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Lecture: Discrete-time linear systems Introduction

Introduction
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Sampling of a continuous signal Discrete-time signal

Discrete-time models describe relationships between sampled variables
x(kTs), u(kTs), y(kTs), k= 0, 1, . . .

The value x(kTs) is kept constant during the sampling interval [kTs, (k+ 1)Ts)
A discrete-time signal can either represent the sampling of a continuous-time
signal, or be an intrinsically discrete signal

Discrete-time signals are at the basis of digital controllers (as well as of digital
filters in signal processing)
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Lecture: Discrete-time linear systems Difference equations

Difference equation

Consider the first order difference equation (autonomous system)§
x(k+ 1) = ax(k)

x(0) = x0

The solution is x(k) = akx0
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Lecture: Discrete-time linear systems Difference equations

Difference equation

First-order difference equation with input (non-autonomous system)§
x(k+ 1) = ax(k) + bu(k)

x(0) = x0

The solution has the form

x(k) = akx0︸︷︷︸
natural response

+
k−1∑
i=0

aibu(k− 1− i)︸ ︷︷ ︸
forced response

The natural response depends on the initial condition x(0), the forced response
on the input signal u(k)
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Lecture: Discrete-time linear systems Difference equations

Example - Wealth of a bank account
k: year counter

ρ: interest rate

x(k): wealth at the beginning of year k

u(k): money saved at the end of year k

x0: initial wealth in bank account

Discrete-time model: §
x(k+ 1) = (1+ρ)x(k) + u(k)

x(0) = x0

x0 10 k€
u(k) 5 k€
ρ 10 %

x(k) = (1.1)k · 10+
1− (1.1)k

1− 1.1
5= 60(1.1)k − 50
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Lecture: Discrete-time linear systems Difference equations

Linear discrete-time system

Consider the set of n first-order linear difference equations forced by the
input u(k) ∈ R

x1(k+ 1) = a11x1(k) + . . . + a1nxn(k) +b1u(k)
x2(k+ 1) = a21x1(k) + . . . + a2nxn(k) +b2u(k)

...
...

...
xn(k+ 1) = an1x1(k) + . . . + annxn(k) +bnu(k)

x1(0) = x10, . . . xn(0) = xn0

In compact matrix form:§
x(k+ 1) = Ax(k) + Bu(k)

x(0) = x0

where x =

� x1

...
xn

�
∈ Rn.
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Lecture: Discrete-time linear systems Difference equations

Linear discrete-time system

The solution is

x(k) = Akx0︸︷︷︸
natural response

+
k−1∑
i=0

AiBu(k− 1− i)︸ ︷︷ ︸
forced response

If matrix A is diagonalizable, A= TΛT−1

Λ=

 λ1 0 ... 0
0 λ2 ... 0

...
...

...
...

0 0 ... λn

⇒ Ak = T

 λ
k
1 0 ... 0

0 λk
2 ... 0

...
...

...
...

0 0 ... λk
n

T−1

where T = [v1 . . . vn] collects n independent eigenvectors.
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Lecture: Discrete-time linear systems Modal response

Modal response

Assume input u(k) = 0, ∀k≥ 0

Assume A is diagonalizable, A= TΛT−1

The state trajectory (natural response) is

x(k) = Akx0 = TΛkT−1x0 =
n∑

i=1

αiλ
k
i vi

where
λi = eigenvalues of A
vi = eigenvectors of A
αi = coefficients that depend on the initial condition x(0)

α=

� α1

...
αn

�
= T−1x(0), T = [v1 . . . vn]

The system modes depend on the eigenvalues of A, as in continuous-time
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Lecture: Discrete-time linear systems Modal response

Example

Consider the linear discrete-time system
x1(k+ 1) = 1

2 x1(k) +
1
2 x2(k)

x2(k+ 1) = x2(k) + u(k)
x1(0) = −1
x2(0) = 1
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simulation for u(k)≡ 0
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Lecture: Discrete-time linear systems Linear difference equations

nth-order difference equation

Consider the nth-order difference equation forced by u

any(k− n) + an−1y(k− n+ 1) + · · ·+ a1y(k− 1) + y(k) =
bnu(k− n) + · · ·+ b1u(k− 1) + b0u(k)

Equivalent linear discrete-time system in canonical state matrix form
x(k+ 1) =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

0 0 0 . . . 1
−an −an−1 −an−2 . . . −a1

x(k) +


0
0
...
0
1

u(k)
y(k) =
�
(bn − b0an) . . . (b1 − b0a1)

�
x(k) + b0u(k)

There are infinitely many state-space realizations MATLAB
tf2ss

nth-order difference equations are very useful for digital filters, digital
controllers, and to reconstruct models from data (system identification)

Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 2010-2011 10 / 34



Lecture: Discrete-time linear systems Discrete-time linear systems

Discrete-time linear system

 x(k+ 1) = Ax(k) + Bu(k)
y(k) = Cx(k) +Du(k)
x(0) = x0

Given the initial condition x(0) and the input sequence u(k), k ∈ N, it is
possible to predict the entire sequence of states x(k) and outputs y(k), ∀k ∈ N
The state x(0) summarizes all the past history of the system

The dimension n of the state x(k) ∈ Rn is called the order of the system

The system is called proper (or strictly causal) if D= 0

General multivariable case:

x(k) ∈ Rn

u(k) ∈ Rm

y(k) ∈ Rp

A ∈ Rn×n

B ∈ Rn×m

C ∈ Rp×n

D ∈ Rp×m
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Lecture: Discrete-time linear systems Discrete-time linear systems

Example - Student dynamics

Problem Statement:
3-years undergraduate course
percentages of students promoted, repeaters, and dropouts are roughly constant
direct enrollment in 2nd and 3rd academic year is not allowed
students cannot enrol for more than 3 years

Notation:
k Year

xi(k) Number of students enrolled in year i at year k, i= 1,2,3
u(k) Number of freshmen at year k
y(k) Number of graduates at year k
αi promotion rate during year i, 0≤ αi ≤ 1
βi failure rate during year i, 0≤ βi ≤ 1
γi dropout rate during year i, γi = 1−αi − βi ≥ 0

3rd-order linear discrete-time system:
x1(k+ 1) = β1x1(k) + u(k)
x2(k+ 1) = α1x1(k) + β2x2(k)
x3(k+ 1) = α2x2(k) + β3x3(k)

y(k) = α3x3(k)
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Lecture: Discrete-time linear systems Discrete-time linear systems

Example - Student dynamics

In matrix form
x(k+ 1) =

 β1 0 0
α1 β2 0
0 α2 β3

x(k) +
 10

0

u(k)
y(k) =
�

0 0 α3

�
x(k)

Simulation

α1 = .60 β1 = .20
α2 = .80 β2 = .15
α3 = .90 β3 = .08

u(k)≡ 50, k= 2012, . . .

2012 2014 2016 2018 2020
0

20

40
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step k

2012 2014 2016 2018 2020
49

50

51
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step k
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Lecture: Discrete-time linear systems Discrete-time linear systems

Example - Supply chain

y(k)u(k)

x1(k) x2(k) x3(k)

S P R

!1x1(k)

"1x1(k)

!2x2(k)

"2x2(k)

#3x3(k) $3x3(k)

Problem Statement:
S purchases the quantity u(k) of raw material at each month k
a fraction δ1 of raw material is discarded, a fraction α1 is shipped to producer P
a fraction α2 of product is sold by P to retailer R, a fraction δ2 is discarded
retailer R returns a fraction β3 of defective products every month, and sells a
fraction γ3 to customers

Mathematical model:
x1(k+ 1) = (1−α1 −δ1)x1(k) + u(k)
x2(k+ 1) = α1x1(k) + (1−α2 −δ2)x2(k) + β3x3(k)
x3(k+ 1) = α2x2(k) + (1− β3 − γ3)x3(k)

y(k) = γ3x3(k)

k month counter
x1(k) raw material in S
x2(k) products in P
x3(k) products in R
y(k) products sold to customers
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Lecture: Discrete-time linear systems Stability of discrete-time linear systems

Equilibrium

Consider the discrete-time nonlinear system§
x(k+ 1) = f(x(k), u(k))

y(k) = g(x(k), u(k))

Definition

A state xr ∈ Rn and an input ur ∈ Rm are an equilibrium pair if for
initial condition x(0) = xr and constant input u(k)≡ ur, ∀k ∈ N,
the state remains constant: x(k)≡ xr, ∀k ∈ N

Equivalent definition: (xr, ur) is an equilibrium pair if f(xr, ur) = xr

xr is called equilibrium state, ur equilibrium input

The definition generalizes to time-varying discrete-time nonlinear systems
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Lecture: Discrete-time linear systems Stability of discrete-time linear systems

Stability

Consider the nonlinear system§
x(k+ 1) = f(x(k), ur)

y(k) = g(x(k), ur)

and let xr an equilibrium state, f(xr, ur) = xr

Definition

The equilibrium state xr is stable if for each initial conditions x(0) “close
enough” to xr, the corresponding trajectory x(k) remains near xr for all k ∈ N a

aAnalytic definition: ∀ε > 0 ∃δ > 0 : ∥x(0)− xr∥< δ⇒ ∥x(k)− xr∥< ε, ∀k ∈ N

The equilibrium point xr is called asymptotically stable if it is stable and
x(k)→ xr for k→∞
Otherwise, the equilibrium point xr is called unstable
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Lecture: Discrete-time linear systems Stability of discrete-time linear systems

Stability of first-order linear systems

Consider the first-order linear system

x(k+ 1) = ax(k) + bu(k)

xr = 0, ur = 0 is an equilibrium pair
For u(k)≡ 0, ∀k= 0, 1, . . ., the solution is

x(k) = akx0

The origin xr = 0 is

unstable if |a|> 1

stable if |a| ≤ 1

asymptotically stable if |a|< 1
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Lecture: Discrete-time linear systems Stability of discrete-time linear systems

Stability of discrete-time linear systems

Since the natural response of x(k+ 1) = Ax(k) + Bu(k) is x(k) = Akx0, the stability
properties depend only on A. We can therefore talk about system stability of a
discrete-time linear system (A, B, C, D)

Theorem:

Let λ1, . . ., λm, m≤ n be the eigenvalues of A ∈ Rn×n. The system
x(k+ 1) = Ax(k) + Bu(k) is

asymptotically stable iff |λi|< 1, ∀i= 1, . . . , m

(marginally) stable if |λi| ≤ 1, ∀i= 1, . . . , m, and the eigenvalues with unit
modulus have equal algebraic and geometric multiplicity a

unstable if ∃ i such that |λi|> 1

aAlgebraic multiplicity of λi = number of coincident roots λi of det(λI− A). Geometric
multiplicity of λi = number of linearly independent eigenvectors vi, Avi = λivi

The stability properties of a discrete-time linear system only de-
pend on the modulus of the eigenvalues of matrix A
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Lecture: Discrete-time linear systems Stability of discrete-time linear systems

Stability of discrete-time linear systems

Proof:

The natural response is x(k) = Akx0

If matrix A is diagonalizable1 , A= TΛT−1,

Λ=


λ1 0 ... 0
0 λ2 ... 0

...
...

...
...

0 0 ... λn

⇒ Ak = T


λk

1 0 ... 0

0 λk
2 ... 0

...
...

...
...

0 0 ... λk
n

T−1

Take any eigenvalue λ= ρejθ :

|λk|= ρk|ejkθ |= ρk

A is always diagonalizable if algebraic multiplicity - geometric multiplicity

□

1If A is not diagonalizable, it can be transformed to Jordan form. In this case the natural response
x(t) contains modes kjλk, j= 0,1, . . . , alg. multiplicity = geom. multiplicity
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Lecture: Discrete-time linear systems Stability of discrete-time linear systems

Example 1

 x(k+ 1) =

�
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�
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x(0) =
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Lecture: Discrete-time linear systems Stability of discrete-time linear systems

Example 2

 x(k+ 1) =
�

0 −1
1 0

�
x(k)

x(0) =
� x10

x20

� ⇒ eigenvalues of A: {+j,−j}

solution: �
x1(k) = x10 cos kπ

2 + x20 sin kπ
2 , k= 0, 1, . . .

x2(k) = x10 sin kπ
2 + x20 cos kπ

2 , k= 0, 1, . . . ,
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Lecture: Discrete-time linear systems Stability of discrete-time linear systems

Example 3

 x(k+ 1) =
�

1 1
0 1

�
x(k)

x(0) =
� x10

x20

� ⇒ eigenvalues of A: {1, 1}

§
x1(k) = x10 + x20k, k= 0, 1, . . .
x2(k) = x20, k= 0, 1, . . .

Note: A is not diagonalizable !
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Lecture: Discrete-time linear systems Stability of discrete-time linear systems

Example 4

 x(k+ 1) =
�

2 0
1 0

�
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x(0) =
� x10

x20

� ⇒ eigenvalues of A: {0, 2}

solution: �
x1(k) = 2kx10, k= 0, 1, . . .
x2(k) = 2k−1x10, k= 1, 2, . . .
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Lecture: Discrete-time linear systems Stability of discrete-time linear systems

Zero eigenvalues

Modes λi=0 determine finite-time convergence to zero.

This has no continuous-time counterpart, where instead all converging
modes tend to zero in infinite time (eλit)

Example: dynamics of a buffer

y(k)
u(k)

x2(k) x1(k)x3(k)


x1(k+ 1) = x2(k)
x2(k+ 1) = x3(k)
x3(k+ 1) = u(k)

y(k) = x1(k)


x(k+ 1) =

 0 1 0
0 0 1
0 0 0

x(k) +
 00

1

u(k)
y(k) =
�

1 0 0
�

x(k)

Natural response: A3x(0) = 0 for all x(0) ∈ R3

For u(k)≡ 0, the buffer deploys after at most 3 steps !
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Lecture: Discrete-time linear systems Stability of discrete-time linear systems

Summary of stability conditions for linear systems

system continuous-time discrete-time
asympt. stable ∀i= 1, . . . , n ℜ(λi)< 0 |λi|< 1
unstable ∃i such that ℜ(λi)> 0 |λi|> 1
stable ∀i, . . . , n ℜ(λi)≤ 0 |λi| ≤ 1

and ∀λi such that ℜ(λi) = 0 |λi|= 1
algebraic = geometric mult.
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Lecture: Discrete-time linear systems Sampling continuous-time systems

Exact sampling

Consider the continuos-time system ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) +Du(t)
x(0) = x0

We want to characterize the value of x(t), y(t) at the time instants
t= 0, Ts, 2Ts, . . . , kTs, . . ., under the assumption that the input u(t) is
constant during each sampling interval (zero-order hold, ZOH)

u(t) = ū(k), kTs ≤ t< (k+ 1)Ts

x̄(k)≜ x(kTs) and ȳ(k)≜ y(kTs) are the state
and the output samples at the kth sampling
instant, respectively
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Lecture: Discrete-time linear systems Sampling continuous-time systems

Exact sampling

Let us evaluate the response of the continuous-time system between time
t0 = kTs and t= (k+ 1)Ts from the initial condition x(t0) = x(kTs) using
Lagrange formula:

x(t) = eA(t−t0)x(t0)+

∫ t
t0

eA(t−σ)Bu(σ)dσ = eA((k+1)Ts−kTs)x(kTs)+

∫ (k+1)Ts

kTs

eA((k+1)Ts−σ)Bu(σ)dσ

Since the input u(t) is piecewise constant, u(σ)≡ ū(k), kTs ≤ σ < (k+ 1)Ts.
By setting τ= σ− kTs we get

x((k+ 1)Ts) = eATsx(kTs) +

�∫ Ts

0

eA(Ts−τ)dτ
�

Bu(kTs)

and hence

x̄(k+ 1) = eATs x̄(k) +

�∫ Ts

0

eA(Ts−τ)dτ
�

Bū(k)

which is a linear difference relation between x̄(k) and ū(k) !
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Lecture: Discrete-time linear systems Sampling continuous-time systems

Exact sampling

The discrete-time system§
x̄(k+ 1) = Āx̄(k) + B̄ū(k)

ȳ(k) = C̄x̄(k) + D̄ū(k)

depends on the original continuous-time system through the relations

Ā≜ eATs , B̄≜
�∫ Ts

0

eA(Ts−τ)dτ
�

B, C̄ ≜ C, D̄≜ D

If u(t) is piecewise constant, (Ā, B̄, C̄, D̄) provides the exact evolution of state
and output samples at discrete times kTs

MATLAB
sys=ss(A,B,C,D);
sysd=c2d(sys,Ts);
[Ab,Bb,Cb,Db]=ssdata(sysd);
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Lecture: Discrete-time linear systems Sampling continuous-time systems

Exact sampling

Rule of thumb: Ts ≈ 1
10 of the rise time = time to move from 10%

to 90% of the steady-state value, for input u(t)≡ 1, x(0) = 0
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More on the choice of sampling time in the second part of the course ...
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Lecture: Discrete-time linear systems Sampling continuous-time systems

Approximate sampling - Euler’s method

ẋ(kTs)≈ x((k+ 1)Ts)− x(kTs)
Ts

_x(t)

x((k+1)T )¡x(kT )
T

x((k+1)T )

x(kT )

t
kT (k+1)T

x(t)

T

x((k + 1)Ts)

x(kTs)

(k + 1)TskTs

ẋ(kTs)

x((k + 1)Ts)− x(kTs)

Ts

Ts

Leonhard Paul Euler
(1707-1783)

For nonlinear systems ẋ(t) = f(x(t), u(t)):

x̄(k+ 1) = x̄(k) + Tsf(x̄(k), ū(k))

For linear systems ẋ(t) = Ax(t) + Bu(t):

x((k+ 1)Ts) = (I+ TsA)x(kTs) + TsBu(kTs)

Ā≜ I+ ATs, B̄≜ TsB, C̄ ≜ C, D̄≜ D

Note that eTsA = I+ TsA+ . . .+
Tn

s An

n! + . . .
Therefore when Ts is small Euler’s method and exact sampling are similar
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Lecture: Discrete-time linear systems Sampling continuous-time systems

Example - Hydraulic system

Continuous time:¨
d
dt h(t) = − a

p
2g

A

p
h(t) + 1

A u(t)
q(t) = a
p

2g
p

h(t)

Discrete time:¨
h̄(k+ 1) = h̄(k)− Tsa

p
2g

A

Æ
h̄(k) + Ts

A ū(k)
q̄(k) = a
p

2g
Æ

h̄(k)

h

u

q

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7
level h(t) (m)

time (s)

continuous time

Euler approximation

continuous time

Euler approximation

continuous time

Euler approximation
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Tustin’s discretization method

Assume u(k) constant within the sampling interval. Given the linear system
ẋ = Ax+ Bu, apply the trapezoidal rule to approximate the integral

x(k+ 1)− x(k) =

∫ (k+1)Ts

kTs

ẋ(t)dt=

∫ (k+1)Ts

kTs

(Ax(t) + Bu(t))dt

≈ Ts

2
(Ax(k) + Bu(k) + Ax(k+ 1) + Bu(k)) (trapezoidal rule)

and therefore

(I− Ts

2
A)x(k+ 1) = (I+

Ts

2
)x(k) + TsBu(k)

x(k+ 1) =
�

I− Ts

2
A
�−1 �

I+
Ts

2
A
�

x(k) +
�

I− Ts

2
A
�−1

TsBu(k)

Advantage: simpler to compute than exponential matrix, without too much
loss of approximation quality
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N-steps Euler method

We can obtain the matrices A, B of the discrete-time linearized model while
integrating the nonlinear continuous-time dynamic equations ẋ = f(x, u)

N-steps explicit forward Euler method: given x(k), u(k), execute the following
steps

1 x = x(k), A= I, B= 0
2 for n=1:N do

A← (I+ Ts
N
∂ f
∂ x (x,u(k))A

B← (I+ Ts
N
∂ f
∂ x (x,u(k))B+ Ts

N
∂ f
∂ u (x, u(k))A

x← x+ Ts
N f(x,u(k))

3 end
4 return x(k+ 1)≈ x and matrices A, B such that x(k+ 1)≈ Ax(k) + Bu(k).

Property: the difference between the state x(k+ 1) and its approximation x
computed by the above iterations satisfies ∥x(k+ 1)− x)∥= O

� Ts
N

�
Explicit forward Runge-Kutta 4 method also available
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English-Italian Vocabulary

discrete-time linear systems sistemi lineari a tempo discreto
sampling interval tempo (o intervallo) di campionamento
difference equation equazione alle differenze
zero-order hold mantenitore di ordine zero
piecewise constant costante a tratti
rise time tempo di salita

Translation is obvious otherwise.
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