Automatic Control 1

Z-transform

Prof. Alberto Bemporad

University of Trento

Academic year 2010-2011

Z-transform

Consider a function $f(k), f: \mathbb{Z} \rightarrow \mathbb{R}, f(k)=0$ for all $k<0$

Definition

The unilateral Z-transform of $f(k)$ is the function of the complex variable $z \in \mathbb{C}$ defined by

$$
F(z)=\sum_{k=0}^{\infty} f(k) z^{-k}
$$

Witold Hurewicz (1904-1956)

Once $F(z)$ is computed using the series, it's extended to all $z \in \mathbb{C}$ for which $F(z)$ makes sense

Z-transforms convert difference equations into algebraic equations. It can be considered as a discrete equivalent of the Laplace transform.

Examples of Z-transforms

- Discrete impulse

$$
f(k)=\delta(k) \triangleq\left\{\begin{array}{ll}
0 & \text { if } k \neq 0 \\
1 & \text { if } k=0
\end{array} \quad \Rightarrow \quad \mathscr{Z}[\delta]=F(z)=1\right.
$$

- Discrete step

$$
f(k)=\mathbb{I}(k) \triangleq\left\{\begin{array}{ll}
0 & \text { if } k<0 \\
1 & \text { if } k \geq 0
\end{array} \quad \Rightarrow \quad \mathscr{Z}[\mathbb{I}]=F(z)=\frac{z}{z-1}\right.
$$

- Geometric sequence

$$
f(k)=a^{k} \mathbb{I}(k) \Rightarrow \mathscr{Z}[f]=F(z)=\frac{z}{z-a}
$$

Properties of Z-transforms

- Linearity

$$
\mathscr{Z}\left[k_{1} f_{1}(k)+k_{2} f_{2}(k)\right]=k_{1} \mathscr{Z}\left[f_{1}(k)\right]+k_{2} \mathscr{Z}\left[f_{2}(k)\right]
$$

Example: $f(k)=3 \delta(k)-\frac{5}{2^{k}} \mathbb{I}(t) \Rightarrow \mathscr{Z}[f]=3-\frac{5 z}{z-\frac{1}{2}}$

- Forward shift ${ }^{1}$

$$
\mathscr{Z}[f(k+1) \mathbb{I}(k)]=z \mathscr{Z}[f]-z f(0)
$$

Example: $f(k)=a^{k+1} \mathbb{I}(k) \Rightarrow \mathscr{Z}[f]=z \frac{z}{z-a}-z=\frac{a z}{z-a}$

[^0]
Properties of Z-transforms

- Backward shift or unit delay ${ }^{2}$

$$
\mathscr{Z}[f(k-1) \mathbb{I}(k)]=z^{-1} \mathscr{Z}[f]
$$

Example: $f(k)=\mathbb{I}(k-1) \Rightarrow \mathscr{Z}[f]=\frac{z}{z(z-1)}$

- Multiplication by k

$$
\mathscr{Z}[k f(k)]=-z \frac{d}{d z} \mathscr{Z}[f]
$$

Example: $f(k)=k \mathbb{I}(k) \Rightarrow \mathscr{Z}[f]=\frac{z}{(z-1)^{2}}$

[^1]
Initial and final value theorems

Initial value theorem

$$
f(0)=\lim _{z \rightarrow \infty} F(z)
$$

Example: $f(k)=\mathbb{I}(k)-k \mathbb{I}(k) \Rightarrow F(z)=\frac{z}{z-1}-\frac{z}{(z-1)^{2}}$ $f(0)=\lim _{z \rightarrow \infty} F(z)=1$

Final value theorem

$$
\lim _{k \rightarrow+\infty} f(k)=\lim _{z \rightarrow 1}(z-1) F(z)
$$

Example: $f(k)=\mathbb{I}(k)+(-0.7)^{k} \mathbb{I}(t) \Rightarrow F(z)=\frac{z}{z-1}+\frac{z}{z+0.7}$

$$
f(+\infty)=\lim _{z \rightarrow 1}(z-1) F(z)=1
$$

Discrete-time transfer function

- Let's apply the Z-transform to discrete-time linear systems

$$
\begin{aligned}
& \left\{\begin{aligned}
x(k+1) & =A x(k)+B u(k) \\
y(k) & =C x(k)+D u(k)
\end{aligned}\right. \\
& x(0)=x_{0}
\end{aligned}
$$

- Define $X(z)=\mathscr{Z}[x(k)], U(z)=\mathscr{Z}[u(k)], Y(z)=\mathscr{Z}[y(k)]$
- Apply linearity and forward shift rules

$$
\begin{aligned}
z X(z)-z x_{0} & =A X(z)+B U(z) \\
Y(z) & =C X(z)+D U(z)
\end{aligned}
$$

Discrete-time transfer function

$$
\begin{gathered}
X(z)=z(z I-A)^{-1} x_{0}+(z I-A)^{-1} B U(z) \\
Y(z)=\underbrace{z C(z I-A)^{-1} x_{0}}_{\begin{array}{c}
\text { Z-transform } \\
\text { of natural response }
\end{array}}+\underbrace{\left(C(z I-A)^{-1} B+D\right) U(z)}_{\begin{array}{c}
\text { Z-transform } \\
\text { of forced response }
\end{array}}
\end{gathered}
$$

Definition:

The transfer function of a discrete-time linear system (A, B, C, D) is the ratio

$$
G(z)=C(z I-A)^{-1} B+D
$$

between the Z-transform $Y(z)$ of the output and the Z-transform $U(z)$ of the input signals for the initial state $x_{0}=0$

```
MATLAB
»sys=ss(A,B,C,D,Ts);
>G=tf(sys)
```


Discrete-time transfer function

Example: The linear system

$$
\left\{\begin{aligned}
x(k+1) & =\left[\begin{array}{cc}
0.5 & 1 \\
0 & -0.5
\end{array}\right] x(k)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(k) \\
y(k) & =\left[\begin{array}{ll}
1 & -1
\end{array}\right] x(k)
\end{aligned}\right.
$$

with sampling time $T_{s}=0.1 \mathrm{~s}$ has the transfer function

$$
G(z)=\frac{-z+1.5}{z^{2}-0.25}
$$

Note: Even for discrete-time systems, the transfer function does not depend on the input $u(k)$. It's only a property of the linear system

MATLAB
$>s y s=s s([0.51 ;$
$0-0.5],[0 ; 1],[1-1], 0,0.1) ;$
»G=tf(sys)
Transfer function:
$-z+1.5$
$-s^{\wedge} 2-0.25$

Difference equations

- Consider the $n^{\text {th }}$-order difference equation forced by u

$$
\begin{aligned}
& a_{n} y(k-n)+a_{n-1} y(k-n+1)+\cdots+a_{1} y(k-1)+y(k) \\
& =b_{n} u(k-n)+\cdots+b_{1} u(k-1)
\end{aligned}
$$

- For zero initial conditions we get the transfer function

$$
\begin{aligned}
G(z) & =\frac{b_{n} z^{-n}+b_{n-1} z^{-n+1}+\cdots+b_{1} z^{-1}}{a_{n} z^{-n}+a_{n-1} z^{-n+1}+\cdots+a_{1} z^{-1}+1} \\
& =\frac{b_{1} z^{n-1}+\cdots+b_{n-1} z+b_{n}}{z^{n}+a_{1} z^{n-1}+\cdots+a_{n-1} z+a_{n}}
\end{aligned}
$$

Difference equations

- Example: $3 y(k-2)+2 y(k-1)+y(k)=2 u(k-1)$

$$
G(z)=\frac{2 z^{-1}}{3 z^{-2}+2 z^{-1}+1}=\frac{2 z}{z^{2}+2 z+3}
$$

- Note: The same transfer function $G(z)$ is obtained from the equivalent matrix form

$$
\begin{aligned}
\left\{\begin{aligned}
x(k+1) & =\left[\begin{array}{cc}
0 & 1 \\
-3 & -2
\end{array}\right] x(k)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(k) \\
y(k) & =\left[\begin{array}{ll}
0 & 2
\end{array}\right] x(k)
\end{aligned}\right. \\
\Rightarrow G(z)=\left[\begin{array}{ll}
0 & 2
\end{array}\right]\left(z\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{cc}
0 & 1 \\
-3 & -2
\end{array}\right]\right)^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

Some common transfer functions

- Integrator

$$
\left\{\begin{aligned}
x(k+1) & =x(k)+u(k) \\
y(k) & =x(k)
\end{aligned}\right.
$$

- Double integrator

$$
\left\{\begin{aligned}
x_{1}(k+1) & =x_{1}(k)+x_{2}(k) \\
x_{2}(k+1) & =x_{2}(k)+u(k) \\
y(k) & =x_{1}(k)
\end{aligned}\right.
$$

Some common transfer functions

- Oscillator

$$
\left\{\begin{aligned}
x_{1}(k+1) & =x_{1}(k)-x_{2}(k)+u(k) \\
x_{2}(k+1) & =x_{1}(k) \\
y(k) & =\frac{1}{2} x_{1}(k)+\frac{1}{2} x_{2}(k)
\end{aligned}\right.
$$

$$
\xrightarrow{U(z)} \begin{array}{|c|}
\frac{\frac{1}{2} z+\frac{1}{2}}{z^{2}-z+1} \\
\end{array}
$$

Impulse response

- Consider the impulsive input $u(k)=\delta(k), U(z)=1$. The corresponding output $y(k)$ is called impulse response
- The Z-transform of $y(k)$ is $Y(z)=G(z) \cdot 1=G(z)$
- Therefore the impulse response coincides with the inverse Z-transform $g(k)$ of the transfer function $G(z)$

Example (integrator:)

$$
\begin{aligned}
u(k) & =\delta(k) \\
y(k) & =\mathscr{Z}^{-1}\left[\frac{1}{z-1}\right]=\mathbb{1}(k-1)
\end{aligned}
$$

Poles, eigenvalues, modes

- Linear discrete-time system

$$
\begin{aligned}
& \left\{\begin{array}{r}
x(k+1)=A x(k)+B u(k) \\
y(k)=C x(k)+D u(k)
\end{array} \quad G(z)=C(z I-A)^{-1} B+D \triangleq \frac{N_{G}(z)}{D_{G}(z)}\right. \\
& x(0)=0
\end{aligned}
$$

- Use the adjugate matrix to represent the inverse of $z I-A$

$$
C(z I-A)^{-1} B+D=\frac{C \operatorname{Adj}(z I-A) B}{\operatorname{det}(z I-A)}+D
$$

- The denominator $D_{G}(z)=\operatorname{det}(z I-A)$!

The poles of $G(z)$ coincide with the eigenvalues of A

- Well, as in continuous-time, not always ...

Steady-state solution and DC gain

- Let A asymptotically stable $\left(\left|\lambda_{i}\right|<1\right)$. Natural response vanishes asymptotically
- Assume constant $u(k) \equiv u_{r}, \forall k \in \mathbb{N}$. What is the asymptotic value $x_{r}=\lim _{k \rightarrow \infty} x(k)$?

Impose $x_{r}(k+1)=x_{r}(k)=A x_{r}+B u_{r}$ and get $x_{r}=(I-A)^{-1} B u_{r}$
The corresponding steady-state output $y_{r}=C x_{r}+D u_{r}$ is

$$
y_{r}=\underbrace{\left(C(I-A)^{-1} B+D\right)}_{D C \text { Gain }} u_{r}
$$

- Cf. final value theorem:

$$
\begin{aligned}
y_{r} & =\lim _{k \rightarrow+\infty} y(k)=\lim _{z \rightarrow 1}(z-1) Y(z) \\
& =\lim _{z \rightarrow 1}(z-1) G(z) U(z)=\lim _{z \rightarrow 1}(z-1) G(z) \frac{u_{r} z}{z-1} \\
& =G(1) u_{r}=\left(C(I-A)^{-1} B+D\right) u_{r}
\end{aligned}
$$

- $G(1)$ is called the DC gain of the system

Example - Student dynamics

- Recall student dynamics in 3-years undergraduate course

$$
\left\{\begin{aligned}
x(k+1) & =\left[\begin{array}{ccc}
.2 & 0 & 0 \\
.6 & .15 & 0 \\
0 & .8 & .08
\end{array}\right] x(k)+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] u(k) \\
y(k) & =\left[\begin{array}{lll}
0 & 0 & .9
\end{array}\right] x(k)
\end{aligned}\right.
$$

- DC gain:

$$
\left[\begin{array}{lll}
0 & 0 & .9
\end{array}\right]\left(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\left[\begin{array}{ccc}
.2 & 0 & 0 \\
.6 & .15 & 0 \\
0 & .8 & .08
\end{array}\right]\right)^{-1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \approx 0.69
$$

- Transfer function: $G(z)=\frac{0.432}{z^{3}-0.43 z^{2}+0.058 z-0.0024}, G(1) \approx 0.69$


```
|MATLAB
```

- For $u(k) \equiv 50$ students enrolled steadily, $y(k) \rightarrow 0.69 \cdot 50 \approx 34.5$ graduate

Linear algebra recalls: Change of coordinates

- Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of \mathbb{R}^{n} ($=n$ linearly independent vectors)
- The canonical basis of \mathbb{R}^{n} is $e_{1}=\left[\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right], e_{2}=\left[\begin{array}{c}0 \\ 1 \\ \vdots \\ 0\end{array}\right], \ldots, e_{n}=\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ 1\end{array}\right]$
- A vector $w \in \mathbb{R}^{n}$ can be expressed as a linear combination of the basis vectors, whose coefficients are the coordinates in the corresponding basis

$$
w=\sum_{i=1}^{n} x_{i} e_{i}=\sum_{i=1}^{n} z_{i} v_{i}
$$

- The relation between the coordinates $x=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{\prime}$ in the canonical basis and the coordinates $z=\left[\begin{array}{lll}z_{1} & \ldots & z_{n}\end{array}\right]^{\prime}$ in the new basis is

$$
x=T z
$$

where $T=\left[\begin{array}{lll}v_{1} & \ldots & v_{n}\end{array}\right]$ (= coordinate transformation matrix)

Algebraically equivalent systems

- Consider the linear system

$$
\begin{aligned}
& \left\{\begin{array}{r}
x(k+1)=A x(k)+B u(k) \\
y(k)=C x(k)+D u(k)
\end{array}\right. \\
& x(0)=x_{0}
\end{aligned}
$$

- Let T be invertible and define the change of coordinates $x=T z, z=T^{-1} x$

$$
\left.\begin{array}{l}
\qquad \begin{array}{r}
\begin{array}{r}
z(k+1)= \\
y(k)
\end{array}=C T z(k)+D u(k)
\end{array} \\
\begin{array}{rl}
z_{0}=T^{-1} x_{0}
\end{array} \\
\text { and hence } \\
\qquad \begin{array}{r}
z(k+1)= \\
y(k)
\end{array}=\tilde{A} z(k)+\tilde{C} z(k)+\tilde{D} u(k)
\end{array}\right\}
$$

- The dynamical systems (A, B, C, D) and $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})$ are called algebraically equivalent

Transfer function of algebraically equivalent systems

- Consider two algebraically equivalent systems (A, B, C, D) and $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})$

$$
\begin{array}{ll}
\tilde{A}=T^{-1} A T & \tilde{C}=C T \\
\tilde{B}=T^{-1} B & \tilde{D}=D
\end{array}
$$

- (A, B, C, D) and $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})$ have the same transfer functions:

$$
\begin{aligned}
\tilde{G}(z) & =\tilde{C}(z I-\tilde{A})^{-1} \tilde{B}+\tilde{D} \\
& =C T\left(z T^{-1} I T-T^{-1} A T\right)^{-1} T^{-1} B+D \\
& =C T T^{-1}(z I-A) T T^{-1} B+D \\
& =C(z I-A)^{-1} B+D \\
& =G(z)
\end{aligned}
$$

- The same result holds for continuous-time linear systems

English-Italian Vocabulary

Translation is obvious otherwise.

[^0]: ${ }^{1} z$ is also called forward shift operator

[^1]: ${ }^{2} z^{-1}$ is also called backward shift operator

