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Lecture: Loop shaping Feedback control problem

Feedback control problem
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Tuesday, May 4, 2010

Objective: make the tracking error e(t) = r(t)− y(t)' 0, despite

the dynamics of the open-loop system G(s) (slow, unstable, etc.)

disturbance d(t) affecting the process

model uncertainty ∆G(s) (the system is not exactly as we modeled it)

measurement noise n(t)
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To achieve the objective, we want to design a feedback control law satisfying a
number of requirements:

stability in nominal conditions (∆G(s) = 0, d(t) = 0, n(t) = 0)

stability in perturbed conditions

static performances (tracking error for constant r(t))
dynamic performances (transients and frequency response)

noise attenuation (be insensitive to measurement noise n(t))
feasibility of the controller (strictly proper transfer function C(s))
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Lecture: Loop shaping Feedback control problem

Closed-loop function
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The closed-loop function is the transfer function from r to y

W(s) = Hyr(s) =
C(s)G(s)

1+ C(s)G(s)

We call loop function the transfer function

L(s) = C(s)G(s)

For |L(jω)| � 1 we get |W(jω)| ' 1, ∠W(jω)' 0
For |L(jω)| � 1 we get |W(jω)| ' 0
Given G(s), we will choose C(s) to shape the loop function response L(jω)
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Lecture: Loop shaping Feedback control problem

Sensitivity functions
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The sensitivity function S(s) is the function

S(s) =
∂W(s)/W(s)
∂G(s)/G(s)

=
∂W(s)
∂G(s)

G(s)
W(s)

=
1

1+ L(s)

The sensitivity function S(s) is also the transfer function from d to y

Y(s)
D(s)

=
1

1+ L(s)
= S(s)

The complementary sensitivity function T(s) is the transfer function from n to y

T(s) =
Y(s)
N(s)

=
L(s)

1+ L(s)
=W(s)
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Lecture: Loop shaping Performance specifications

Performance specifications: frequency domain

sensitivity
transfer function from d to y

S(s) =
1

1+ C(s)G(s)

complementary sensitivity
transfer function from n to y

T(s) =
C(s)G(s)

1+ C(s)G(s)
=W(s)

We want to be immune (=small tracking errors) to both process disturbances
and measurement noise→ both S and T small

Problem: S(s) + T(s) = 1 ! How to make both them small ?

Solution:
keep S small at low frequencies,
and hence W ' 1 (=good
tracking)
keep T small at high frequencies
(=good noise rejection)

M
ag

n
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u
d
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(d
B

)

frequency (rad/s)

0 dB

good tracking good noise
rejection

|C(jω)G(jω)| ! 1

|C(jω)G(jω)| ! 1

Wednesday, May 5, 2010

Constraint on performance: tracking cannot be too good at high frequencies !
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Lecture: Loop shaping Performance specifications

Performance specifications: frequency domain

We usually refer to “regular” closed-loop responses (i.e., similar to 2nd-order
underdamped systems)

W (jω)

B3

Mr
resonant 

peak

closed-loop 

bandwidth

-3 dB

Tuesday, May 4, 2010

W(s) =
1

1+
2ζ

ωn
s+

1

ω2
n

s2

the resonant peak Mr is the max value of
|W(jω)|
the bandwidth of the closed loop system
is the range of frequencies at which
|W(jω)| ≥

p
2 ( |W(jω)||W(0)| ≥

p
2, in general)

note that

�

�

�
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p

2

�

�
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�

dB
= 20 log10 2−

1
2 '−3dB

For 2nd order systems W(s): MW
r =

1

2ζ
p

1− ζ2
, BW

3 =ωn

Æ

1− 2ζ2 +
p

2− 4ζ2 + 4ζ4
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Lecture: Loop shaping Performance specifications

Performance specifications: steady-state tracking

We look at tracking of constant set-points, ramps, etc., R(s) =
1

sk

Write the loop function in Bode form

L(s) =
K

sh
L1(s), with L1(0) = 1

Compute limt→+∞ e(t) using final value theorem for h≥ k− 1:

lim
t→+∞

e(t) = lim
s→0

sE(s) = lim
s→0

s(R(s)−W(s)R(s)) = lim
s→0

1

1+ L(s)
1

sk−1

= lim
s→0

sh−k+1

sh +KL1(s)
=















0 if h≥ k
1

1+K
if h= 0, k= 1

1

K
if h= k− 1, k> 1
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Lecture: Loop shaping Performance specifications

Performance specifications: steady-state tracking

lim
t→+∞

e(t) =















0 if h≥ k
1

1+K
if h= 0, k= 1

1

K
if h= k− 1, k> 1

Constraint on type h of L(s) = C(s)G(s) =
KL1(s)

sh
:

need h≥ k− 1 to track r(t) = tk−1

need h≥ k to track tk−1 with zero asymptotic error
special case: need h≥ 1 to track constant set-points with zero offset in
steady-state ←− (integral action!)

Constraint on Bode gain K of L(s): need K sufficiently large to bound
steady-state tracking error when h= k− 1
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Lecture: Loop shaping Performance specifications

Performance specifications: time response

rise 
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Tuesday, May 4, 2010

We look at the shape of the transient closed-loop response due to a unit step
r(t) = 1 for t≥ 0, r(t) = 0 for t< 0
the rise time tr is the time required to rise from 0 to 100% of steady-state
(10÷ 90% for non-oscillating systems)
the settling time ts is the time to reach and stay within a specified tolerance
band (usually 2% or 5%)
the peak overshoot ŝ is the max relative deviation from steady-state,
ŝ= maxt y(t)

y(+∞) − 1
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Lecture: Loop shaping Performance specifications

Relations between frequency and time response

Usually we refer to the step response of a second-order closed-loop system

rise 
time

ŝ

peak overshoot

tr

settling time

ts

y(t)
r(t)

time t

Tuesday, May 4, 2010

W(s) =
1

1+
2ζ

ωn
s+

1

ω2
n

s2

In this case we have

ŝ= e
−

πζ
p

1− ζ2
, tr =

1

ωn

1
p

1− ζ2



π− tan−1

p

1− ζ2

ζ



 , ts[5%] '
3

ζωn
ts[2%] '

4

ζωn

Good average formulas for closed-loop systems W(s) are

trB
W
3 ' 3 ŝ' 0.85 ·MW

r − 1

where tr [s], BW
3 [rad/s], ŝ [no unit], MW

r [not in dB]
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Lecture: Loop shaping Performance specifications

Relations between frequency and time response

Relations between frequency and time response for second-order closed-loop
systems as a function of the damping factor ζ

B3

ωn

1 + ŝ

Mr

Mr

ŝ

ζ

ζζ

ζζ

ζ

ωn · tr

B3 · tr

Wednesday, May 12, 2010
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Lecture: Loop shaping Synthesis via loop shaping

Controller synthesis via loop shaping

Typical closed-loop specifications include static specs
system type h
tracking error e(+∞) in steady-state for r(t) = tk ←− Bode gain K

and dynamic specs
peak overshoot ŝ←− resonant peak Mr

rise time tr ←− bandwidth B3

Designing a regulator that meets all specs in one shot can be a hard task
In loop-shaping synthesis the controller C(s) is designed in a series of steps

G(s)
yr C2(s)C1(s)

C(s)
!

"

Sunday, May 16, 2010

where C1(s) satisfies static specs, while C2(s) dynamic specs
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Lecture: Loop shaping Synthesis via loop shaping

Synthesis of C1(s) (static performance)

The general form of C1(s) is

C1(s) =
Kc

shc

where Kc is the controller gain and hc is the type of the controller

If the type of G(s) is hg and the desired type is hd, then hc =max{0, hd − hg}
The gain Kc is chosen by imposing the desired steady-state tracking error

1

1+KcG(0)
≤ ed if rd = 0

1

KcG(0)
≤ ed if rd > 0

Example: G(s) =
1

(s+ 1)
Track a step reference with zero steady-state error −→ rd = 1

since the type of G(s) is hg = 0, hc =max{0, 1}= 1, and C1(s) =
1
s

steady-state error ed to unit ramp reference is not required, so Kc is free
Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011 14 / 39



Lecture: Loop shaping Synthesis via loop shaping

Mapping closed-loop specs to open-loop specs

Closed-loop specifications must be translated into specifications on the loop
transfer function L(jω) = C(jω)G(jω)
In particular closed-loop specs should be translated into a desired phase
margin ML

p and desired crossover frequency ωL
c of L(jω)

We have some approximate formulas to do that:

ML
p '

2.3−MW
r

1.25

where Mr is in not expressed in dB, and Mp is expressed in rad, and

ωL
c ' [0.5, 0.8]BW

3

The next step of loop shaping is to synthesize C2(s) so that L(jω) has the
right phase margin ML

p ≥Mpd and crossover frequency ωL
c =ωcd
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Lecture: Loop shaping Synthesis via loop shaping

Synthesis of C2(s) (dynamic performance)

The general form of C2(s) is

C2(s) =

∏

i(1+τis)
∏

i(1+
2ζ′is

ω′ni
+ s2

ω′ni
2 )

∏

j(1+ Tjs)
∏

j(1+
2ζjs

ωnj
+ s2

ω2
nj
)

C2(s) must be designed to guarantee closed-loop asymptotic stability

C2(s) must be designed to satisfy the dynamic specifications

We focus here on controllers containing only real poles/zeros

Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011 16 / 39



Lecture: Loop shaping Lead-lag networks

Lead network

A lead network has transfer function

CLead(s) =
1+τs

1+ατs

where τ > 0, 0< α < 1

CLead(s) provides phase lead in the
frequency range [ 1

τ
, α
τ
]

1/τ 1/(ατ)
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]

frequency [rad/s]

π/4

π/2

0

0

20 log10

(
1

α

)

Tuesday, May 4, 2010The maximum phase lead is at ωmax =
1
τ
p
α

(midpoint between 1
τ

and 1
ατ

in
logarithmic scale)
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Lecture: Loop shaping Lead-lag networks

Lead network

|G(jω)|
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!
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∠(G(jω)CLead(jω))

Tuesday, May 4, 2010

The main goal of the lead network is to increase the phase margin

As a side effect, the loop gain is increased at high frequencies (=reduced
complementary sensitivity)
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Lecture: Loop shaping Lead-lag networks

Lead network
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Lecture: Loop shaping Lead-lag networks

Lag network

A lag network has transfer function

CLag(s) =
1+ατs

1+τs

where τ > 0, 0< α < 1

CLag(s) provides phase lag in the
frequency range [ 1

τ
, α
τ
]
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1
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Lecture: Loop shaping Lead-lag networks

Lag network
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The main goal of the lag network is to decrease the loop gain at high
frequencies (=reduce complementary sensitivity)

To avoid decreasing the phase margin, set ωmin at low frequencies, where the
loop gain |L(jω)| is still high, therefore avoiding ωc 'ωmin
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Lecture: Loop shaping Lead-lag networks

Lag network
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Lecture: Loop shaping Lead-lag networks

Lead-lag network

A lead-lag network has transfer function

CLead−Lag(s) =
(1+α1τ1s)
(1+τ1s)

(1+τ2s)
(1+α2τ2s)

where τ1,τ2 > 0, 0< α1,α2 < 1

The lead-lag network CLead−Lag(s) provides
the coupled effect of a lead and a lag
network: increase the phase margin without
increasing the closed-loop bandwidth

0
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Tuesday, May 4, 2010

A special form of lead-lag networks most used in industrial
practice are proportional integral derivative (PID) controllers
(see more later ...)

PID temperature controller

http://www.auberins.com
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Lecture: Loop shaping Loop-shaping example

Example of loop shaping

Open-loop transfer function of the
process

G(s) =
10

s(s+ 2)(s+ 4)

=
1.25

s

1

(1+ 0.5s)(1+ 0.25s)

Bode Diagram

Frequency  (rad/sec)
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Gain Margin (dB): 13.6
At frequency (rad/sec): 2.83
Closed Loop Stable? Yes
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System: G
Phase Margin (deg): 47
Delay Margin (sec): 0.77
At frequency (rad/sec): 1.07
Closed Loop Stable? Yes

P
h
a
s
e
 (

d
e
g
)

Closed-loop specifications
1 Track a ramp reference r(t) = t with finite steady-state error ed ≤ 0.2
2 Rise-time of unit step response tr ' 0.4 s
3 Overshoot of unit step reference ŝ≤ 25%
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Lecture: Loop shaping Loop-shaping example

Example of loop shaping – Static performance

1 Track a ramp reference r(t) = t with finite steady-state error ed ≤ 0.2

Since G(s) is of type rg = 1, no need to add integrators

C1(s) =
Kc

shc
=

Kc

s0 = Kc

Choose Kc by looking at steady-state tracking error of unit ramp

1

Kc · 1.25
≤ ed = 0.2 → Kc ≥ 4

Finally, set
C1(s) = 4
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Lecture: Loop shaping Loop-shaping example

Example of loop shaping – Dynamic performance

2 Rise-time of unit step response tr ' 0.4

Since B3 ' 3/tr, we get a closed-loop bandwidth constraint

B3 '
3

tr
=

3

0.4
= 7.5 rad/s

As the desired ωc ' [0.5, 0.8]B3, we get a target for the crossover frequency
of the loop function L(jω)

ωc ' 4.7 rad/s

2 Overshoot of unit step reference ŝ≤ 25%

As ŝ' 0.85 ·Mr − 1 and Mp '
2.3−Mr

1.25
we get 0.25' 0.85 ·Mr − 1 or

Mr = 1.47. The resulting specification on the phase margin of L(jω) is

Mp ' 0.664 rad ' 38 deg
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Lecture: Loop shaping Loop-shaping example

Example of loop shaping – Dynamic performance

Let’s examine the current loop gain L1(s) = C1(s)G(s) =
40

s(s+ 2)(s+ 4)
for

s= jωc = j4.7

−100

−50

0

50

100

M
ag

ni
tu

de
 (

dB
)

System: GC1
Frequency (rad/sec): 4.7
Magnitude (dB): −11.3

10
−2

10
−1

10
0

10
1

10
2

−270

−225

−180

−135

−90

System: GC1
Frequency (rad/sec): 4.7
Phase (deg): −206

P
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Bode diagram of L
1
(s)

Frequency  (rad/sec)

|L1(j4.7)|=−11.4 dB

∠L1(j4.7)'−206 deg

at ω= 4.7 rad/s we need to increase
the gain by ∆M = 0+ 11.4= 11.4 dB

and the phase by
∆φ = 206− (180− 38) = 64 deg
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Lecture: Loop shaping Loop-shaping example

Example of loop shaping – Lead network

A suitable network is a lead network. As we need to gain ∆φ = 64 deg, we

choose a cascade of two identical lead networks CLead(s) =
1+τs

1+ατs

to gain 32 deg at ωc = 4.7 rad/s, we set α= 0.3 and 4.7=
1

τ
p
α

, or

τ= 0.39 s

C2Lead(s) =
�
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Note that at the desired crossover frequency ωc = 4.7 rad/s,
|C2Lead(j4.7)|= 10.4 dB
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Lecture: Loop shaping Loop-shaping example

Example of loop shaping – Resulting controller

The gain difference 10.4− 11.4= 1 dB at ωc = 4.7 rad/s is tolerable

If the gain difference was too large, we should also have designed and
cascaded a lag network

The resulting feedback controller is

C(s) = C1(s)C2Lead(s) = 4
�

1+ 0.39s

1+ 0.12s

�2
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Bode Diagram
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Bode plot of loop transfer function
L(jω) = C(jω)G(jω)

B3 = 5.54 rad/s

Mp = 41.5 deg
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Lecture: Loop shaping Loop-shaping example

Example of loop shaping – Validation of the controller

1 Track a ramp reference r(t) = t with finite steady-state error ed ≤ 0.2

closed−loop ramp response

Time (sec)

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

Input: In(1)
Time (sec): 2
Amplitude: 2

System: W
Time (sec): 2
Amplitude: 1.8

tracking error
e(2) = 2− 1.8= 0.2

MATLAB
»W = L/(1+L);
»t = 0:0.01:2.5;
»ramp=t;
»lsim(W,ramp,t);
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Lecture: Loop shaping Loop-shaping example

Example of loop shaping – Validation of the controller

2 Rise-time of unit step response tr ' 0.4
3 Overshoot of unit step reference ŝ≤ 25%

closed−loop step response

Time (sec)

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

System: W
Time (sec): 0.449
Amplitude: 1

System: W
Time (sec): 0.674
Amplitude: 1.28

MATLAB
»step = ones(1,length(t));
»lsim(W,step,t);
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Proportional integral derivative (PID) controllers

PID (proportional integrative derivative) controllers are the most used
controllers in industrial automation since the ’30s

u(t) = Kp

h

e(t) +
1

Ti

∫ t

0

e(τ)dτ+ Td
de(t)

dt

i

where e(t) = r(t)− y(t) is the tracking error
Initially constructed by analog electronic components, today they are
implemented digitally

ad hoc digital devices
just few lines of C code included in the control unit
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PID parameters

G(s)

C(s)

e 1

sTi

sTd

Kp

u yr

Wednesday, May 5, 2010

u(t) = Kp

h

e(t) +
1

Ti

∫ t

0

e(τ)dτ+ Td
de(t)

dt

i

Kp is the controller gain, determining the “aggressiveness” (=closed-loop
bandwidth) of the controller

Ti is the reset time, determining the weight of the integral action

Td is the derivative time, determining the phase lead of the controller

we call the controller P, PD, PI, or PID depending on the feedback terms
included in the control law
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Derivative term

The derivative term has transfer function sTd, a high pass filter
To avoid amplifying high-frequency noise (and to make the PID transfer
function proper) sTd gets replaced by

sTd ≈
sTd

1+ s Td

N

No effect of the new pole s=− N
Td

at low frequencies, but the high-frequency
gain is limited to N (typically N = 3÷ 20)
The derivative term has the effect of “predicting” the future tracking error

ê(t+ Td) = e(t) + Td
de(t)

dt
(linear extrapolation)

e(t)

t t+Td

e(t) + Td
de(t)

dt

e(t+Td)

Wednesday, May 5, 2010

There are more advanced controllers that use a more
refined prediction, based on the mathematical model
of the process (model predictive control, MPC – See
more later ...)
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Frequency response of PD controller

GPD(s) = Kp
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N
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The PD controller is equivalent to a lead network
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Frequency response of PI controller

GPI(s) = Kp

�
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The PI controller introduces integral action

The zero −
1

Ti
compensates the decrease of phase margin of the integrator
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Implementation of PID controller

G(s)

C(s)!

e 1

sTi
Kp

!

"

! u y

r

sTd

1 + sTd

N

"

b

!

"

Wednesday, May 5, 2010

u(t) = Kp



br(t)− y(t) +
1

sTi
(r(t)− y(t))−

sTd

1+ s Td

N

y(t)





The reference signal r is not included in the derivative term (r(t) may have
abrupt changes)

The proportional action only uses a fraction b≤ 1 of the reference signal r.
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Final remarks on loop shaping

Loop-shaping techniques are most adequate for SISO (single-input
single-output) systems

They provide good insight in frequency domain properties of the closed loop
(bandwidth, noise filtering, robustness to uncertainty, etc.)

Most traditional single-loop industrial controllers are PID, and over 90% of
PIDs are PI

Curiosity:

PID Temperature Control Retrofit KIT for Gaggia

This PID controller kit is designed for retrofitting into the Gaggia Classic, Gaggia
Coffee, and Gaggia Coffee Deluxe espresso machine. By adding a PID controller to the
heater control circuit, brewing water temperature can be controlled to ±1 ◦F
accuracy. Thus, it will significantly improve the taste of your espresso. Users can also
easily adjust the brew water temperature to suit their own tastes.
Auber Instruments
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English-Italian Vocabulary

loop shaping sintesi per tentativi
peak overshoot sovraelongazione massima
rise time tempo di salita
settling time tempo di assestamento
lead network rete anticipatrice
lag network rete attenuatrice

Translation is obvious otherwise.
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