Lecture: Z-transform

Automatic Control 1

Z-transform

Prof. Alberto Bemporad

University of Trento

Academic year 2010-2011

Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 2010-2011 1/21



Lecture: Z-transform  Z-transform

Z-transform

Consider a function f(k),f: Z -> R, f(k) =0 forallk <0

Definition
The unilateral Z-transform of f(k) is the function
of the complex variable z € C defined by

09

F(z)= Y f(k)z™*

k=0 ) g

Once F(z) is computed using the series, it’s extended
to all z € C for which F(z) makes sense

Z-transforms convert difference equations into
algebraic equations. It can be considered as a
discrete equivalent of the Laplace transform.

Witold Hurewicz
(1904-1956)
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Examples of Z-transforms

@ Discrete impulse

fi=sw={ { 20 = 216)=r@ =1

@ Discrete step

@ Geometric sequence

b4

f)=d"1(k) = Z[f1=F(z)=

z—a
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Properties of Z-transforms

@ Linearity

Zlkif1(k) + kaofo (k)] = ke Z[f1 ()] + ko 2[5 (k) ]

Example: f(k) =36(k)— 5 1(t) = Z[f]=3— ,,i_zl

@ Forward shift!
Z[f(k+1) U(k)] = zZ[f] —=2f(0)

Example: f(k) = a1 I(k) = Z[f]=2-% —z= %

z—a z—a

1z is also called forward shift operator
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Properties of Z-transforms

@ Backward shift or unit delay 2

Z[f(k—1)1(k)] =z Z[f]
Example: f(k) = I(k—1) = Z[f]=

@ Multiplication by k
d
Z[kf(k)] =—2—%
[k (k)] = =[]

Example: f(k) = k1(k) = Z[f] = =53

2771 is also called backward shift operator
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Initial and final value theorems

Initial value theorem
f(0) = lim F(2) }
Z—0Q

Example: f(k) = 1(k) —k (k) = F(z) = 5 — (Z—+)2
fO)=lim, o, F(z) =1

Final value theorem }

Jm f(k) = lim(z — 1)F(2)

Example: f(k) = 1(k) + (—0.7)* I(t) = F(z) = 55 + 55
f(+00)=1lim, ,;(z—1)F(z) =1
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Discrete-time transfer function

@ Let’s apply the Z-transform to discrete-time linear systems

x(k+1) = Ax(k)+ Bu(k)
{ y#K) = Cx(k)+Du(k)
x(0) =x,

@ Define X(z) = Z[x(k)], U(z) = Z[u(k)], Y(z) = Z[y(k)]

@ Apply linearity and forward shift rules

2X(2) — 2x, AX(2) +BU(2)
Y(z) = CX(2)+DU(z)
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Discrete-time transfer function

X(z) = z(zl—A) x4+ (2l —A)'BU(2)
Y(z) = 2C(zI—A)'x,  +(C(zI—A)'B+D)U(z)
Z —transform Z —transform
of natural response Of forced response

Definition:

The transfer function of a discrete-time linear system (A, B, C, D) is the ratio
G(z) =C(zI—A)"'B+D

between the Z-transform Y(z) of the output and the Z-transform U(z) of the input
signals for the initial state x, = 0

MATLAB
»sys=ss (A,B,C,D,Ts);
»G=tf (sys)
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Discrete-time transfer function

u(k) AB.C.D y(k) U(z) G Y (2)

T.Z'Oo

Example: The linear system

0.5 1 0
x(k+1) = [ 0 _O'S]X(k)+|:1i|u(k)
yk) = [1 —1]x(k)
with sampling time T, = 0.1 s has the transfer function
Gz) = —z+ 1.5 MATLAB
_22—025 »Sgsjcé][,o[i,%i,[l -11,0,0.1);
»G=tf (sys)

Note: Even for discrete-time systems, the e i
transfer function does not depend on the input E LS

u(k). It’s only a property of the linear system s°2 - 0.25
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Difference equations

e Consider the n'-order difference equation forced by u

ayk—n)+a,_y(k—n+1)+---+ay(k—1) +y(k)
=bu(k—n)+---+bjulk—1)
@ For zero initial conditions we get the transfer function
bz " +b, 12" 4+ + bzt
az " +a, 2"+ daz1+1

bizg" 4+ +b,_1z+D,
Z+agtl 4 4a,2+a,

G(2)
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Difference equations

o Example: 3y(k—2)+2y(k—1) +y(k) = 2u(k—1)

2771 2z

G(z) = =
@) 322422 1+1 2242243

@ Note: The same transfer function G(z) is obtained from the equivalent matrix

form
x(k+1) [_03 _12]x(k)+[(1)]u(k)
y(k) [0 2]x(k)

se@=[0 2](z] 1]-| % —12])_1[2]
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Some common transfer functions

@ Integrator

{ x(k+1)
y(k)

x(k) + u(k) U(z) 1 Y(2)
x(k) Z—1

@ Double integrator

xk+1) = 1K) +xk) v v
ok+1) = x(k)+uk) — i
YK = x(k)
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Some common transfer functions

@ Oscillator
xi(k+1) = xy(k)—xy(k) +u(k)

v | it |y

xo(k+1) = x(k) — = AN
yk) = 3x(k) + 3x5(k) S
output response
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Impulse response

@ Consider the impulsive input u(k) = 6(k), U(z) = 1. The corresponding
output y(k) is called impulse response

@ The Z-transform of y(k) is Y(z) = G(z) - 1 = G(2)

@ Therefore the impulse response coincides with the inverse Z-transform g(k) of
the transfer function G(z)

Example (integrator:)

u(k) 6(k)
yk) = 2 L]=1k-1) ) )
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Poles, eigenvalues, modes

@ Linear discrete-time system

x(k+1) = Ax(k)+ Bu(k) No(2)
y(k) = Cx(k)+Du(k) G(z)=C(zI—A) 'B+D = =&
x(0)=0 Dg(2)
@ Use the adjugate matrix to represent the inverse of zI —A
_ CAdj(zI —A)B
CzI—A)'B+D=——""—
G =AB+D === a)
@ The denominator Dg(2z) = det(zl —A) !
The poles of G(z) coincide with the eigenvalues of A y

@ Well, as in continuous-time, not always ...
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Lecture: Z-transform Difference equation
Steady-state solution and DC gain

@ Let A asymptotically stable (|A;| < 1). Natural response vanishes
asymptotically

@ Assume constant u(k) = u,, Vk € N. What is the asymptotic value
x, = limy_, oo x(k) ?

Impose x,(k + 1) = x,(k) = Ax, + Bu, and get x, = (I—A)"'Bu,

The corresponding steady-state output y, = Cx, + Du,. is
Yr= (C(I_A)_lB + D) U,
| S

DC cain
@ Cf. final value theorem:
yo = lim y(k)=lim(z—1)Y(z)
= lim(z— 1)6()U() = lim(z— 1)c;(z)2”_fz1

= G(u, =(CI—A)"'B+D)u,
@ G(1) is called the DC gain of the system
Automatic Control 1 Academic year 2010-2011 16 / 21
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Example - Student dynamics

@ Recall student dynamics in 3-years undergraduate course

2 0 0 1
x(k+1) = 6 15 0 [x(k)+ |0 |ulk)
0o .8 .08 0
yk) = [0 0 .9]x(k)
o DC gain:
100 20 0N\ Ir:
[oo .9]([8(1)(1)]—[.3 5 .88]) [8] ~ 0.69
@ Transfer function: G(2) = = 432236"*8?82_0.002 7, G(1) ~ 0.69
y(K)
i MATLAB
30 >A=Ibl 0 0; al b2 0; 0 a2 b31;
25 »B=[1;0;01];
»C=[0 0 a3];
20| »D=[0];

»sys=ss(A,B,C,D,1);
»dcgain (sys)

ans =

0.6905

2%06 2008 20105qj k2012 2014 2016
@ For u(k) = 50 students enrolled steadily, y(k) — 0.69 - 50 ~ 34.5 graduate
Automatic Control 1 Academic year 2010-2011 17/ 21
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Linear algebra recalls: Change of coordinates

o Let {vq,...,v,} be a basis of R" (= n linearly independent vectors)

1 0 0
0 1 )
@ The canonical basis of R"ise; = | . |,eo=| . |,...,e,=|:
. . 0
0 0 1

@ A vector w € R" can be expressed as a linear combination of the basis vectors,
whose coefficients are the coordinates in the corresponding basis

n n
w= E Xie; = é ZiV;
i=1

i=1

@ The relation between the coordinates x = [x; ... x,]” in the canonical basis
and the coordinates z =[z; ... ,]’ in the new basis is

x=Tz

where T = [v1 e Vg ] (= coordinate transformation matrix)
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Algebraically equivalent systems

@ Consider the linear system

{ x(k+1) = Ax(k)+Bu(k)
y(k) = Cx(k)+ Du(k)
x(0) =x,
@ Let T be invertible and define the change of coordinates x = Tz, z = T 'x
2k+1) = T 'x(k+1)=T"(Ax(k)+Bu(k)) = T'ATz(k) + T"'Bu(k)
y(k) = CTz(k)+ Du(k)
ZO = T71X0
and hence . .
g2k+1) = Az(k)+Bu(k)
y(k) = Cz(k)+Du(k)
2(0) =T 'x,
@ The dynamical systems (A, B, C,D) and (A, B, C,D) are called algebraically
equivalent
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Transfer function of algebraically equivalent systems

@ Consider two algebraically equivalent systems (A,B,C,D) and (A, B, C,D)

A=T7'AT C=CT
B=T"'B D=D J

e (A,B,C,D) and (A, B, C,D) have the same transfer functions:

C(zI—A)"'B+D

CT(2T 1T —TAT)'T"'B+D
CTT }(z2I—A)TT'B+D
C(zI—A)"'B+D

= G(2)

G(2)

@ The same result holds for continuous-time linear systems
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English-Italian Vocabulary

B

Z-transform trasformata zeta
forward shift operator | operatore di anticipo
unit delay ritardo unitario

Translation is obvious otherwise.
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