(s)}{1 + C(s)G(s)} = W(s)$$

- We want to be immune (=small tracking errors) to both process disturbances and measurement noise \rightarrow both *S* and *T* small
- **Problem**: S(s) + T(s) = 1! How to make both them small ?

• Solution:

- keep S small at low frequencies, and hence W ≃ 1 (=good tracking)
- keep *T* small at high frequencies (=good noise rejection)

Constraint on performance: tracking cannot be too good at high frequencies !

Performance specifications: frequency domain

• We usually refer to "regular" closed-loop responses (i.e., similar to 2nd-order underdamped systems)

$$W(s) = \frac{1}{1 + \frac{2\zeta}{\omega_n}s + \frac{1}{\omega_n^2}s^2}$$

- the *resonant peak* M_r is the max value of $|W(j\omega)|$
- the *bandwidth* of the closed loop system is the range of frequencies at which $|W(j\omega)| \ge \sqrt{2} \left(\frac{|W(j\omega)|}{|W(0)|} \ge \sqrt{2}, \text{ in general} \right)$

• note that
$$\left| \frac{1}{\sqrt{2}} \right|_{dB} = 20 \log_{10} 2^{-\frac{1}{2}} \simeq -3 dB$$

• For 2nd order systems
$$W(s)$$
: $M_r^W = \frac{1}{2\zeta\sqrt{1-\zeta^2}}, B_3^W = \omega_n\sqrt{1-2\zeta^2+\sqrt{2-4\zeta^2+4\zeta^4}}$

Performance specifications: steady-state tracking

- We look at tracking of constant set-points, ramps, etc., $R(s) = \frac{1}{c^k}$
- Write the loop function in Bode form

$$L(s) = \frac{K}{s^h} L_1(s)$$
, with $L_1(0) = 1$

• Compute $\lim_{t\to+\infty} e(t)$ using final value theorem for $h \ge k - 1$:

$$\lim_{t \to +\infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s(R(s) - W(s)R(s)) = \lim_{s \to 0} \frac{1}{1 + L(s)} \frac{1}{s^{k-1}}$$
$$= \lim_{s \to 0} \frac{s^{h-k+1}}{s^h + KL_1(s)} = \begin{cases} 0 & \text{if } h \ge k \\ \frac{1}{1 + K} & \text{if } h = 0, k = 1 \\ \frac{1}{K} & \text{if } h = k - 1, k > 1 \end{cases}$$

Performance specifications: steady-state tracking

$$\lim_{t \to +\infty} e(t) = \begin{cases} 0 & \text{if } h \ge k \\ \frac{1}{1+K} & \text{if } h = 0, k = 1 \\ \frac{1}{K} & \text{if } h = k-1, k > 1 \end{cases}$$

• Constraint on type h of
$$L(s) = C(s)G(s) = \frac{KL_1(s)}{s^h}$$
:

- need $h \ge k 1$ to track $r(t) = t^{k-1}$
- need $h \ge k$ to track t^{k-1} with zero asymptotic error
- special case: need h ≥ 1 to track constant set-points with zero offset in steady-state ← (integral action!)
- Constraint on *Bode gain K* of L(s): need *K* sufficiently large to bound steady-state tracking error when h = k 1

Performance specifications: time response

- We look at the shape of the transient closed-loop response due to a unit step r(t) = 1 for $t \ge 0$, r(t) = 0 for t < 0
- the *rise time* t_r is the time required to rise from 0 to 100% of steady-state $(10 \div 90\%$ for non-oscillating systems)
- the *settling time t_s* is the time to reach and stay within a specified tolerance band (usually 2% or 5%)
- the *peak overshoot* \hat{s} is the max relative deviation from steady-state,

$$\hat{s} = \frac{\max_t y(t)}{y(+\infty)} - 1$$

Relations between frequency and time response

• Usually we refer to the step response of a second-order closed-loop system

In this case we have

$$\hat{s} = e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}}, t_r = \frac{1}{\omega_n} \frac{1}{\sqrt{1-\zeta^2}} \left[\pi - \tan^{-1} \frac{\sqrt{1-\zeta^2}}{\zeta}\right], t_{s[5\%]} \simeq \frac{3}{\zeta\omega_n}$$

• Good average formulas for closed-loop systems W(s) are

$$t_r B_3^W \simeq 3$$

where t_r [s], B_3^W [rad/s], \hat{s} [no unit], M_r^W [not in dB]

Relations between frequency and time response

• Relations between frequency and time response for second-order closed-loop systems as a function of the damping factor ζ

Controller synthesis via loop shaping

- Typical closed-loop specifications include static specs
 - system type *h*
 - tracking error $e(+\infty)$ in steady-state for $r(t) = t^k \leftarrow Bode$ Gain K

and dynamic specs

- peak overshoot $\hat{s} \leftarrow resonant peak M_r$
- rise time $t_r \leftarrow Bandwidth B_3$
- Designing a regulator that meets all specs in one shot can be a hard task
- In *loop-shaping* synthesis the controller *C*(*s*) is designed in a series of steps

where $C_1(s)$ satisfies static specs, while $C_2(s)$ dynamic specs

Synthesis via loop shaping

Synthesis of $C_1(s)$ (static performance)

• The general form of $C_1(s)$ is

$$C_1(s) = \frac{K_c}{s^{h_c}}$$

where K_c is the controller gain and h_c is the type of the controller

- If the type of G(s) is h_g and the desired type is h_d , then $h_c = max\{0, h_d h_g\}$
- The gain K_c is chosen by imposing the desired steady-state tracking error

$$\frac{1}{1 + K_c G(0)} \le e_d \quad \text{if } r_d = 0$$
$$\frac{1}{K_c G(0)} \le e_d \quad \text{if } r_d > 0$$

Example: $G(s) = \frac{1}{(s+1)}$

- Track a step reference with zero steady-state error $\rightarrow r_d = 1$
- since the type of G(s) is $h_g = 0$, $h_c = max\{0, 1\} = 1$, and $C_1(s) = \frac{1}{s}$
- steady-state error e_d to unit ramp reference is not required, so K_c is free

Mapping closed-loop specs to open-loop specs

- Closed-loop specifications must be translated into specifications on the loop transfer function $L(j\omega) = C(j\omega)G(j\omega)$
- In particular closed-loop specs should be translated into a desired phase margin M_p^L and desired crossover frequency ω_c^L of $L(j\omega)$
- We have some approximate formulas to do that:

$$M_p^L \simeq \frac{2.3 - M_r^W}{1.25}$$

where M_r is in not expressed in dB, and M_p is expressed in rad, and

$$\omega_c^L \simeq [0.5, 0.8] B_3^W$$

• The next step of loop shaping is to synthesize $C_2(s)$ so that $L(j\omega)$ has the right phase margin $M_p^L \ge M_{pd}$ and crossover frequency $\omega_c^L = \omega_{cd}$

Synthesis of $C_2(s)$ (dynamic performance)

• The general form of $C_2(s)$ is

$$C_{2}(s) = \frac{\prod_{i}(1+\tau_{i}s)\prod_{i}(1+\frac{2\zeta_{i}'s}{\omega_{ni}'}+\frac{s^{2}}{\omega_{ni}'^{2}})}{\prod_{j}(1+T_{j}s)\prod_{j}(1+\frac{2\zeta_{j}s}{\omega_{nj}}+\frac{s^{2}}{\omega_{nj}^{2}})}$$

- $C_2(s)$ must be designed to guarantee closed-loop asymptotic stability
- $C_2(s)$ must be designed to satisfy the dynamic specifications
- We focus here on controllers containing only real poles/zeros

Lead network

• A *lead network* has transfer function

$$C_{Lead}(s) = \frac{1 + \tau s}{1 + \alpha \tau s}$$

where $\tau > 0$, $0 < \alpha < 1$

• $C_{Lead}(s)$ provides phase lead in the frequency range $\left[\frac{1}{\tau}, \frac{\alpha}{\tau}\right]$

• The maximum phase lead is at $\omega_{max} = \frac{1}{\tau \sqrt{\alpha}}$ (midpoint between $\frac{1}{\tau}$ and $\frac{1}{\alpha \tau}$ in logarithmic scale)

Lead network

- The main goal of the lead network is to increase the phase margin
- As a side effect, the loop gain is increased at high frequencies (=reduced complementary sensitivity)

Lead network

Bode Diagram

 $C_{Lead}(s) = \frac{1+s}{1+\alpha s}$ $\tau = 1$

Lag network

• A lag network has transfer function

$$C_{Lag}(s) = \frac{1 + \alpha \tau s}{1 + \tau s}$$

where $\tau > 0$, $0 < \alpha < 1$

*C*_{Lag}(s) provides phase lag in the frequency range [¹/_τ, ^α/_τ]

• The maximum phase lag is at $\omega_{min} = \frac{1}{\tau \sqrt{\alpha}}$ (midpoint between $\frac{1}{\tau}$ and $\frac{1}{\alpha \tau}$ in logarithmic scale)

Lag network

- The main goal of the lag network is to decrease the loop gain at high frequencies (=reduce complementary sensitivity)
- To avoid decreasing the phase margin, set ω_{min} at low frequencies, where the loop gain |L(jω)| is still high, therefore avoiding ω_c ≃ ω_{min}

Lag network

Prof. Alberto Bemporad (University of Trento)

Lead-lag network

• A lead-lag network has transfer function

$$C_{Lead-Lag}(s) = \frac{(1+\alpha_1\tau_1 s)}{(1+\tau_1 s)} \frac{(1+\tau_2 s)}{(1+\alpha_2\tau_2 s)}$$

where $\tau_1, \tau_2 > 0, 0 < \alpha_1, \alpha_2 < 1$

• The lead-lag network *C*_{*Lead*-*Lag*}(*s*) provides the coupled effect of a lead and a lag network: increase the phase margin without increasing the closed-loop bandwidth

A special form of lead-lag networks most used in industrial practice are *proportional integral derivative (PID)* controllers (see more later ...)

PID temperature controller http://www.auberins.com

Example of loop shaping

Closed-loop specifications

- **①** Track a ramp reference r(t) = t with finite steady-state error $e_d \le 0.2$
- ② Rise-time of unit step response $t_r \simeq 0.4$ s
- Overshoot of unit step reference $\hat{s} \le 25\%$

Example of loop shaping – Static performance

• Track a ramp reference r(t) = t with finite steady-state error $e_d \le 0.2$

• Since G(s) is of type $r_g = 1$, no need to add integrators

$$C_1(s) = \frac{K_c}{s^{h_c}} = \frac{K_c}{s^0} = K_c$$

• Choose K_c by looking at steady-state tracking error of unit ramp

$$\frac{1}{K_c \cdot 1.25} \le e_d = 0.2 \rightarrow K_c \ge 4$$

• Finally, set

 $C_1(s) = 4$

Example of loop shaping – Dynamic performance

- 2 Rise-time of unit step response $t_r \simeq 0.4$
- Since $B_3 \simeq 3/t_r$, we get a closed-loop bandwidth constraint

$$B_3 \simeq \frac{3}{t_r} = \frac{3}{0.4} = 7.5 \text{ rad/s}$$

• As the desired $\omega_c \simeq [0.5, 0.8]B_3$, we get a target for the crossover frequency of the loop function $L(j\omega)$

$$\omega_c \simeq 4.7 \text{ rad/s}$$

- **2** Overshoot of unit step reference $\hat{s} \le 25\%$
- As $\hat{s} \simeq 0.85 \cdot M_r 1$ and $M_p \simeq \frac{2.3 M_r}{1.25}$ we get $0.25 \simeq 0.85 \cdot M_r 1$ or $M_r = 1.47$. The resulting specification on the phase margin of $L(j\omega)$ is $M_p \simeq 0.664$ rad $\simeq 38$ deg

Example of loop shaping – Dynamic performance

• Let's examine the current loop gain $L_1(s) = C_1(s)G(s) = \frac{40}{s(s+2)(s+4)}$ for $s = i\omega_c = i4.7$

- $|L_1(j4.7)| = -11.4 \text{ dB}$
- $\angle L_1(j4.7) \simeq -206 \deg$
- at $\omega = 4.7$ rad/s we need to increase the gain by $\Delta M = 0 + 11.4 = 11.4$ dB
- and the phase by $\Delta \phi = 206 - (180 - 38) = 64 \text{ deg}$

Example of loop shaping – Lead network

- A suitable network is a lead network. As we need to gain $\Delta \phi = 64$ deg, we choose a cascade of two identical lead networks $C_{Lead}(s) = \frac{1 + \tau s}{1 + \alpha \tau s}$
- to gain 32 deg at $\omega_c = 4.7$ rad/s, we set $\alpha = 0.3$ and $4.7 = \frac{1}{\tau \sqrt{\alpha}}$, or $\tau = 0.39$ s

$$C_{2Lead}(s) = \left(\frac{1+0.39s}{1+0.12s}\right)^2$$

• Note that at the desired crossover frequency $\omega_c = 4.7 \text{ rad/s}$, $|C_{2Lead}(j4.7)| = 10.4 \text{ dB}$

Example of loop shaping – Resulting controller

- The gain difference 10.4 11.4 = 1 dB at $\omega_c = 4.7$ rad/s is tolerable
- If the gain difference was too large, we should also have designed and cascaded a lag network
- The resulting feedback controller is

$$C(s) = C_1(s)C_{2Lead}(s) = 4\left(\frac{1+0.39s}{1+0.12s}\right)^2$$

Bode plot of loop transfer function $L(j\omega) = C(j\omega)G(j\omega)$

•
$$B_3 = 5.54 \text{ rad/s}$$

•
$$M_p = 41.5 \text{ deg}$$

Example of loop shaping - Validation of the controller

1 Track a ramp reference r(t) = t with finite steady-state error $e_d \le 0.2$

Loop-shaping example

Example of loop shaping – Validation of the controller

- 2 Rise-time of unit step response $t_r \simeq 0.4$
- Overshoot of unit step reference $\hat{s} \le 25\%$ 3

Prof. Alberto Bemporad (University of Trento)

Proportional integral derivative (PID) controllers

• PID (proportional integrative derivative) controllers are the most used controllers in industrial automation since the '30s

$$u(t) = K_p \left[e(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau + T_d \frac{de(t)}{dt} \right]$$

where e(t) = r(t) - y(t) is the tracking error

- Initially constructed by analog electronic components, today they are implemented digitally
 - ad hoc digital devices
 - just few lines of C code included in the control unit

PID parameters

$$u(t) = K_p \left[e(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau + T_d \frac{de(t)}{dt} \right]$$

- *K_p* is the *controller gain*, determining the "aggressiveness" (=closed-loop bandwidth) of the controller
- T_i is the *reset time*, determining the weight of the integral action
- T_d is the *derivative time*, determining the phase lead of the controller
- we call the controller P, PD, PI, or PID depending on the feedback terms included in the control law

Derivative term

- The derivative term has transfer function sT_d , a high pass filter
- To avoid amplifying high-frequency noise (and to make the PID transfer function proper) sT_d gets replaced by

$$sT_d \approx \frac{sT_d}{1 + s\frac{T_d}{N}}$$

- No effect of the new pole $s = -\frac{N}{T_d}$ at low frequencies, but the high-frequency gain is limited to *N* (typically $N = 3 \div 20$)
- The derivative term has the effect of "predicting" the future tracking error $\hat{e}(t + T_d) = e(t) + T_d \frac{de(t)}{dt}$ (linear extrapolation)

There are more advanced controllers that use a more refined prediction, based on the mathematical model of the process (*model predictive control*, MPC – See more later ...)

PID controllers

Frequency response of PD controller

• The PD controller is equivalent to a lead network

PID controllers

Frequency response of PI controller

$$G_{\rm PI}(s) = K_p \left(1 + \frac{1}{sT_i}\right) = \frac{K_p/T_i}{s} (1 + T_i s)$$

K_p = 1 *T_i* = 1

- The PI controller introduces integral action
- The zero $-\frac{1}{T_i}$ compensates the decrease of phase margin of the integrator

Implementation of PID controller

- The reference signal *r* is not included in the derivative term (*r*(*t*) may have abrupt changes)
- The proportional action only uses a fraction $b \le 1$ of the reference signal *r*.

Final remarks on loop shaping

- Loop-shaping techniques are most adequate for SISO (single-input single-output) systems
- They provide good insight in frequency domain properties of the closed loop (bandwidth, noise filtering, robustness to uncertainty, etc.)
- Most traditional single-loop industrial controllers are PID, and over 90% of PIDs are PI

Curiosity:

PID Temperature Control Retrofit KIT for Gaggia

This PID controller kit is designed for retrofitting into the Gaggia Classic, Gaggia Coffee, and Gaggia Coffee Deluxe espresso machine. By adding a PID controller to the heater control circuit, brewing water temperature can be controlled to ± 1 °F accuracy. Thus, it will significantly improve the taste of your espresso. Users can also easily adjust the brew water temperature to suit their own tastes. Auber Instruments

English-Italian Vocabulary

loop shaping	sintesi per tentativi
peak overshoot	sovraelongazione massima
rise time	tempo di salita
settling time	tempo di assestamento
lead network	rete anticipatrice
lag network	rete attenuatrice

Translation is obvious otherwise.