Automatic Control 2 Frequency domain analysis

Prof. Alberto Bemporad

University of Trento

Academic year 2010-2011

Automatic Control 2

Frequency response

Definition

The *frequency response* of a linear dynamical system with transfer function G(s) is the complex function $G(j\omega)$ of the real angular frequency $\omega \ge 0$

Theorem

If *G*(*s*) is asymptotically stable (poles with negative real part), for $u(t) = \bar{U}\sin(\omega t)$ in steady-state conditions $\lim_{t\to\infty} y(t) - y_{ss}(t) = 0$, where

$$y_{ss}(t) = \overline{U}|G(j\omega)|\sin(\omega t + \angle G(j\omega))$$

The frequency response $G(j\omega)$ of a system allows us to analyze the response of the system to sinusoidal excitations at different frequencies ω

Prof. Alberto Bemporad (University of Trento)

Automatic Control 2

Frequency response – Proof

• Set $\overline{U} = 1$ for simplicity. The input $u(t) = \sin \omega t \mathbb{I}(t)$ has Laplace transform

$$U(s) = \frac{\omega}{s^2 + \omega^2}$$

- As we are interested in the steady-state response, we can neglect the natural response $y_{\ell}(t)$ of the output. In fact, as G(s) is asymptotically stable, $y_{\ell}(t) \rightarrow 0$ for $t \rightarrow \infty$
- The forced response of the output y(t) has Laplace transform

$$Y_f(s) = G(s)\frac{\omega}{s^2 + \omega^2} = \frac{G(s)\omega}{(s - j\omega)(s + j\omega)}$$

• Let's compute the partial fraction decomposition of $Y_f(s)$

$$Y_{f}(s) = \underbrace{\frac{\omega G(j\omega)}{2j\omega(s-j\omega)} + \frac{\omega G(-j\omega)}{-2j\omega(s+j\omega)}}_{Y_{ss}(s) = \text{ steady-state response}} + \underbrace{\sum_{i=1}^{n} \frac{R_{i}}{s-p_{i}}}_{\text{transient forced response}^{1}}$$

 ${}^{1}R_{i}$ =residue of $G(s)\frac{\omega}{s^{2}+\omega^{2}}$ in $s = p_{i}$. We are assuming here that G(s) has distinct poles

Frequency response – Proof (cont'd)

• As G(s) is asymptotically stable, the inverse Laplace transform $\mathscr{L}^{-1}\left[\sum_{i=1}^{n} \frac{R_i}{s-p_i}\right] = \sum_{i=1}^{n} R_i e^{p_i t} \text{ tends to zero asymptotically}$

• The remaining steady-state output response is therefore

$$y_{ss}(t) = \mathscr{L}^{-1} \left[\frac{G(j\omega)}{2j(s-j\omega)} + \frac{G(-j\omega)}{-2j(s+j\omega)} \right]$$

$$= \frac{-j}{2} G(j\omega) e^{j\omega t} + \frac{j}{2} G(-j\omega) e^{-j\omega t}$$

$$= \frac{-j}{2} G(j\omega) e^{j\omega t} + \overline{\left(\frac{-j}{2} G(j\omega) e^{j\omega t}\right)}$$

$$= 2\Re \left[\frac{-j}{2} G(j\omega) e^{j\omega t} \right] = \underbrace{\operatorname{Im} \left[|G(j\omega)| e^{j\angle G(j\omega) + j\omega t} \right]}_{\operatorname{Re}(-j(a+jb)) = \operatorname{Re}(-ja-j^2b) = \operatorname{Re}(b-ja) = b}$$

$$= |G(j\omega)| \sin(\omega t + \angle G(j\omega))$$

• We can repeat the proof for $\bar{U} \neq 1$ and get the general result.

Example

$$u(t) = 5\sin 10t$$

$$G(s) = \frac{10}{(1+0.1s)^2}$$

• The poles are $p_1 = p_2 = -10$, the system is asymptotically stable

• The steady-state response is

 $y_{ss}(t) = 5|G(j\omega)|\sin(\omega t + \angle G(j\omega))$

where

$$G(j\omega) = \frac{10}{(1+0.1j\omega)^2} = \frac{10}{1+0.2j\omega - 0.01\omega^2}$$

• For
$$\omega = 10$$
 rad/s,

$$G(10j) = \frac{10}{1+2j-1} = \frac{5}{j} = -5j$$

• Finally, we get

$$y_{ss}(t) = 5 \cdot 5\sin(10t - \frac{\pi}{2}) = 25\sin(10t - \frac{\pi}{2})$$

Example (cont'd)

Frequency response of discrete-time systems

A similar result holds for discrete-time systems:

Theorem

If G(z) is asymptotically stable (poles inside the unit circle), for $u(k) = \overline{U}\sin(k\theta)$ in steady-state conditions $\lim_{k\to\infty} y(k) - y_{ss}(k) = 0$, where

$$y_{ss}(k) = \overline{U}|G(e^{j\theta})|\sin(k\theta + \angle G(e^{j\theta}))$$

Bode plot

- The *Bode plot* is a graph of the module $|G(j\omega)|$ and phase $\angle G(j\omega)$ of a transfer function G(s), evaluated in $s = j\omega$
- The Bode plot shows the system's frequency response as a function of ω , for all $\omega > 0$

Hendrik Wade Bode (1905 - 1982)

Bode plot

Example: frequency response of a telephone, approx. 300–3,400 Hz, good enough for speech transmission

- The frequency ω axis is in *logarithmic scale*
- The module $|G(j\omega)|$ is expressed as *decibel (dB)*

 $|G(j\omega)|_{\rm db} = 20\log_{10}|G(j\omega)|$

• Example: the DC-gain G(0) = 1, $|G(i0)|_{db} = 20 \log_{10} 1 = 0$

MATLAB
»bode (G)
<pre>wevalfr(G,w)</pre>

Bode form

• To study the frequency response of the system is useful to rewrite the transfer function *G*(*s*) in *Bode form*

$$G(s) = \frac{K}{s^{h}} \frac{\prod_{i} (1 + s\tau_{i})}{\prod_{j} (1 + sT_{j})} \frac{\prod_{i} \left(1 + \frac{2\zeta'_{i}}{\omega'_{ni}}s + \frac{1}{\omega'_{ni}^{2}}s^{2}\right)}{\prod_{j} \left(1 + \frac{2\zeta_{j}}{\omega_{nj}}s + \frac{1}{\omega_{nj}^{2}}s^{2}\right)}$$

- *K* is the *Bode gain*
- *h* is the *type* of the system, that is the number of poles in s = 0
- T_i (for real $T_i > 0$) is said a *time constant* of the system
- ζ_j is a *damping ratio* of the system, $-1 < \zeta_j < 1$
- ω_{nj} is a *natural frequency* of the system

Bode magnitude plot

$$|G(j\omega)|_{\rm dB} = 20\log_{10}\left|\frac{K}{(j\omega)^h}\frac{\Pi_i(1+j\omega\tau_i)}{\Pi_j(1+j\omega T_j)}\frac{\Pi_i\left(1+\frac{2j\zeta_i'\omega}{\omega_{ni}'}-\frac{\omega^2}{\omega_{nj}'}\right)}{\Pi_j\left(1+\frac{2j\zeta_j\omega}{\omega_{nj}}-\frac{\omega^2}{\omega_{nj}^2}\right)}\right|$$

• Recall the following properties of logarithms:

$$\log \alpha \beta = \log \alpha + \log \beta$$
, $\log \frac{\alpha}{\beta} = \log \alpha - \log \beta$, $\log \alpha^{\beta} = \beta \log \alpha$

• Thus we get

$$\begin{aligned} G(j\omega)|_{\rm dB} &= 20\log_{10}|K| - h \cdot 20\log_{10}\omega \\ &+ \sum_{i} 20\log_{10}|1 + j\omega\tau_{i}| - \sum_{j} 20\log_{10}|1 + j\omega T_{j}| \\ &+ \sum_{i} 20\log_{10}\left|1 + \frac{2j\zeta_{i}'\omega}{\omega_{ni}'} - \frac{\omega^{2}}{\omega_{ni}'^{2}}\right| - \sum_{j} 20\log_{10}\left|1 + \frac{2j\zeta_{j}\omega}{\omega_{nj}} - \frac{\omega^{2}}{\omega_{nj}^{2}}\right| \end{aligned}$$

Bode magnitude plot

• We can restrict our attention to four basic components only:

$$\begin{aligned} |G(j\omega)|_{dB} &= \underbrace{20 \log_{10} |K|}_{\#} - h \underbrace{20 \log_{10} \omega}_{\#2} \\ &+ \sum_{i} 20 \log_{10} |1 + j\omega\tau_{i}| - \sum_{j} \underbrace{20 \log_{10} |1 + j\omega T_{j}|}_{\#3} \\ &+ \sum_{i} 20 \log_{10} \left| 1 + \frac{2j\zeta_{i}'\omega}{\omega_{ni}'} - \frac{\omega^{2}}{\omega_{ni}'^{2}} \right| - \sum_{j} \underbrace{20 \log_{10} \left| 1 + \frac{2j\zeta_{j}\omega}{\omega_{nj}} - \frac{\omega^{2}}{\omega_{nj}^{2}} \right|}_{\#4} \end{aligned}$$

Bode

Bode magnitude plot

Basic component #1 ۲

 $20 \log_{10} |K|$

• Basic component #2

 $20\log_{10}|\omega|$

 $-20\log_{10}|\omega|$

-20

Bode

Bode magnitude plot

Basic component #3 ۲

 $20 \log_{10} |1 + j\omega T|$

 $|G(j\omega)| \approx 1$ for $\omega \ll \frac{1}{T}$ $|G(j\omega)| \approx \omega T$ for $\omega \gg \frac{1}{T}$

> Basic component #4 ۲

$$20\log_{10}\left|1+2j\zeta\frac{\omega}{\omega_n}-\frac{\omega^2}{\omega_n^2}\right|$$

 $\begin{aligned} |G(j\omega)| &\approx 1 \text{ for } \omega \ll \omega_n \\ |G(j\omega)| &\approx \frac{\omega^2}{\omega_n^2} \text{ for } \omega \gg \omega_n \end{aligned}$

at the resonant frequency $\omega_{\text{peak}} = \omega_n \sqrt{1 - 2\zeta^2}$

Example

Draw the Bode plot of the transfer function

$$G(s) = \frac{1000(1+10s)}{s^2(1+s)^2}$$

- For $\omega \ll 0.1$: $|G(j\omega)| \approx \frac{1000}{\omega^2}$
- For $\omega = 0.1$: $20 \log_{10} \frac{1000}{\omega^2} = 20 \log_{10} 10^5 = 100$
- For $0.1 < \omega < 1$: effect of zero s = -0.1, increase by 20 dB/decade
- For $\omega > 1$: effect of double pole s = -1, decrease by 40 dB/decade

$$\angle G(j\omega) = \angle \left(\frac{K}{(j\omega)^h} \frac{\prod_i (1+j\omega\tau_i)}{\prod_j (1+j\omega T_j)} \frac{\prod_i \left(1+\frac{2j\zeta_i'\omega}{\omega_{ni}'}-\frac{\omega^2}{\omega_{ni}'^2}\right)}{\prod_j \left(1+\frac{2j\zeta_j\omega}{\omega_{nj}}-\frac{\omega^2}{\omega_{nj}^2}\right)} \right)$$

• Because of the following properties of exponentials

$$\begin{split} & \angle (\rho e^{j\theta}) = \theta \\ & \angle (\alpha\beta) = \angle (\rho_{\alpha} e^{j\theta_{\alpha}} \rho_{\beta} e^{j\theta_{\beta}}) = \angle (\rho_{\alpha} \rho_{\beta} e^{j(\theta_{\alpha} + \theta_{\beta})}) = \theta_{\alpha} + \theta_{\beta} = \angle \alpha + \angle \beta \\ & \angle \frac{\alpha}{\beta} = \angle \frac{\rho_{\alpha} e^{j\theta_{\alpha}}}{\rho_{\beta} e^{j\theta_{\beta}}} = \angle \left(\frac{\rho_{\alpha}}{\rho_{\beta}} e^{j(\theta_{\alpha} - \theta_{\beta})} \right) = \theta_{\alpha} - \theta_{\beta} = \angle \alpha - \angle \beta \end{split}$$

we get

$$\begin{aligned} \angle G(j\omega) &= \angle K - \angle \left((j\omega)^h \right) \\ &+ \sum_i \angle (1 + j\omega\tau_i) - \sum_j \angle (1 + j\omega T_j) \\ &+ \sum_i \angle \left(1 + \frac{2j\zeta_i'\omega}{\omega_{ni}'} - \frac{\omega^2}{\omega_{ni}'^2} \right) - \sum_j \angle \left(1 + \frac{2j\zeta_j\omega}{\omega_{nj}} - \frac{\omega^2}{\omega_{nj}^2} \right) \end{aligned}$$

• We can again restrict our attention to four basic components only:

$$\begin{aligned} \angle G(j\omega) &= \underbrace{\angle K}_{i} - \underbrace{\angle \left((j\omega)^{h} \right)}_{\# 2} \\ &+ \sum_{i} \angle (1 + j\omega\tau_{i}) - \sum_{j} \underbrace{\angle (1 + j\omegaT_{j})}_{\# 3} \\ &+ \sum_{i} \angle \left(1 + \frac{2j\zeta_{i}'\omega}{\omega_{ni}'} - \frac{\omega^{2}}{\omega_{ni}'^{2}} \right) - \sum_{j} \underbrace{\angle \left(1 + \frac{2j\zeta_{j}\omega}{\omega_{nj}} - \frac{\omega^{2}}{\omega_{nj}^{2}} \right)}_{\# 4} \end{aligned}$$

• Basic component #1

$$\angle K = \begin{cases} 0 & \text{for } K > 0 \\ -\pi & \text{for } K < 0 \end{cases}$$

• Basic component #2

$$\angle \left((j\omega)^h \right) = \frac{h\pi}{2}$$

- Basic component #3
 - $\angle (1+j\omega T) = \operatorname{atan}(\omega T)$

 $\angle G(j\omega) \approx 0 \text{ for } \omega \ll \frac{1}{T}$ $\angle G(j\omega) \approx \frac{\pi}{2} \text{ for } \omega \gg \frac{1}{T}, T > 0$

- $\angle (1-j\omega T) = -\operatorname{atan}(\omega T)$
- Basic component #4 $\angle \left(1 + 2j\zeta \frac{\omega}{\omega_n} - \frac{\omega^2}{\omega_n^2} \right)$
- $\angle G(j\omega) \approx 0 \text{ for } \omega \ll \omega_n$ For $\zeta \ge 0$, $\angle G(j\omega) = \frac{\pi}{2}$ for $\omega = \omega_n$, $\angle G(j\omega) \approx \angle \left(-\frac{\omega^2}{\omega_n^2}\right) = \pi \text{ for } \omega \gg \omega_n$

Example (cont'd)

- For $\omega \ll 0.1$: $\angle G(j\omega) \approx -\pi$
- For $0.1 < \omega < 1$: effect of zero in s = -0.1, add $\frac{\pi}{2}$
- Per $\omega > 1$: effect of double pole in s = -1, subtract $2\frac{\pi}{2} = \pi$

Example

- For $\omega \ll 0.1$: $|G(j\omega)| \approx \frac{10}{\omega^2}$ (slope=-40 dB/dec), $\angle G(j\omega) \approx -\pi$
- For $\omega = 0.1$: $20 \log_{10} \frac{10}{\omega^2} = 60 \text{ dB}$
- For $0.1 < \omega < 1$: effect of unstable pole s = 0.1, decrease module by 20 dB/dec, increase phase by $\frac{\pi}{2}$
- For $1 < \omega < 10$: effect of zero s = -1, +20 dB/dec module, $+\frac{\pi}{2}$ phase
- For $\omega > 10$: effect of pole s = -10, -20 dB/dec module, $-\frac{\pi}{2}$ phase

Summary table for drawing asymptotic Bode plots

		magnitude	phase
stable real pole	T > 0	-20 dB/dec	$-\pi/2$
unstable real pole	T < 0	−20 dB/dec	$\pi/2$
stable real zero	$\tau > 0$	+20 dB/dec	$\pi/2$
unstable real zero	$\tau < 0$	+20 dB/dec	$-\pi/2$
pair of stable complex poles	$\zeta > 0$	-40 dB/dec	$-\pi$
pair of unstable complex poles	$\zeta < 0$	-40 dB/dec	π
pair of stable complex zeros	$\zeta' > 0$	+40 dB/dec	π
pair of unstable complex zeros	$\zeta' < 0$	+40 dB/dec	$-\pi$

More on damped oscillatory modes

• Let
$$s = a \pm jb$$
 be complex poles, $b \neq 0$

• Since $(s - (a - jb))(s - (a + jb)) = (s - a)^2 + b^2 = s^2 - 2as + (a^2 + b^2) = (a^2 + b^2)(1 - \frac{2a}{a^2 + b^2}s + \frac{1}{a^2 + b^2}s^2)$, we get

$$\omega_n = \sqrt{a^2 + b^2} = |a \pm jb|, \quad \zeta = -\frac{a}{\sqrt{a^2 + b^2}} = -\cos \angle (a \pm jb)$$

- Note that $\zeta > 0$ if and only if a < 0
- Vice versa, $a = -\zeta \omega_n$, and $b = \omega_n \sqrt{1 \zeta^2}$
- The natural response is

$$Me^{-\zeta\omega_n t}\sin(\omega_n\sqrt{1-\zeta^2}t+\phi)$$

where M, ϕ depend on the initial conditions

• The frequency $\omega_d = \omega_n \sqrt{1 - \zeta^2}$ is called *damped natural frequency*

Bode

Zero/pole/gain form and Bode form

• Sometimes the transfer function G(s) is given in *zero/pole/gain form* (ZPK)

$$G(s) = \frac{K'}{s^{h}} \frac{\prod_{i} (s - z_{i})}{\prod_{j} (s - p_{j})} \frac{\prod_{i} \left(s^{2} + 2\zeta_{i}' \omega_{ni}' s + {\omega'}_{ni}^{2}\right)}{\prod_{j} \left(s^{2} + 2\zeta_{j} \omega_{nj} s + {\omega}_{nj}^{2}\right)}$$

• The relations between Bode form and ZPK form are

$$z_i = -\frac{1}{\tau_i}, \ p_j = -\frac{1}{T_i}, \ K = K' \frac{\Pi_i(-z_i)\Pi_i {\omega'}_{ni}^2}{\Pi_j(-p_j)\Pi_i {\omega}_{ni}^2}$$

Nyquist (or polar) plot

- Let G(s) be a transfer function of a linear time-invariant dynamical system
- The *Nyquist plot* (or *polar plot*) is the graph in **polar** coordinates of $G(j\omega)$ for $\omega \in [0, +\infty)$ in the complex plane
- $G(j\omega) = \rho(\omega)e^{j\phi(\omega)}$, where $\rho(\omega) = |G(j\omega)|$ and $\phi(\omega) = \angle G(j\omega)$
- The Nyquist plot is one of the classical methods used in stability analysis of linear systems
- The Nyquist plot combines the Bode magnitude & phase plots in a single plot

Harry Nyquist (1889 - 1976)

Nyquist plot

To draw a Nyquist plot of a transfer function G(s), we can give some hints:

- For ω = 0, the Nyquist plot equals the DC gain G(0)
- If G(s) is strictly proper, $\lim_{\omega \to \infty} G(j\omega) = 0$
- In this case the angle of arrival equals $(n_z^- n_z^+ n_p^- + n_p^+)\frac{\pi}{2}$, where $n_{z[p]}^{+[-]}$ is the # of zeros [poles] with positive [negative] real part

•
$$G(-j\omega) = \overline{G(j\omega)}$$

A system without any zero with positive real part is called *minimum phase*

Nyquist criterion

- Consider a transfer function G(s) = N(s)/D(s) under unit static feedback u(t) = -(y(t) r(t))
- As y(t) = G(s)(-y(t) + r(t)), the closed-loop transfer function from r(t) to y(t) is

$$W(s) = \frac{G(s)}{1 + G(s)} = \frac{N(s)}{D(s) + N(s)}$$

Nyquist stability criterion

The number N_W of closed-loop unstable poles of W(s) is equal to the number N_R of clock-wise rotations of the Nyquist plot around s = -1 + j0 plus the number N_G of unstable poles of G(s). $[N_W = N_R + N_G]$

Corollary: simplified Nyquist criterion

For open-loop asympt. stable systems G(s) ($N_G = 0$), the closed-loop system W(s) is asymptotically stable if and only if the Nyquist plot $G(j\omega)$ does not encircle clock-wise the critical point -1 + j0. [$N_W = N_R$]

Nyquist stability criterion

Proof:

- Follows by the *Argument principle*: "The polar diagram of 1 + G(s) has a number of clock-wise rotations around the origin equal to the number of zeros of 1 + G(s) (=roots of N(s) + G(s)) minus the number of poles of 1 + G(s) (=roots of D(s)) of 1 + G(s)"
- The poles of W(s) are the zeros of 1 + G(s)
- Note: the number of *counter-clockwise* encirclements counts as a negative number of clockwise encirclements
- Use of Nyquist criterion for open-loop stable systems:
 - draw the Nyquist plot of *G*(*s*)
 - ② count the number of clockwise rotations around -1 + j0
 - if -1 + j0 is not encircled, the closed-loop system W(s) = G(s)/(1 + G(s)) is stable
- The Nyquist criterion is limited to SISO systems

Example

Consider the transfer function $G(s) = \frac{10}{(s+1)^2} = \frac{10}{s^2 + 2s + 1}$ under static output feedback u(t) = -(y(t) - r(t))

• The closed-loop transfer function is

$$W(s) = \frac{G(s)}{1 + G(s)}$$

- The Nyquist plot of G(s) does not encircle -1 + j0
- By Nyquist criterion, *W*(*s*) is asymptotically stable

Example

Consider the transfer function $G(s) = \frac{10}{s^3 + 3s^2 + 2s + 1}$ under unit output feedback u(t) = -2(y(t) - r(t))

• The closed-loop transfer function is

$$W(s) = \frac{2G(s)}{1 + 2G(s)}$$

- The Nyquist plot of 2G(s) encircles -1 + j0 twice
- By Nyquist criterion, *W*(*s*) is unstable

Dealing with imaginary poles

- The Nyquist plot is generated by a closed curve, the *Nyquist contour*, rotating clock-wise from $0 j\infty$ to $0 + j\infty$ and back to $0 j\infty$ along a semi-circle of radius ∞ , avoiding singularities of $G(j\omega)$
- We distinguish three types of curves, depending on the number of poles on the imaginary axis:

Stability analysis of static output feedback

• Under static output feedback u(t) = -K(y(t) - r(t)), the closed-loop transfer function from r(t) to y(t) is

$$W(s) = \frac{KG(s)}{1 + KG(s)}$$

- The number of encirclements of -1 + j0 of KG(s) is equal to the number of encirclements of $-\frac{1}{K} + j0$ of G(s)
- To analyze closed-loop stability for different values of *K* is enough to draw Nyquist plot of *G*(*s*) and move the point $-\frac{1}{K} + j0$ on the real axis

$$G(s) = \frac{60}{(s^2 + 2s + 20)(s + 1)}$$

I0=no unstable closed-loop poles I2 =two unstable closed-loop poles I1=an unstable closed-loop pole

Phase margin

- Assume *G*(*s*) is open-loop asymptotically stable
- Let ω_c be the *gain crossover frequency*, that is $|G(j\omega_c)| = 1$
- To avoid encircling the point -1 + j0, we want the phase $\angle G(j\omega_c)$ as far away as possible from $-\pi$
- The *phase margin* is the quantity

$$M_p = \angle G(j\omega_c) - (-\pi)$$

- If $M_p > 0$, unit negative feedback control is asymptotically stabilizing
- For robustness of stability we would like a large positive phase margin

Gain margin

- Assume *G*(*s*) is open-loop asymptotically stable
- Let ω_{π} be the *phase crossover frequency* such that $\angle G(j\omega_{\pi}) = -\pi$
- To avoid encircling the point -1 + j0, we want the point $G(j\omega_{\pi})$ as far as possible away from -1 + j0.
- The *gain margin* is the inverse of $|G(j\omega_{\pi})|$, expressed in dB

$$M_{g} = 20 \log_{10} \frac{1}{|G(j\omega_{\pi})|} = -|G(j\omega_{\pi})|_{dB}$$

• For robustness of stability we like to have a large gain margin

Sometimes the gain margin is defined as

$$M_g = \frac{1}{|G(j\omega_\pi)|}$$

and therefore $G(j\omega_{\pi}) = -\frac{1}{M_g} + j0$

Stability analysis using phase and gain margins

- The phase and gain margins help assessing the degree of robustness of a closed-loop system against uncertainties in the magnitude and phase of the process model
- They can be also applied to analyze the stability of dynamic output feedback laws u(t) = C(s)(y(t) r(t)), by looking at the Bode plots of the loop function $C(j\omega)G(j\omega)$ (see next lecture on "loop shaping")

Stability analysis using phase and gain margins

• However in some cases phase and gain margins are not good indicators, see the following example

- The system is characterized by a large phase margin, but the polar plot is very close to the point (-1,0)
- The system is not very robust to model uncertainties changing *G*(*s*) from its nominal value
- In conclusion, phase and gain margins give good indications on how the loop function should be modified, but the complete Bode and Nyquist plots must be checked to conclude about closed-loop stability

English-Italian Vocabulary

frequency response	risposta in frequenza
angular frequency	pulsazione
steady-state	regime permanente
Bode plot	diagramma di Bode
Bode form	forma di Bode
Bode gain	guadagno di Bode
system's type	tipo del sistema
time constant	costante di tempo
damping ratio	fattore di smorzamento
natural frequency	frequenza naturale
zero/pole/gain form	forma poli/zeri
minimum phase system	sistema a fase minima
Nyquist plot	diagramma di Nyquist
crossover frequency	frequenza di attraversamento