Automatic Control 1

Discrete-time linear systems

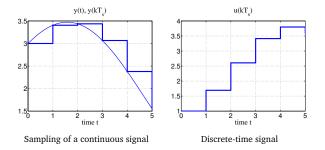
Prof. Alberto Bemporad

University of Trento

Academic year 2010-2011

Automatic Control 1

Introduction



- Discrete-time models describe relationships between *sampled* variables $x(kT_s)$, $u(kT_s)$, $y(kT_s)$, k = 0, 1, ...
- The value $x(kT_s)$ is kept constant during the sampling interval $[kT_s, (k+1)T_s)$
- A discrete-time signal can either represent the *sampling* of a *continuous-time* signal, or be an intrinsically discrete signal
- Discrete-time signals are at the basis of *digital controllers* (as well as of digital filters in signal processing)

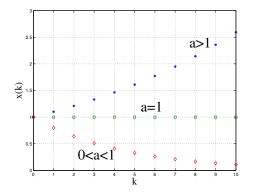
Difference equation

• Consider the first order *difference equation* (autonomous system)

$$x(k+1) = ax(k)$$

 $x(0) = x_0$

• The solution is $x(k) = a^k x_0$

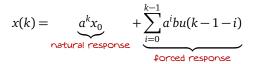


Difference equation

• First-order difference equation with input (non-autonomous system)

$$\begin{cases} x(k+1) = ax(k) + bu(k) \\ x(0) = x_0 \end{cases}$$

• The solution has the form



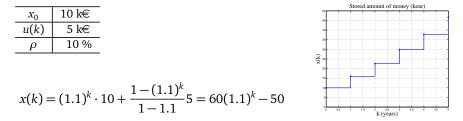
• The *natural response* depends on the initial condition *x*(0), the *forced response* on the input signal *u*(*k*)

Example - Wealth of a bank account

- k: year counter
- ρ: interest rate
- *x*(*k*): wealth at the beginning of year *k*
- *u*(*k*): money saved at the end of year *k*
- x_0 : initial wealth in bank account

Discrete-time model:

$$\begin{cases} x(k+1) = (1+\rho)x(k) + u(k) \\ x(0) = x_0 \end{cases}$$



Linear discrete-time system

• Consider the set of *n* first-order linear difference equations forced by the input $u(k) \in \mathbb{R}$

$$\begin{cases} x_1(k+1) = a_{11}x_1(k) + \dots + a_{1n}x_n(k) + b_1u(k) \\ x_2(k+1) = a_{21}x_1(k) + \dots + a_{2n}x_n(k) + b_2u(k) \\ \vdots & \vdots \\ x_n(k+1) = a_{n1}x_1(k) + \dots + a_{nn}x_n(k) + b_nu(k) \\ x_1(0) = x_{10}, \dots x_n(0) = x_{n0} \end{cases}$$

• In compact matrix form:

$$\begin{cases} x(k+1) &= Ax(k) + Bu(k) \\ x(0) &= x_0 \end{cases}$$

where $x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$.

Linear discrete-time system

• The solution is

$$x(k) = \underbrace{A^{k}x_{0}}_{\text{natural response}} + \underbrace{\sum_{i=0}^{k-1} A^{i}Bu(k-1-i)}_{\text{forced response}}$$

• If matrix *A* is diagonalizable, $A = T\Lambda T^{-1}$

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix} \Rightarrow A^k = T \begin{bmatrix} \lambda_1^k & 0 & \dots & 0 \\ 0 & \lambda_2^k & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n^k \end{bmatrix} T^{-1}$$

where $T = [v_1 \dots v_n]$ collects *n* independent eigenvectors.

Modal response

- Assume input $u(k) = 0, \forall k \ge 0$
- Assume *A* is diagonalizable, $A = T\Lambda T^{-1}$
- The state trajectory (natural response) is

$$x(k) = A^k x_0 = T\Lambda^k T^{-1} x_0 = \sum_{i=1}^n \alpha_i \lambda_i^k v_i$$

where

- λ_i = eigenvalues of A
- v_i = eigenvectors of A
- α_i = coefficients that depend on the initial condition x(0)

$$\alpha = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} = T^{-1}x(0), \ T = [\nu_1 \dots \nu_n]$$

• The system modes depend on the eigenvalues of A, as in continuous-time

• Consider the linear discrete-time system

• Eigenvalues of *A*:
$$\lambda_1 = \frac{1}{2}$$
, $\lambda_2 = 1$

• Solution:

$$\begin{aligned} \mathbf{x}(k) &= \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & 1 \end{bmatrix}^{k} \begin{bmatrix} -1 \\ 1 \end{bmatrix} + \sum_{i=0}^{k-1} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & 1 \end{bmatrix}^{i} \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k-1-i) \\ &= \begin{bmatrix} 1-(\frac{1}{2})^{k-1} \\ 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} \begin{bmatrix} 1-\frac{1}{2^{i}} \\ 1 \end{bmatrix} u(k-1-i) \\ &= \underbrace{\begin{bmatrix} 1-(\frac{1}{2})^{k-1} \\ 1 \end{bmatrix}}_{\text{natural response}} + \underbrace{\sum_{i=0}^{k-1} \begin{bmatrix} 1-\frac{1}{2^{i}} \\ 1 \end{bmatrix} u(k-1-i)}_{\text{forced response}} \\ &= \underbrace{\operatorname{simulation for } u(k) \equiv 0 \end{aligned}$$

 $x_{1}(k), x_{2}(k)$

n^{th} -order difference equation

• Consider the *n*th-order difference equation forced by *u*

$$a_n y(k-n) + a_{n-1} y(k-n+1) + \dots + a_1 y(k-1) + y(k) = b_n u(k-n) + \dots + b_1 u(k-1) + b_0 u(k)$$

• Equivalent linear discrete-time system in canonical state matrix form

$$\begin{pmatrix} x(k+1) = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & & & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \dots & -a_1 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} u(k)$$

$$y(k) = \begin{bmatrix} (b_n - b_0 a_n) & \dots & (b_1 - b_0 a_1) \end{bmatrix} x(k) + b_0 u(k)$$

- There are infinitely many state-space realizations
- *n*th-order difference equations are very useful for digital filters, digital controllers, and to reconstruct models from data (*system identification*)

MATLAB

tf2ss

Discrete-time linear system

$$\begin{cases} x(k+1) &= Ax(k) + Bu(k) \\ y(k) &= Cx(k) + Du(k) \\ x(0) &= x_0 \end{cases}$$

- Given the initial condition x(0) and the input sequence u(k), $k \in \mathbb{N}$, it is possible to predict the entire sequence of states x(k) and outputs y(k), $\forall k \in \mathbb{N}$
- The state *x*(0) summarizes all the past history of the system
- The dimension *n* of the state $x(k) \in \mathbb{R}^n$ is called the *order* of the system
- The system is called *proper* (or *strictly causal*) if D = 0
- General multivariable case:

Example - Student dynamics

• Problem Statement:

- 3-years undergraduate course
- percentages of students promoted, repeaters, and dropouts are roughly constant
- direct enrollment in 2nd and 3rd academic year is not allowed
- students cannot enrol for more than 3 years

Notation:

(otation)		
Year		
Number of students enrolled in year <i>i</i> at year k , $i = 1, 2, 3$		
Number of freshmen at year k		
Number of graduates at year k		
promotion rate during year <i>i</i> , $0 \le \alpha_i \le 1$		
failure rate during year i , $0 \le \beta_i \le 1$		
dropout rate during year <i>i</i> , $\gamma_i = 1 - \alpha_i - \beta_i \ge 0$		

• 3rd-order linear discrete-time system:

$$\begin{cases} x_1(k+1) &= \beta_1 x_1(k) + u(k) \\ x_2(k+1) &= \alpha_1 x_1(k) + \beta_2 x_2(k) \\ x_3(k+1) &= \alpha_2 x_2(k) + \beta_3 x_3(k) \\ y(k) &= \alpha_3 x_3(k) \end{cases}$$

Example - Student dynamics

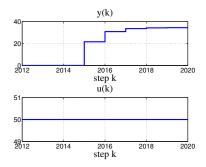
In matrix form

$$\begin{cases} x(k+1) = \begin{bmatrix} \beta_1 & 0 & 0 \\ \alpha_1 & \beta_2 & 0 \\ 0 & \alpha_2 & \beta_3 \end{bmatrix} x(k) + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u(k) \\ y(k) = \begin{bmatrix} 0 & 0 & \alpha_3 \end{bmatrix} x(k) \end{cases}$$

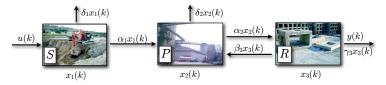
Simulation

$a_1 = .60$	$\beta_1 = .20$
$a_2 = .80$	$\beta_2 = .15$
$a_3 = .90$	$\beta_3 = .08$

$$u(k) \equiv 50, \, k = 2012, \ldots$$



Example - Supply chain



• Problem Statement:

- *S* purchases the quantity *u*(*k*) of raw material at each month *k*
- a fraction δ_1 of raw material is discarded, a fraction α_1 is shipped to producer *P*
- a fraction a_2 of product is sold by *P* to retailer *R*, a fraction δ_2 is discarded
- retailer *R* returns a fraction β_3 of defective products every month, and sells a fraction γ_3 to customers
- Mathematical model:

$$\begin{pmatrix} x_1(k+1) &= (1-\alpha_1-\delta_1)x_1(k) + u(k) \\ x_2(k+1) &= \alpha_1x_1(k) + (1-\alpha_2-\delta_2)x_2(k) + \beta_3x_3(k) \\ x_3(k+1) &= \alpha_2x_2(k) + (1-\beta_3-\gamma_3)x_3(k) \\ y(k) &= \gamma_3x_3(k) \end{pmatrix} \begin{bmatrix} k & \text{month counter} \\ x_1(k) & \text{raw material in } S \\ products in P \\ products in R \\ y(k) & \text{products sold to customers} \end{cases}$$

Equilibrium

• Consider the discrete-time nonlinear system

$$\begin{cases} x(k+1) = f(x(k), u(k)) \\ y(k) = g(x(k), u(k)) \end{cases}$$

Definition

A state $x_r \in \mathbb{R}^n$ and an input $u_r \in \mathbb{R}^m$ are an *equilibrium pair* if for initial condition $x(0) = x_r$ and constant input $u(k) \equiv u_r$, $\forall k \in \mathbb{N}$, the state remains constant: $x(k) \equiv x_r$, $\forall k \in \mathbb{N}$

- Equivalent definition: (x_r, u_r) is an equilibrium pair if $f(x_r, u_r) = x_r$
- x_r is called *equilibrium state*, u_r *equilibrium input*
- The definition generalizes to time-varying discrete-time nonlinear systems

Stability

• Consider the nonlinear system

$$\begin{cases} x(k+1) &= f(x(k), u_r) \\ y(k) &= g(x(k), u_r) \end{cases}$$

and let x_r an equilibrium state, $f(x_r, u_r) = x_r$

Definition

The equilibrium state x_r is *stable* if for each initial conditions x(0) "close enough" to x_r , the corresponding trajectory x(k) remains near x_r for all $k \in \mathbb{N}^{a}$

^{*a*}Analytic definition: $\forall \epsilon > 0 \ \exists \delta > 0 : ||x(0) - x_r|| < \delta \Rightarrow ||x(k) - x_r|| < \epsilon, \ \forall k \in \mathbb{N}$

- The equilibrium point x_r is called *asymptotically stable* if it is stable and $x(k) \rightarrow x_r$ for $k \rightarrow \infty$
- Otherwise, the equilibrium point *x_r* is called *unstable*

Stability of first-order linear systems

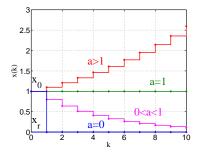
• Consider the first-order linear system

$$x(k+1) = ax(k) + bu(k)$$

- $x_r = 0$, $u_r = 0$ is an equilibrium pair
- For $u(k) \equiv 0, \forall k = 0, 1, \dots$, the solution is

$$x(k) = a^k x_0$$

- The origin $x_r = 0$ is
 - unstable if |a| > 1
 - stable if $|a| \leq 1$
 - asymptotically stable if |a| < 1



Stability of discrete-time linear systems

Since the natural response of x(k + 1) = Ax(k) + Bu(k) is $x(k) = A^k x_0$, the stability properties depend only on *A*. We can therefore talk about *system stability* of a discrete-time linear system (*A*, *B*, *C*, *D*)

Theorem:

Let $\lambda_1, ..., \lambda_m, m \le n$ be the eigenvalues of $A \in \mathbb{R}^{n \times n}$. The system x(k+1) = Ax(k) + Bu(k) is

- asymptotically stable iff $|\lambda_i| < 1, \forall i = 1, ..., m$
- (marginally) stable if $|\lambda_i| \le 1$, $\forall i = 1, ..., m$, and the eigenvalues with unit modulus have equal algebraic and geometric multiplicity ^{*a*}
- unstable if $\exists i$ such that $|\lambda_i| > 1$

^{*a*}Algebraic multiplicity of λ_i = number of coincident roots λ_i of det($\lambda I - A$). Geometric multiplicity of λ_i = number of linearly independent eigenvectors ν_i , $A\nu_i = \lambda_i \nu_i$

The stability properties of a discrete-time linear system only depend on the **modulus** of the eigenvalues of matrix A

Prof. Alberto Bemporad (University of Trento)

Automatic Control 1

Stability of discrete-time linear systems

Proof:

- The natural response is $x(k) = A^k x_0$
- If matrix A is diagonalizable¹, $A = T\Lambda T^{-1}$,

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix} \Rightarrow A^k = T \begin{bmatrix} \lambda_1^k & 0 & \dots & 0 \\ 0 & \lambda_2^k & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n^k \end{bmatrix} T^{-1}$$

• Take any eigenvalue $\lambda = \rho e^{j\theta}$:

$$|\lambda^k| = \rho^k |e^{jk\theta}| = \rho^k$$

• A is always diagonalizable if algebraic multiplicity - geometric multiplicity

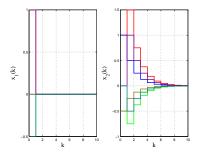
П

¹If A is not diagonalizable, it can be transformed to Jordan form. In this case the natural response x(t) contains modes $k^j \lambda^k$, j = 0, 1, ..., alg. multiplicity = geom. multiplicity

$$\begin{cases} x(k+1) = \begin{bmatrix} 0 & 0\\ 1 & \frac{1}{2} \end{bmatrix} x(k) \\ x(0) = \begin{bmatrix} x_{10} \\ x_{20} \end{bmatrix} \end{cases} \Rightarrow \text{ eigenvalues of } A: \left\{ 0, \frac{1}{2} \right\}$$

solution:

$$\begin{cases} x_1(k) = 0, \ k = 1, 2, \dots \\ x_2(k) = \left(\frac{1}{2}\right)^{k-1} x_{10} + \left(\frac{1}{2}\right)^k x_{20}, \ k = 1, 2, \dots \end{cases}$$

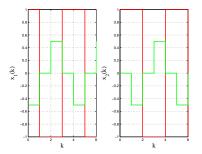


asymptotically stable

$$\begin{cases} x(k+1) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} x(k) \\ x(0) = \begin{bmatrix} x_{10} \\ x_{20} \end{bmatrix} \end{cases} \Rightarrow \text{ eigenvalues of } A: \{+j, -j\}$$

solution:

$$\begin{cases} x_1(k) = x_{10} \cos \frac{k\pi}{2} + x_{20} \sin \frac{k\pi}{2}, \ k = 0, 1, \dots \\ x_2(k) = x_{10} \sin \frac{k\pi}{2} + x_{20} \cos \frac{k\pi}{2}, \ k = 0, 1, \dots, \end{cases}$$



marginally stable

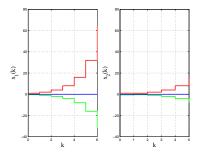
$$\begin{cases} x(k+1) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x(k) \\ x(0) = \begin{bmatrix} x_{10} \\ x_{20} \end{bmatrix} \Rightarrow \text{ eigenvalues of } A: \{1, 1\} \\ x(0) = \begin{bmatrix} x_{10} \\ x_{20} \end{bmatrix} \end{cases}$$

$$\begin{cases} x_1(k) = x_{10} + x_{20}k, \ k = 0, 1, \dots \\ x_2(k) = x_{20}, \ k = 0, 1, \dots \end{cases}$$
Note: A is not diagonalizable !

$$\begin{cases} x(k+1) = \begin{bmatrix} 2 & 0 \\ 1 & 0 \end{bmatrix} x(k) \\ x(0) = \begin{bmatrix} x_{10} \\ x_{20} \end{bmatrix} \end{cases} \Rightarrow \text{ eigenvalues of } A: \{0, 2\}$$

solution:

$$\begin{cases} x_1(k) = 2^k x_{10}, \ k = 0, 1, \dots \\ x_2(k) = 2^{k-1} x_{10}, \ k = 1, 2, \dots \end{cases}$$



unstable

Zero eigenvalues

- Modes $\lambda_i = 0$ determine *finite-time* convergence to zero.
- This has no continuous-time counterpart, where instead all converging modes tend to zero in infinite time (e^{λ_it})
- Example: dynamics of a buffer

- Natural response: $A^3x(0) = 0$ for all $x(0) \in \mathbb{R}^3$
- For $u(k) \equiv 0$, the buffer deploys after at most 3 steps !

Summary of stability conditions for linear systems

system		continuous-time	discrete-time
asympt. stable	$\forall i = 1, \dots, n$	$\Re(\lambda_i) < 0$	$ \lambda_i < 1$
unstable	$\exists i \text{ such that}$	$\Re(\lambda_i) > 0$	$ \lambda_i > 1$
stable	$\forall i, \ldots, n$	$\Re(\lambda_i) \leq 0$	$ \lambda_i \le 1$
	and $\forall \lambda_i$ such that	$\Re(\lambda_i)=0$	$ \lambda_i = 1$
	algebraic = geometric mult.		

• Consider the continuos-time system

$$\dot{x}(t) = Ax(t) + Bu(t)$$

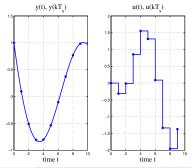
$$y(t) = Cx(t) + Du(t)$$

$$x(0) = x_0$$

• We want to characterize the value of x(t), y(t) at the time instants $t = 0, T_s, 2T_s, ..., kT_s, ...,$ under the assumption that the input u(t) is constant during each sampling interval (*zero-order hold, ZOH*)

 $u(t) = \bar{u}(k), \ kT_s \le t < (k+1)T_s$

• $\bar{x}(k) \triangleq x(kT_s)$ and $\bar{y}(k) \triangleq y(kT_s)$ are the state and the output samples at the k^{th} sampling instant, respectively



• Let us evaluate the response of the continuous-time system between time $t_0 = kT_s$ and $t = (k+1)T_s$ from the initial condition $x(t_0) = x(kT_s)$ using Lagrange formula:

$$x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-\sigma)}Bu(\sigma)d\sigma = e^{A((k+1)T_s - kT_s)}x(kT_s) + \int_{kT_s}^{(k+1)T_s} e^{A((k+1)T_s - \sigma)}Bu(\sigma)d\sigma$$

• Since the input u(t) is piecewise constant, $u(\sigma) \equiv \bar{u}(k)$, $kT_s \leq \sigma < (k+1)T_s$. By setting $\tau = \sigma - kT_s$ we get

$$x((k+1)T_s) = e^{AT_s}x(kT_s) + \left(\int_0^{T_s} e^{A(T_s-\tau)}d\tau\right)Bu(kT_s)$$

and hence

$$\bar{x}(k+1) = e^{AT_s}\bar{x}(k) + \left(\int_0^{T_s} e^{A(T_s-\tau)}d\tau\right)B\bar{u}(k)$$

which is a linear difference relation between $\bar{x}(k)$ and $\bar{u}(k)$!

• The discrete-time system

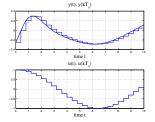
$$\begin{array}{rcl} (\bar{x}(k+1) &=& \bar{A}\bar{x}(k) + \bar{B}\bar{u}(k) \\ \bar{y}(k) &=& \bar{C}\bar{x}(k) + \bar{D}\bar{u}(k) \end{array} \end{array}$$

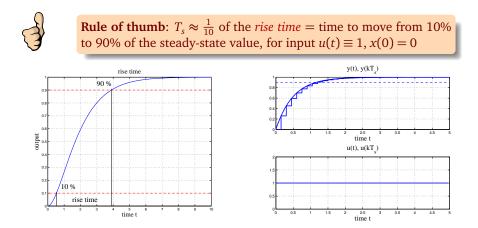
depends on the original continuous-time system through the relations

$$\bar{A} \triangleq e^{AT_s}, \quad \bar{B} \triangleq \left(\int_0^{T_s} e^{A(T_s - \tau)} d\tau\right) B, \quad \bar{C} \triangleq C, \quad \bar{D} \triangleq D$$

 If u(t) is piecewise constant, (A, B, C, D) provides the *exact* evolution of state and output samples at discrete times kT_s

MATLAB	
<pre>sys=ss(A,B,C,D); sysd=c2d(sys,Ts); [Ab,Bb,Cb,Db]=ssdata(sysd)</pre>	;

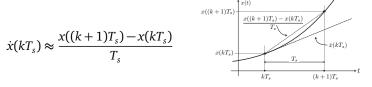




More on the choice of sampling time in the second part of the course ...

Automatic Control 1

Approximate sampling - Euler's method



Leonhard Paul Euler (1707-1783)

• For nonlinear systems $\dot{x}(t) = f(x(t), u(t))$:

 $\bar{x}(k+1) = \bar{x}(k) + T_s f(\bar{x}(k), \bar{u}(k))$

• For linear systems $\dot{x}(t) = Ax(t) + Bu(t)$:

 $x((k+1)T_s) = (I + T_sA)x(kT_s) + T_sBu(kT_s)$

 $\bar{A} \triangleq I + AT_s, \quad \bar{B} \triangleq T_s B, \quad \bar{C} \triangleq C, \quad \bar{D} \triangleq D$

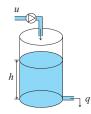
• Note that $e^{T_s A} = I + T_s A + \ldots + \frac{T_s^n A^n}{n!} + \ldots$ Therefore when T_s is small Euler's method and exact sampling are similar

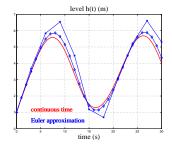
Example - Hydraulic system

Continuous time:

Discrete time:

$$\begin{cases} \frac{d}{dt}h(t) &= -\frac{a\sqrt{2g}}{A}\sqrt{h(t)} + \frac{1}{A}u(t) \\ q(t) &= a\sqrt{2g}\sqrt{h(t)} \end{cases} \begin{cases} \bar{h}(k+1) &= \bar{h}(k) - \frac{T_s a\sqrt{2g}}{A}\sqrt{\bar{h}(k)} + \frac{T_s}{\bar{A}}\bar{u}(k) \\ \bar{q}(k) &= a\sqrt{2g}\sqrt{\bar{h}(k)} \end{cases}$$





Tustin's discretization method

• Assume u(k) constant within the sampling interval. Given the linear system $\dot{x} = Ax + Bu$, apply the trapezoidal rule to approximate the integral

$$\begin{aligned} x(k+1) - x(k) &= \int_{kT_s}^{(k+1)T_s} \dot{x}(t) dt = \int_{kT_s}^{(k+1)T_s} (Ax(t) + Bu(t)) dt \\ &\approx \frac{T_s}{2} (Ax(k) + Bu(k) + Ax(k+1) + Bu(k)) \text{ (trapezoidal rule)} \end{aligned}$$

and therefore

$$(I - \frac{T_s}{2}A)x(k+1) = (I + \frac{T_s}{2})x(k) + T_sBu(k)$$
$$x(k+1) = \left(I - \frac{T_s}{2}A\right)^{-1} \left(I + \frac{T_s}{2}A\right)x(k) + \left(I - \frac{T_s}{2}A\right)^{-1}T_sBu(k)$$

• Advantage: simpler to compute than exponential matrix, without too much loss of approximation quality

N-steps Euler method

- We can obtain the matrices *A*, *B* of the discrete-time linearized model while integrating the nonlinear continuous-time dynamic equations $\dot{x} = f(x, u)$
- *N-steps explicit forward Euler method*: given *x*(*k*), *u*(*k*), execute the following steps

$$x = x(k), A = I, B = 0
for n=1:N do
• A \leftarrow (I + \frac{T_s}{N} \frac{\partial f}{\partial x}(x, u(k))A
• B \leftarrow (I + \frac{T_s}{N} \frac{\partial f}{\partial x}(x, u(k))B + \frac{T_s}{N} \frac{\partial f}{\partial u}(x, u(k))A
• x \leftarrow x + \frac{T_s}{N}f(x, u(k))$$
end

- return $x(k+1) \approx x$ and matrices A, B such that $x(k+1) \approx Ax(k) + Bu(k)$.
- Property: the difference between the state x(k + 1) and its approximation x computed by the above iterations satisfies $||x(k + 1) x)|| = O\left(\frac{T_s}{N}\right)$
- Explicit forward Runge-Kutta 4 method also available

English-Italian Vocabulary

discrete-time linear systems	sistemi lineari a tempo discreto
sampling interval	tempo (o intervallo) di campionamento
difference equation	equazione alle differenze
zero-order hold	mantenitore di ordine zero
piecewise constant	costante a tratti
rise time	tempo di salita

Translation is obvious otherwise.