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Lecture: Discrete-time linear systems Introduction

Introduction
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Sampling of a continuous signal Discrete-time signal

@ Discrete-time models describe relationships between sampled variables
x(kT,), u(kT,), y(kT,), k=10,1,...

@ The value x(kT;) is kept constant during the sampling interval [kT, (k + 1)T;)

o A discrete-time signal can either represent the sampling of a continuous-time
signal, or be an intrinsically discrete signal

@ Discrete-time signals are at the basis of digital controllers (as well as of digital
filters in signal processing)

Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 2010-2011 2/34



Lecture: Discrete-time linear systems Difference equations

Difference equation

o Consider the first order difference equation (autonomous system)

x(k+1) = ax(k)
{ x(0) = x,

@ The solution is x(k) = a*x,
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Lecture: Discrete-time linear systems Difference equations

Difference equation

o First-order difference equation with input (non-autonomous system)

{ x(k+1) = ax(k)+bu(k)
x(0) = x,
@ The solution has the form
1l
x(k) = a\k)/c_ol + ; abu(k—1—1)

natural response

forced response

@ The natural response depends on the initial condition x(0), the forced response
on the input signal u(k)
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Lecture: Discrete-time linear systems Difference equations

Example - Wealth of a bank account
@ k: year counter

@ p: interest rate
@ x(k): wealth at the beginning of year k
@ u(k): money saved at the end of year k

@ X,: initial wealth in bank account

Discrete-time model:

x(k+1) = 1+ px(k)+ulk)
x(0) = x
XO W Stored amount of money (keur)
u(k) 5ke
P 10 %
k
x(k)=(1.1)*-10+ %5 60(1.1) —

T2 5 s
k (years)
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Lecture: Discrete-time linear systems Difference equations

Linear discrete-time system

@ Consider the set of n first-order linear difference equations forced by the
input u(k) e R

xl(k + 1) = auxl(k) + ... + alnxn(k) +b1u(k)

x2(k + 1) = as1Xq (k) + ... + aznxn(k) +b2u(k)

X (k+1) = appq®)+ ... +a,x,(k) +bu(k)
X7 (0) = X710, N xn(O) = Xn0

@ In compact matrix form:

x(k+1)
{0

Ax(k) + Bu(k)
Xo

X1
wherexz[ : ] eR".

Xn
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Lecture: Discrete-time linear systems Difference equations

Linear discrete-time system

@ The solution is

k—1
)= Axy  +> ABuk—1-10)
—~—

i=0
natural response

forced response

o If matrix A is diagonalizable, A = TAT

A0 . 0 Ao .0
02 .. 0 B 0 Ak .. 0 1
A=|. .. . |=>A=T| _ _|T
00 .. 4 00 .. A

where T = [v; ...v,] collects n independent eigenvectors.
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Lecture: Discrete-time linear systems Modal response

Modal response

@ Assume input u(k) =0, Yk >0
@ Assume A is diagonalizable, A = TAT !
@ The state trajectory (natural response) is

n
x(k) = Ay = TAMT gy = > a2k,
i=1

where

e A; = eigenvalues of A
e v; = eigenvectors of A
o a; = coefficients that depend on the initial condition x(0)

ay
a= [ : :|=T‘1x(0), T=[v,...v,]
@ The system modes depend on the eigenvalues of A, as in continuous-time
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Lecture: Discrete-time linear systems

Example

@ Consider the linear discrete-time system

=>

x(k+1) = %X1(k) + %Xz(k)
X (k+1) = x(k)+u(k)

x (0 = -1

x(0) = 1

@ Eigenvalues of A: A; = %, Ay =1

@ Solution:

x(k)

Il
—
ONI=

natural response
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Modal response

1 1 0
x(k+1) = [ g 2 ]X(k)+[ 1 ]u(k)
x0) = [7]
X, 00%,06)
P A

simulation for u(k) =0
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Lecture: Discrete-time linear systems Linear difference equations

n"-order difference equation

o Consider the n™-order difference equation forced by u

ay(k—n)+a,_y(k—n+1)+---+ay(k—1)+y(k) =

byu(lk—n)+---+bju(k — 1) + bou(k) J
@ Equivalent linear discrete-time system in canonical state matrix form
0 1 0 e 0 0
0 0 1 .0 0
x(k+1) = x(k) + u(k)
0 0 0 o1 0
—a, —Qauq —Qpo ... —0a1 1
y(k) = |: (b, —boay) ... (b1 —boay) ]X(k) +bou(k)
@ There are infinitely many state-space realizations ??;‘ZIZB

e n"-order difference equations are very useful for digital filters, digital
controllers, and to reconstruct models from data (system identification)
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Lecture: Discrete-time linear systems Discrete-time linear systems

Discrete-time linear system

x(k+1) = Ax(k)+Bu(k)
y(k) = Cx(k)+ Du(k)
x(0) = x;

Given the initial condition x(0) and the input sequence u(k), k € N, it is
possible to predict the entire sequence of states x(k) and outputs y(k), Yk € N

@ The state x(0) summarizes all the past history of the system
@ The dimension n of the state x(k) € R" is called the order of the system
@ The system is called proper (or strictly causal) if D=0
@ General multivariable case:
x(k) € R 0 e
" B € R
ulk) € R pxn
k) € RP C € R
y D e Rpxm
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Lecture: Discrete-time linear systems Discrete-time linear systems

Example - Student dynamics

@ Problem Statement:

o 3-years undergraduate course
o percentages of students promoted, repeaters, and dropouts are roughly constant
o direct enrollment in 2nd and 3rd academic year is not allowed
o students cannot enrol for more than 3 years
@ Notation:

k Year

x;(k) | Number of students enrolled in year i at year k, i =1,2,3

u(k) Number of freshmen at year k

y(k) Number of graduates at year k
o promotion rate during yeari, 0 < a; < 1
Bi failure rate during yeari, 0 < 5; <1
Y dropout rate during yeari, y; =1—a; —f3; >0

o 3"-order linear discrete-time system:

xi(k+1) = Pyx(k)+uk)

Xp(k+1) = ayxy(k)+ Boxy(k)

x3(k+1) = ayxy(k)+ Baxs(k)
y(k) = asxs(k)
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Lecture: Discrete-time linear systems Discrete-time linear systems

Example - Student dynamics

@ In matrix form

B, 0 O 1
x(k+1) = a; By 0 |x(k)+ | 0 |ulk)
0 a, fs 0
yk) = [0 0 a5 ]x(k)

@ Simulation

y(k)
40 T
201
a, = .60 ﬁl =.20
a, =.80 | B, =.15 Hiz 2014 2016k 2018 2020
step
a3 == -90 ﬁ3 = .08 u(k)
51 T
u(k) = 50, k = 2012, ... .
%%12 2014 2016 2018 2020
step k
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Lecture: Discrete-time linear systems Discrete-time linear systems

Example - Supply chain

oo (k)
—_—

@ Problem Statement:

e S purchases the quantity u(k) of raw material at each month k
a fraction 6, of raw material is discarded, a fraction a, is shipped to producer P
a fraction a, of product is sold by P to retailer R, a fraction &, is discarded
retailer R returns a fraction f3; of defective products every month, and sells a
fraction y to customers

@ Mathematical model:

x;(k+1) = (Q—a;—58)x(k)+ulk) k month counter
ok+1) = apg(R)+(1—ay—8,)0(k) + fexs(k) | 0l | raw materialin §
(k) | productsin P
x3(k+1) = ax(k)+(1—Ps—y3)xs(k) xz(k) products in R
y(k) = ysx3(k) y(k) products sold to customers

Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 2010-2011 14/ 34



Lecture: Discrete-time linear systems Stability of discrete-time linear systems

Equilibrium

@ Consider the discrete-time nonlinear system

{ x(k+1) fOe(k), u(k))
y(k) 8(x(k), u(k))

Definition

A state x, € R" and an input u, € R™ are an equilibrium pair if for
initial condition x(0) = x, and constant input u(k) = u,, Yk € N,
the state remains constant: x(k) =x,, Yk € N

@ Equivalent definition: (x,,u,) is an equilibrium pair if f(x,,u,) = x,
@ X, is called equilibrium state, u, equilibrium input
@ The definition generalizes to time-varying discrete-time nonlinear systems
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Lecture: Discrete-time linear systems Stability of discrete-time linear systems

Stability

@ Consider the nonlinear system

{X(k+ D = flx(k),u,)
yk) = glx(k),u,)

and let x, an equilibrium state, f(x,,u,) = x,
Definition

The equilibrium state x, is stable if for each initial conditions x(0) “close
enough” to x,, the corresponding trajectory x(k) remains near x, for all k € N ¢

®Analytic definition: Ye >0 36 > 0 : [|x(0) —x,|| < 6 = [|x(k) —x.|| <€, VkeN

@ The equilibrium point x, is called asymptotically stable if it is stable and
x(k) — x, for k —» oo
@ Otherwise, the equilibrium point x, is called unstable
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Lecture: Discrete-time linear systems

Stability of first-order linear systems

o Consider the first-order linear system

x(k+ 1) = ax(k) + bu(k)

@ x, =0, u, = 0 is an equilibrium pair
@ Foru(k)=0, Yk =0,1,..., the solution is

@ The origin x, =0 is

e unstable if |a| > 1
e stableif |a| <1

x(k) = dx,

e asymptotically stable if |a| < 1

Prof. Alberto Bemporad (University of Trento)
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Stability of discrete-time linear systems
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Lecture: Discrete-time linear systems Stability of discrete-time linear systems

Stability of discrete-time linear systems

Since the natural response of x(k + 1) = Ax(k) + Bu(k) is x(k) = A¥x,, the stability
properties depend only on A. We can therefore talk about system stability of a
discrete-time linear system (A, B, C,D)

Theorem:

Let Ay, ..., A,,, m < n be the eigenvalues of A € R™". The system
x(k + 1) = Ax(k) + Bu(k) is

o asymptotically stable iff |A;| <1, Vi=1,...,m

o (marginally) stable if [A;| <1, Vi=1,...,m, and the eigenvalues with unit
modulus have equal algebraic and geometric multiplicity ¢

@ unstable if 3 i such that |A;| > 1

4Algebraic multiplicity of A; = number of coincident roots A; of det(AI —A). Geometric
multiplicity of A; = number of linearly independent eigenvectors v;, Av; = A;v;

The stability properties of a discrete-time linear system only de-
pend on the modulus of the eigenvalues of matrix A
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Lecture: Discrete-time linear systems Stability of discrete-time linear systems

Stability of discrete-time linear systems

Proof:

@ The natural response is x(k) = Ax,
o If matrix A is diagonalizable! , A= TAT !,

k
20 .. 0 A0 . 0
0 Ay 0 oAk .0
A= - = Ak=T ) 7!
0.0 = Ay 00 . o2k

o Take any eigenvalue A = pe/?:
|AK| = pk1e/?] = p*

@ A is always diagonalizable if algebraic multiplicity - geometric multiplicity
O

LIf A is not diagonalizable, it can be transformed to Jordan form. In this case the natural response
x(t) contains modes k'A%, j=0,1, ..., alg. multiplicity = geom. multiplicity
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Lecture: Discrete-time linear systems Stability of discrete-time linear systems

Example 1

x(k+1)=

x(0) =[]

1 x(k)

Nl= O

1
= eigenvalues of A: {O, E}

solution:
x;(k) = 0,k=1,2,...

XZ(k) == (%)k_lxlo'i'(%)k.xéo, k= 1,2,...

3 3 asywptotically stagle
oA
0 2 4 6 8 10 710 2 4 6 8 10
k k
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Lecture: Discrete-time linear systems

Example 2

x(k+1)= [ ; _01 ]x(k)
x(0) =[]
solution:

x(k) =
x(k) =

04 0]
02 02|

%09

xK)

Ii

Prof. Alberto Bemporad (University of Trento)
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Stability of discrete-time linear systems

= eigenvalues of A: {+j,—j}

xlocos%“-kxzosink?“, k=0,1,...
xlosin]%’+x20cosk7“, k=o0,1,...,

marainally stagle
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Lecture: Discrete-time linear systems Stability of discrete-time linear systems

Example 3

x(k+1)=[(1) Hx(k)
x(0)=[§§g]

xl(k) = Xy +x20k7 k:(),].,
XZ(k) = X909, k:0, 1,...

= eigenvalues of A: {1,1}

Note: A is not diagonalizasle !

g, = unstasle
< <

!

o— B

4

. s

g g 0 d (I S T B

k k
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Lecture: Discrete-time linear systems Stability of discrete-time linear systems

Example 4

x(k+1)=[f g]x(k)

x(0) =[]

= eigenvalues of A: {0,2}

solution: .
xl(k) = 2 xlo, k=0, 1,...
X2(k) = 2k_1x10, k= 1, 2,...
% M %N o unstagle
;_\_\_\; _’_'_‘
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Zero eigenvalues

Lecture: Discrete-time linear systems Stability of discrete-time linear systems

@ Modes A,;=0 determine finite-time convergence to zero.

o This has no continuous-time counterpart, where instead all converging

modes tend to zero in infinite time (e

@ Example: dynamics of a buffer

Xl(k+ 1)
Xxo(k+1)
X3(k+ 1)

y(k)

x(k)
x3(k)
u(k)

x1(k)

l,-t)

@ Natural response: A%x(0) = 0 for all x(0) € R3
@ For u(k) = 0, the buffer deploys after at most 3 steps !

™ T “T™
x3(k) x2(k) zi(k)  Jy(k)
e
0O 1 0 0
x(k+1) = 0 0 1 |x(k)+ |0 |u(k)
=> 0 0 0 1
yk) = [1 0 0]Jx(k)
Automatic Control 1 Academic year 2010-2011 24 /34
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Lecture: Discrete-time linear systems Stability of discrete-time linear systems

Summary of stability conditions for linear systems

system continuous-time | discrete-time
asympt. stable | Vi=1,...,n R(A) <0 Al <1
unstable di such that fR(A)>0 Al >1
stable Vi,...,n RfR(A)<O0 Al <1
and VY A; such that R(A)=0 Al=1
algebraic = geometric mult.
Automatic Control 1 Academic year 2010-2011
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Lecture: Discrete-time linear systems

Exact sampling

@ Consider the continuos-time system

x(t) =
¥ =
x(0) =

Sampling continuous-time systems

Ax(t) + Bu(t)
Cx(t) + Du(t)
Xo

@ We want to characterize the value of x(t), y(t) at the time instants

t=0,T,2T,,...,kT,,..., under the assumption that the input u(t) is
constant during each sampling interval (zero-order hold, ZOH)

u(t) = u(k), kT, <t < (k+ 1)T,

y(0, ykT) u(®), u(kT)

1

o x(k) = x(kT,) and y(k) = y(kT,) are the state
and the output samples at the k™ sampling

instant, respectively

Prof. Alberto Bemporad (University of Trento)
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Lecture: Discrete-time linear systems Sampling continuous-time systems

Exact sampling

@ Let us evaluate the response of the continuous-time system between time
ty = kT, and t = (k + 1)T, from the initial condition x(t,) = x(kT,) using
Lagrange formula:

t (k+1)T;

AIBy(o)do = eA((k+1)TS_kTs)x(kTs)+J A= IBy (5)do
kT,

x(t) = eA(t_t")x(tO)+J

to

@ Since the input u(t) is piecewise constant, u(c) = ii(k), kT, < o < (k+ 1)T,.
By setting T = 0 — kT, we get

T
x((k+ 1)T,) = *sx(kT,) + (J‘ eA(TS_T)dﬂ:)Bu(kTS)
0

and hence

TS
x(k +1) = e ex(k) + (J eA(Ts—T)dr)Ba(k)
0
which is a linear difference relation between x(k) and u(k) !
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Lecture: Discrete-time linear systems Sampling continuous-time systems

Exact sampling

@ The discrete-time system

x(k+1) = Ax(k)+Bi(k)
{ y(k) Cx(k) + Dii(k)

depends on the original continuous-time system through the relations

Ts
Az, B f ATl—dr |B, C=cCc, D=D J
0

o If u(t) is piecewise constant, (A, B, C,D) provides the exact evolution of state
and output samples at discrete times kT

¥, ykT)
o wq(w
MATLAB MAZ(
sys=ss (A,B,C,D); [ P LA R
sysd=c2d(sys, Ts); u(), ukT)
[Ab, Bb, Cb, Db]=ssdata (sysd) ; I
ki1
! - rj_,—l
[
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Lecture: Discrete-time linear systems Sampling continuous-time systems

Exact sampling

Rule of thumb: T, ~ 1—10 of the rise time = time to move from 10%
to 90% of the steady-state value, for input u(t) = 1, x(0) = 0 J

risetime y©, ykT)
1 T T T T T 1
- — . . 1 [T
b o% — ] ]
o8l 1
08 1
o4l 1
o7 1
oz}, 1
04 1 i i H H H ; H H
5 o o5 1 15 2 25 35 4 45 5
=8 i time t
3 u(®), u(kT )
04| B s
03] B 15 1
02 1 |
10%
e s e e S | 05k 4
risetime
0 1 2 3 5 7 8 9 10 v L L L v L v L v
timet o 05 1 15 35 4 45 5

More on the choice of sampling time in the second part of the course ...
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Lecture: Discrete-time linear systems Sampling continuous-time systems

Approximate sampling - Euler’s method

2((k+1)T) :

x((k +1)T,) —x(kT,)

T, ), .

x(kT,) ~

e |
KT, (k+1)T, ! Leonhard Paul Euler
(1707-1783)

@ For nonlinear systems x(t) = f(x(t), u(t)):

X(k+1) =x(k) + Tf(e(k), u(k))

@ For linear systems x(t) = Ax(t) + Bu(t):
x((k+1)T,) = (I + T,A)x(kT,) + T,Bu(kT,)

A=I+AT, B=TB, C=C, D=D J

an
o Note thate™ =I+TA+...+ = +...

Therefore when T; is small Euler’s method and exact sampling are similar
Automatic Control 1 Academic year 2010-2011 30 / 34




Lecture: Discrete-time linear systems

Example - Hydraulic system

Continuous time:

{d%h(t) = —WE RO+ u()
q®) = ay/2gvh()

=14

Prof. Alberto Bemporad (University of Trento)

Sampling continuous-time systems

Discrete time:

{ Ak +1)
q(k)

(k) — =Y R + B agk)
a/2gv/h(k)

level h(t) (m)

continuous ti

Euler approximation

Automatic Control 1
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Lecture: Discrete-time linear systems Sampling continuous-time systems

Tustin’s discretization method

o Assume u(k) constant within the sampling interval. Given the linear system
X = Ax + Bu, apply the trapezoidal rule to approximate the integral

(k+1)T (k+1)Tg
x(k+1)—x(k) = f x(t)dt = J (Ax(t) + Bu(t))dt
k

KT, T,
~ % (Ax(k) + Bu(k) +Ax(k + 1) +Bu(k)) (trapezoidal rule)
and therefore
T, T,
(I— Ak +1) = (I + 2 )x(k) + TBu(k)
. .
x(k+1)= (1— %A) (I + %A)x(k) + (I— %A) T.Bu(k)

@ Advantage: simpler to compute than exponential matrix, without too much
loss of approximation quality
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Lecture: Discrete-time linear systems Sampling continuous-time systems

N-steps Euler method

@ We can obtain the matrices A, B of the discrete-time linearized model while
integrating the nonlinear continuous-time dynamic equations x = f(x, u)

@ N-steps explicit forward Euler method: given x(k), u(k), execute the following
steps
Q x=x(k),A=1,B=0
© forn=1:N do
0 A+ % (xulk)a
o B+ 2 L u)B+ % L (x,u(k))A
@ x—x+ %f(x, u(k))
@ end
@ return x(k + 1) ~ x and matrices A, B such that x(k + 1) ~ Ax(k) + Bu(k).

@ Property: the difference between the state x(k + 1) and its approximation x
computed by the above iterations satisfies ||x(k+1)—x)|| =0 (%)

@ Explicit forward Runge-Kutta 4 method also available
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Lecture: Discrete-time linear systems Sampling continuous-time systems

English-Italian Vocabulary

4

,’1
y

discrete-time linear systems | sistemi lineari a tempo discreto

sampling interval tempo (o intervallo) di campionamento
difference equation equazione alle differenze

zero-order hold mantenitore di ordine zero

piecewise constant costante a tratti

rise time tempo di salita

Translation is obvious otherwise.
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