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Lecture: Pole placement by dynamic output feedback Introduction

Output feedback control
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We know how to arbitrarily place the closed-loop poles by state feedback
However, we may not want to directly measure the entire state vector x !
Can we still place the closed-loop poles arbitrarily even if we only measure
the output y ?

Open-loop model:
�

x(k+ 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

︸ ︷︷ ︸

state-space model

Y(z) =
N(z)
D(z)

U(z)
︸ ︷︷ ︸

transfer function
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Lecture: Pole placement by dynamic output feedback Root locus

Static output feedback (and “root locus”)

Simple static feedback law: u(k) =−Ky(k)
Closed-loop poles can be only placed on the root locus by changing the gain K

Examples:

Im

Re! !

-3 -2

Im

Re! !

-3 -2 4

!

MATLAB
»rlocus(sys)

Root locus of a system with two asymptotically
stable open-loop poles. The system is closed-loop
asymptotically stable ∀K > 0

Root locus of a system with two asymptotically
stable poles and an unstable open-loop pole. The
system is closed-loop unstable ∀K > 0

(Walter R. Evans, “Graphical analysis of

control systems”, 1948)

(1920-1999)
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State feedback control (review)

v(k) x(k) y(k)
A,B

u(k)
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state feedback

+

+

Assume the system is completely reachable
State feedback control law u(k) = Kx(k) + v(k)
Closed-loop system

�

x(k+ 1) = (A+ BK)x(k) + Bv(k)
y(k) = Cx(k) Y(z) =

NK(z)
DK(z)

V(z)

where

NK(z)
DK(z)

= C(zI− A− BK)−1B,
NK(z) ¬ C Adj(zI− A− BK)B
DK(z) ¬ det(zI− A− BK)

We can assign the roots of DK(z) arbitrarily in the complex plane by properly
choosing the state gain K ∈ Rn (complex poles must have their conjugate)
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State-feedback control (review)

Assume (A, B) in canonical reachability form

A=











0
...
0

In−1

−a0 −a1 . . . −an−1











, B=









0
...
0
1









Let K =
�

k1 . . . kn
�

The closed-loop matrix

A+ BK =











0
...
0

In−1

−(a0 − k1) −(a1 − k2) . . . −(an−1 − kn)











is also in canonical form, so by choosing K we can decide its eigenvalues
arbitrarily
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Zeros of closed-loop system
Fact

Linear state feedback does not change the zeros of the system: NK(z) = N(z)

Example for x ∈ R3:
Change the coordinates to canonical reachability form

A=







0 1 0
0 0 1
−a3 −a2 −a1






, B=







0
0
1






, K =

�

k3 k2 k1

�

Compute N(z)

Adj(zI− A)B=







z2 + a1z+ a2 z+ a1 1
−a3 z(z+ a1) z
−a3z −a2z− a3 z2













0
0
1






=







1
z
z2







Adj(zI− A)B does not depend on the coefficients a1, a2, a3 !
Then Adj(zI− A− BK)B also does not depends on a1 − k1, a2 − k2, a3 − k3 !
Hence N(z) = C Adj(zI− A)B= C Adj(zI− A− BK)B= NK(z), ∀K′ ∈ Rn
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Potential issues in state feedback control

Measuring the entire state vector may be

too expensive (many sensors)

even impossible (high temperature, high pressure, inaccessible environment)

Can we use the estimate x̂(k) instead of x(k) to close the loop ?
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Dynamic compensator

x(k) y(k)
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K
x(k)ˆ++

Assume the open-loop system is completely observable (besides being
reachable)
Construct the linear state observer

x̂(k+ 1) = Ax̂(k) + Bu(k) + L(y(k)− Cx̂(k))

Set u(k) = Kx̂(k) + v(k)
The dynamics of the error estimate x̃(k) = x(k)− x̂(k) is

x̃(k+ 1) = Ax(k) + Bu(k)− Ax̂(k)− Bu(k) + L(Cx(k)− Cx̂(k)) = (A− LC)x̃(k)

The error estimate does not depend on the feedback gain K !
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Closed-loop dynamics

Let’s combine the dynamics of the system, observer, and feedback gain






x(k+ 1) = Ax(k) + Bu(k)
x̂(k+ 1) = Ax̂(k) + Bu(k) + L(y(k)− Cx̂(k))

u(k) = Kx̂(k) + v(k)
y(k) = Cx(k)

Take x(k), x̃(k) as state components of the closed-loop system
�

x(k)
x̃(k)

�

=
�

I 0
I −I

��

x(k)
x̂(k)

�

(it is indeed a change of coordinates)

The closed-loop dynamics is














�

x(k+ 1)
x̃(k+ 1)

�

=
�

A+ BK −BK
0 A− LC

��

x(k)
x̃(k)

�

+
�

B
0

�

v(k)

y(k) =
�

C 0
�

�

x(k)
x̃(k)

�
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Closed-loop dynamics

The transfer function from v(k) to y(k) is

G(z) =
�

C 0
�

�

zI− A− BK BK
0 zI− A+ LC

�−1� B
0

�

=
�

C 0
�

�

(zI− A− BK)−1 ?
0 (zI− A+ LC)−1

��

B
0

�

= C(zI− A− BK)−1B=
N(z)
DK(z)

Even if we substituted x(k) with x̂(k), the input-output behavior of the
closed-loop system didn’t change !

The closed-loop poles can be assigned arbitrarily using dynamic output
feedback, as in the state feedback case

The closed-loop transfer function does not depend on the observer gain L
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Separation principle

Separation principle

The design of the control gain K and of the observer gain L
can be done independently

Watch out ! G(z) = C(zI− A− BK)−1B only represents the I/O
(=input/output) behavior of the closed-loop system

The complete set of poles of the closed-loop system are given by

det(zI−
�

A+BK −BK
0 A−LC

�

) = det(zI− A− BK)det(zI− A+ LC) = DK(z)DL(z)

A zero/pole cancellation of the observer poles has occurred:

G(z) =
�

C 0
�

(zI−
�

A+BK −BK
0 A−LC

�

)−1
�

B
0

�

=
N(z)DL(z)
DK(z)DL(z)
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Transient effects of the estimator gain

The estimator gain L seems irrelevant ...

However, consider the effect of a nonzero initial condition
�

x(0)
x̃(0)

�

for v(k)≡ 0

y(0) = Cx(0)

y(1) =
�

C 0
��

A+BK −BK
0 A−LC

��

x(0)
x̃(0)

�

=
�

C 0
��

(A+BK)x(0)−BKx̃(0)
(A−LC)x̃(0)

�

= C(A+ BK)x(0)− CBKx̃(0)

y(2) =
�

C 0
��

A+BK −BK
0 A−LC

��

x(1)
x̃(1)

�

= C(A+ BK)x(1)− CBKx̃(1)
= C(A+ BK)2x(0)− C(A+ BK)BKx̃(0)− CBK(A− LC)x̃(0)

The observer gain L has an effect on the transient !
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Choosing the estimator gain

Intuitively, if x̂(k) is a poor estimate of x(k) then the control action will also
be poor

Rule of thumb: place the observer poles ≈ 10 times faster than the
controller poles

Optimal methods exist to choose the observer poles (Kalman filter)

Fact: The choice of L is very important for determining the sensitivity of the
closed-loop system with respect to input and output noise
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Zero/pole cancellations

We have zero/pole cancellations, the system has uncontrollable and/or
unobservable modes
Intuitively:

x̃ does not depend on v⇒ x̃ is not controllable
y depends on x̃ during transient⇒ x̃ observable

The reachability matrix R is

R =
h

� B
0
�

�

A+BK −BK
0 A−LC

�

� B
0
�

· · ·
�

A+BK −BK
0 A−LC

�2n−1 � B
0
�

i

=
�

B (A+ BK)B · · · (A+ BK)2n−1B
0 0 · · · 0

�

Since (A, B) is reachable, rank(R) = n< 2n⇒ uncontrollable modes

The observability matrix Θ doesn’t have a similar structure
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Dynamic compensator

x(k) y(k)
A,B

u(k)
C
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K
x(k)ˆ++

The state-space equations of the dynamic compensator are
�

x̂(k+ 1) = (A+ BK− LC)x̂(k) + Bv(k) + Ly(k)
u(k) = Kx̂(k) + v(k)

Equivalently, its transfer function is given by (superposition of effects)

U(z) = (K(zI− A− BK+ LC)−1B+ I)V(z) +K(zI− A− BK+ LC)−1L
︸ ︷︷ ︸

dynamic output feedback

Y(z)

MATLAB
» con=-reg(sys,K,L)
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Example: Control of a DC Motor

G(s) =
K

s3 + βs2 +αs

u y

MATLAB
K=1; beta=.3; alpha=1;
G=tf(K,[1 beta alpha 0]);

ts=0.5; % sampling time
Gd=c2d(G,ts);
sysd=ss(Gd);
[A,B,C,D]=ssdata(sysd);

% Controller
polesK=[-1,-0.5+0.6*j,-0.5-0.6*j];
polesKd=exp(ts*polesK);
K=-place(A,B,polesKd);

% Observer
polesL=[-10, -9, -8];
polesLd=exp(ts*polesL);
L=place(A’,C’,polesLd)’;

MATLAB
% Closed-loop system, state=[x;xhat]

bigA=[A,B*K;L*C,A+B*K-L*C];
bigB=[B;B];
bigC=[C,zeros(1,3)];
bigD=0;
clsys=ss(bigA,bigB,bigC,bigD,ts);

x0=[1 1 1]’; % Initial state
xhat0=[0 0 0]’; % Initial estimate
T=20;
initial(clsys, [x0;xhat0],T);
pause

t=(0:ts:T)’;
v=ones(size(t));
lsim(clsys,v);
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Example: Control of a DC Motor

0 5 10 15 20
−0.5

0

0.5

1

1.5

2

time (s)

x(0) =
h

1
1
1

i

, x̂(0) =
h

0
0
0

i

, v(k)≡ 0

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

time (s)

x(0) = x̂(0) =
h

0
0
0

i

, v(k)≡ 1
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English-Italian Vocabulary

root locus luogo delle radici
separation principle principio di separazione
dynamic compensator compensatore dinamico

Translation is obvious otherwise.
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