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Lecture: Reachability Analysis Reachability problem

Reachability

Consider the linear discrete-time system

x(k+ 1) = Ax(k) + Bu(k)

with x ∈ Rn, u ∈ Rm and initial condition x(0) = x0 ∈ Rn

The solution is x(k) = Akx0 +
k−1
∑

j=0

AjBu(k− 1− j)

Definition

The system x(k+ 1) = Ax(k) + Bu(k) is (completely) reachable if ∀x1, x2 ∈ Rn there
exist k ∈ N and u(0), u(1), . . ., u(k− 1) ∈ Rm such that

x2 = Akx1 +
k−1
∑

j=0

AjBu(k− 1− j)

In simple words: a system is completely reachable if from any state x1 we can
reach any state x2 at some time k, by applying a suitable input sequence
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Lecture: Reachability Analysis Linear algebra recalls

Linear algebra recalls: Change of coordinates

Let {v1, . . . , vn} be a basis of Rn (= n linearly independent vectors)

The canonical basis of Rn is e1 =







1
0
...
0






, e2 =







0
1
...
0






, . . ., en =







0
...
0
1







A vector w ∈ Rn can be expressed as a linear combination of the basis vectors,
whose coefficients are the coordinates in the corresponding basis

w=
n
∑

i=1

xiei =
n
∑

i=1

zivi

The relation between the coordinates x = [x1 . . . xn]′ in the canonical basis
and the coordinates z= [z1 . . . zn]′ in the new basis is

x = Tz

where T =
�

v1 . . . vn

�

(= coordinate transformation matrix)
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Lecture: Reachability Analysis Linear algebra recalls

Algebraically equivalent systems

Consider the linear system
¨

x(k+ 1) = Ax(k) + Bu(k)

y(k) = Cx(k) +Du(k)

x(0) = x0

Let T be invertible and define the change of coordinates x = Tz, z= T−1x
�

z(k+ 1) = T−1x(k+ 1) = T−1 (Ax(k) + Bu(k)) = T−1ATz(k) + T−1Bu(k)
y(k) = CTz(k) +Du(k)

z0 = T−1x0

and hence
�

z(k+ 1) = Ãz(k) + B̃u(k)
y(k) = C̃z(k) + D̃u(k)

z(0) = T−1x0

The dynamical systems (A, B, C, D) and (Ā, B̄, C̄, D̄) are called algebraically
equivalent
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Lecture: Reachability Analysis Linear algebra recalls

Linear algebra recalls: Change of coordinates

Let A ∈ Rn×n, T =
�

v1 . . . vn
�

invertible. In the new coordinates z= T−1x
the transformed matrix is

Ã= T−1AT = T−1A
�

v1 . . . vn
�

= T−1 � Av1 . . . Avn
�

Therefore, the columns of Ã are the coordinates of the transformed vectors
Av1, . . . , Avn in the new basis

�

v1, . . . , vn
	

Special case: if v1, . . . , vn are the eigenvectors of A, Avi = λivi, then
Ã= Diag

�

λ1, . . . ,λn
	

Ã = T−1AT = T−1 �λ1v1|λ2v2| . . .λnvn
�

= T−1 �v1|v2| . . . vn
�







λ1 0 ... 0
0 λ2 ... 0

...
...

...
...

0 0 ... λn






= TT−1Λ = Λ
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Lecture: Reachability Analysis Linear algebra recalls

Linear algebra recalls: Change of coordinates

Proposition

Matrices A ∈ Rn×n and Ã= T−1AT have the same characteristic polynomials

Proof:
Recall Binet theorem

det(AB) = det A · det B

for any pair of square matrices A, B, and recall that

det(A−1) =
1

det A
for any invertible matrix A. Then

det(λI− Ã) = det(λT−1IT− T−1AT) = det
�

T−1(λI− A)T
�

= det(T−1)det(λI− A)det(T) = det(λI− A)

�
Note: we already saw that algebraically equivalent systems have the same transfer function, hence the

same poles, hence the same characteristic polynomial of the state-update matrix
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Lecture: Reachability Analysis Linear algebra recalls

Linear algebra recalls

Let A ∈ Rm×n

image of A: Im(A) = {w ∈ Rm : w= Av, v ∈ Rn}
rank of A: rank(A)=dimension of Im(A)
kernel of A: ker(A) = {v ∈ Rn : 0= Av}

Let A ∈ Rn×n

spectrum of A: σ(A) = {λ ∈ C : det(λI− A) = 0}
A-invariant subspace: V ⊆ Rn is such that AV ⊆ V,
that is Av ∈ V, ∀v ∈ V

Cayley-Hamilton Theorem

Let det(λI−A) = λn+αn−1λ
n−1+ . . .+α1λ+α0 be

the characteristic polynomial of A ∈ Rn×n. Then

An +αn−1An−1 + . . .+α1A+α0I = 0

Sir William Rowan Hamilton

(1805-1865)

Arthur Cayley

(1821-1895)
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Lecture: Reachability Analysis Reachability Analysis

Reachability

Let’s focus on the problem of determining a sequence of n inputs transferring
the state vector from x1 to x2 after n steps

x2 − Anx1
︸ ︷︷ ︸

X

=
�

B AB . . . An−1B
�

︸ ︷︷ ︸

R













u(n− 1)
u(n− 2)

...
u(0)













︸ ︷︷ ︸

U

This is equivalent to solve with respect to U the linear system of equations

RU = X

The matrix R ∈ Rn×nm is called the reachability matrix of the system

A solution U exists if and only if X ∈ Im(R)
(Rouché-Capelli theorem: a solution exists⇔ rank([R X]) = rank(R))
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Lecture: Reachability Analysis Reachability Analysis

Reachability

Theorem

The system (A, B) is completely reachable⇔ rank(R) = n

Proof:
(⇒) Assume (A, B) reachable, choose x1 = 0 and x2 = x. Then ∃k≥ 0 such that

x =
k−1
∑

j=0

AjBu(k− 1− j)

If k≤ n, then clearly x ∈ Im(R). If k> n, by Cayley-Hamilton theorem we have
again x ∈ Im(R). Since x is arbitrary, Im(R) = Rn, so rank(R) = n.

(⇐) If rank(R) = n, then Im(R) = Rn. Let X = x2 − Anx1 and
U =

�

u(n− 1)′ . . . u(1)′ u(0)′
�′. The system X = RU can be solved with respect to

U, ∀X, so any state x1 can be transferred to x2 in k= n steps. Therefore, the
system (A, B) is completely reachable.
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Lecture: Reachability Analysis Reachability Analysis

Comments on the reachability property

The reachability property of a system only depends on A and B

We therefore say that a pair (A, B) is reachable if

rank
��

B AB . . . An−1B
��

= n
MATLAB
» R=ctrb(A,B)
» rank(R)

Im(R) is the set of states that are reachable from the origin, that is the set of
states x ∈ Rn for which there exists k ∈ N and u(0), u(1), . . ., u(k− 1) ∈ Rm

such that

x =
k−1
∑

j=0

AjBu(k− 1− j)

If Im(R) = Rn, a system is completely reachable⇔ all the states are
reachable from the origin in n steps (proof: set x = x2 − Anx1)
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Lecture: Reachability Analysis Reachability Analysis

Minimum-energy control

Let (A, B) reachable and consider steering the state from x(0) = x1 into
x(k) = x2, k> n

x2 − Akx1
︸ ︷︷ ︸

X

=
�

B AB . . . Ak−1B
�

︸ ︷︷ ︸

Rk













u(k− 1)
u(k− 2)

...
u(0)













︸ ︷︷ ︸

U

(Rk ∈ Rn×km is the reachability matrix for k steps)
Since rank(Rk) = rank(R) = n, ∀k> n (Cayley-Hamilton), we get
rank Rk = rank[Rk X] = n
Hence the system X = RkU admits solutions U

Problem

Determine the input sequence {u(j)}k−1
j=0 that brings the state from

x(0) = x1 to x(k) = x2 with minimum energy
1

2

k−1
∑

j=0

‖u(j)‖2 =
1

2
U′U
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Lecture: Reachability Analysis Reachability Analysis

Minimum-energy control

The problem is equivalent to finding the solution U of the system of equations

X = RkU

with minimum norm ‖U‖
We must solve the optimization problem

U∗ = arg min
1

2
‖U‖2 subject to X = RkU

Let’s apply the method of Lagrange multipliers:

L (U,λ) =
1

2
‖U‖2 +λ′(X − RkU) Lagrangean function

∂L
∂U
= U− R′kλ= 0

∂L
∂ λ
= X − RkU = 0

⇒ U∗ = R′k(RkR′k)
−1

︸ ︷︷ ︸

R#
k = pseudoinverse matrix

·X MATLAB
U=pinv(Rk)*X

Note that RkR′k is invertible because rank(Rk) = rank(R) = n, ∀k≥ n
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Lecture: Reachability Analysis Canonical reachability decomposition

Canonical reachability decomposition

Goal: Make a change of coordinates to separate reachable and unreachable
states
Let rank(R) = nc < n and consider the change of coordinates

T =
�

wnc+1 . . . wn v1 . . . vnc

�

where
¦

v1, . . . , vnc

©

is a basis of Im(R), and
¦

wnc+1, . . . , wn

©

is a completion to
obtain a basis of Rn

As Im(R) is A-invariant (Ax ∈ Im(R) ∀x ∈ Im(R) follows from
Cayley-Hamilton theorem), Avi has no components along the basis vectors
wnc+1, . . . , wn. Since T−1Avi are the new coordinates of Avi, the first n− nc

components of T−1Avi are zero
The columns of B also have zero components along wnc+1, . . . , wn, because
Im(B)⊆ Im(R)
In the new coordinates, the system has matrices Ã= T−1AT, B̃= T−1B e
C̃ = CT in the canonical reachability form (a.k.a. controllability staircase form)

Ã=
�

Auc 0
A21 Ac

�

B̃=
�

0
Bc

�

C̃ =
�

Cuc Cc

�
MATLAB
[At,Bt,Ct,Tinv]=

ctrbf(A,B,C)
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Lecture: Reachability Analysis Canonical reachability decomposition

Reachability and transfer function

Proposition

The eigenvalues of Auc are not poles of the transfer function C(zI− A)−1B+D

Proof:
Consider a matrix T changing the state coordinates to canonical reachability
decomposition of (A, B)
The transfer function is

G(z) = C(zI− A)−1B+D= C̃(zI− Ã)−1B̃+D

=
�

Cuc Cc

�

�

zI−
�

Auc 0
A21 Ac

��−1�
0
Bc

�

+D

=
�

Cuc Cc

�

�

(zI− Auc)−1 0
? (zI− Ac)−1

��

0
Bc

�

+D

= Cc(zI− Ac)
−1Bc +D

G(z) does not depend on the eigenvalues of Auc

Lack of reachability→ zero/pole cancellations !
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Lecture: Reachability Analysis Canonical reachability decomposition

Reachability and transfer function

Why are the eigenvalues of Auc not appearing in the transfer function G(z) ?
Remember: G(z) explains the forced response, i.e., the response for x(0) = 0
Expressed in canonical decomposition, the system evolution is







xuc(k+ 1) = Aucxuc(k)
xc(k+ 1) = Acxc(k) + Bcu(k) + A21xuc(k)

y(k) = Cucxuc(k) + Ccxc(k) +Du(k)

For xuc(0) = 0, xc(0) = 0, we get xuc(k)≡ 0 and






xc(k+ 1) = Acxc(k) + Bcu(k)
y(k) = Ccxc(k) +Du(k)

xc(0) = 0

so the forced response does not depend at all on Auc !
The input u(k) only affects the output y(k) through the reachable subsystem
(Ac, Bc, Cc, D), not through the unreachable part Auc
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Lecture: Reachability Analysis Canonical reachability decomposition

Canonical reachability decomposition

Proposition

Ac ∈ Rnc×nc and Bc ∈ Rnc×m are a completely reachable pair

Proof:

Consider the reachability matrix

R̃=
�

B̃ ÃB̃ . . . Ãn−1B̃
�

=
�

0 0 . . . 0
Bc AcBc . . . An−1

c Bc

�

and
R̃=

�

T−1B T−1ATT−1B . . . T−1An−1TT−1B
�

= T−1R

Since T is nonsingular, rank(R̃) = rank(R) = nc, so

rank
�

Bc AcBc . . . Anc−1
c Bc

�

= nc

that is (Ac, Bc) is completely reachable �
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Lecture: Reachability Analysis Controllability

Controllability

If the system is completely reachable, we have seen that we can bring the
state vector from any value x(0) = x1 to any other value x(n) = x2

Let’s focus on the subproblem of determining a finite sequence of inputs that
brings the state to the final value x(n) = 0

Definition

A system x(k+ 1) = Ax(k) + Bu(k) is controllable to the origin in k steps if
∀x0 ∈ Rn there exists a sequence u(0), u(1), . . ., u(k− 1) ∈ Rm such that
0= Akx0 +

∑k−1
j=0 AjBu(k− 1− j)

Controllability is a weaker condition than reachability
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Lecture: Reachability Analysis Controllability

Controllability

The linear system of equations

−Akx0 =
�

B AB . . . Ak−1B
�

︸ ︷︷ ︸

Rk













u(k− 1)
u(k− 2)

...
u(0)













admits a solution if and only if Akx0 ∈ Im(Rk), ∀x0 ∈ Rn

Theorem

The system is controllable to the origin in k steps if and only if

Im(Ak)⊆ Im(Rk)

If a system is controllable in n steps, it is also controllable in k steps for each
k> n (just set u(n) = u(n+ 1) = . . . = u(k− 1) = 0)
For the same reason, if a system is controllable in k steps with k< n, it is also
controllable in n steps (just set u(k) = u(k+ 1) = . . . = u(n− 1) = 0)
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Lecture: Reachability Analysis Controllability

Controllability

Definition

A system is said completely controllable if it is controllable in n steps

Theorem

A system x(k+ 1) = Ax(k) + Bu(k) is completely controllable if and only if
all the eigenvalues of its unreachable part Auc are null

Proof:

Given an initial state x0 ∈ Rn, we must solve with respect U the linear system
of equations

−Anx0 =
�

B AB . . . An−1B
�

U = RU, U =





u(n−1)
...

u(0)





Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 2010-2011 19 / 23



Lecture: Reachability Analysis Controllability

Controllability

Let (Ã, B̃) be a canonical reachability decomposition of (A, B). Then

−Anx0 =−TÃnz0 =
�

TB̃ TÃB̃ . . . TÃn−1B̃
�

U = TR̃U

where we set z0 = T−1x0 =
�

zuc
zc

�

and T = [wnr+1 . . . wn v1 . . . vnr
]

since T is invertible, the system TR̃U =−TÃnz0 is equivalent to R̃U =−Ãnz0,
that is

�

0 0 . . . 0
Bc AcBc . . . An−1

c Bc

�

U =−
�

An
uc 0
? An

c

��

zuc
zc

�

as the pair (Ac, Bc) is completely reachable, the system above has a solution if
and only is An

uczuc = 0 for any initial condition zuc, that is An
uc = 0

if Auc is a nilpotent matrix (= all its n− nc eigenvalues are zero), by
Cayley-Hamilton An−nc

uc = 0 and therefore

An
uc = Anc

ucA
n−nc
uc = Anc

uc · 0= 0

�
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Lecture: Reachability Analysis Controllability

Stabilizability

Definition

A linear system x(k+ 1) = Ax(k) + Bu(k) is called stabilizable if can be
driven asymptotically to the origin

Stabilizability is a weaker condition than controllability

Theorem

A linear system x(k+ 1) = Ax(k) + Bu(k) is stabilizable if and only if all
the eigenvalues of its unreachable part have moduli < 1

Proof:

Take any z0 =
h

zuc(0)
zc(0)

i

∈ Rn and an input sequence {u(k)}∞k=0 that makes the
reachable component zc(k)→ 0 for k→∞
If Ak

uc→ 0 for k→∞, then zuc(k) = Ak
uczuc(0) also converges to zero for

k→∞
�
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Lecture: Reachability Analysis Continuous-time systems

Reachability analysis of continuous-time systems

Similar definitions of reachability, controllability, and stabilizability can be
given for continuous-time systems

ẋ(t) = Ax(t) + Bu(t)

No distinction between controllability and reachability in continuous-time
(because no finite-time convergence of modal response exists)

Reachability matrix and canonical reachability decomposition are identical to
discrete-time

rank R= n is also a necessary and sufficient condition for reachability

Auc asymptotically stable (all eigenvalues with negative real part) is also a
necessary and sufficient condition for stabilizability
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Lecture: Reachability Analysis Continuous-time systems

English-Italian Vocabulary

reachability raggiungibilità
controllability controllabilità
stabilizability stabilizzabilità
controllability staircase form decomposizione canonica di raggiungibilità

Translation is obvious otherwise.
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