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Lecture: Transfer functions Laplace transform

Laplace transform

Consider a function f(¢t), f : R » R, f(t) =0 for all t < 0.
Definition
The Laplace transform ¥£[f] of f is the function
F : C — C of complex variable s € C defined by

F(s) = f e 'f(t)dt o
0

for all s € C for which the integral exists

Once F(s) is computed using the integral, it’s
extended to all s € C for which F(s) makes sense

Laplace transforms convert integral and differential

Pierre-Simon Laplace equations into algebraic equations. We'll see how ...

(1749-1827)
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Lecture: Transfer functions Laplace transform

Examples of Laplace transforms

@ Unit step

_ _ [0 ift<o _ e stq, 1
fo=10={ 7 fisg = F(s)—fo e =1

@ Dirac’s delta (or impulse ﬁmctionl)

+oo ift=0

f(t):&(t)é{ 0 A0 h that f 50 =1

—0Q

+00
F(s) = f 5()etdt=e0=1, Vs€C
0

IThe function (t) is can be considered as the limit of the sequence of functions f,(t) for € — 0

se0<t<e
otherwise

1
ﬂm={5

To be mathematically correct, Dirac’s § is a distribution, not a function
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Lecture: Transfer functions Laplace transform

Properties of Laplace transforms

@ Linearity

LIkif1(6) + kofo ()] = ki Lf1(O)] + ko L [f5(1)]

Example: f(t) =6(t) —21(t) = £L[f]=1 —%

@ Time delay
ZL[ft—1)]=e " 2[f(0)]

Example: f(t) =31(t—2) = ZL[f]= BET%

@ Exponential scaling

ZL[e"f(t)] = F(s—a), where F(s) = Z[f(t)]

Example: f(t) = e* 1(t) = £[f] = ﬁ
Example: f(t) = cos(wt) T(t) = % I(t) = L[fl= o3

Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 2010-2011

4/1



Lecture: Transfer functions Laplace transform

Properties of Laplace transforms

o Time derivative?:

L0 =210 —0)

Example = f(t) = sin(wt) A(t) = L[f] = o=

$2+w?

@ Multiplication by t
216(0] =~ 17(0)]

Example = f(t) =t I(t) = Z[f]= %

2f(0%) = lim,_,o+ f(t). If f is continuos in 0, f(07) = £(0)
Automatic Control 1 Academic year 2010-2011
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Lecture: Transfer functions Laplace transform

Initial and final value theorems

Initial value theorem J

tlir(g fl)= 1ir<1>1o SF(s)

Example: f(t) = 1(t) —t 1(t) = F(s) = % — slz
f(07) =1 =1lim,_,, sF(s)

Final value theorem }

Jim f(e) = gggsF(S)

Example: f(t) = U(t) —e* L(t) = F(s) = 2 —
f(+00) =1 =lim,_,;sF(s)
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Lecture: Transfer functions Laplace transform

Convolution

@ The convolution h = f x g of two signals f and g is the signal

h(t) = J f(o)g(t—T)dr
0

@ It'seasytosee thath =fxg=gx*f
@ The Laplace transform of the convolution:

2[f()xg(0)] = 2[f(D]£[g(0)]

@ Laplace transforms turn convolution into multiplication !
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Lecture: Transfer functions

Common Laplace transforms

50

tk
LEL

at

coswt
sinwt
cos(wt + ¢)
e coswt

e sinwt

s
1
sk
52
1
pE]
1
s—a
s _ 12 12
S2+w? s—jw s+ jw
w o 1/25 1/2§
S2+w? s—jw s+ jw

scos ¢ —wsin g
s+a
(s+a)? +w?
w

(s+a)? +w?

courtesy of S. Boyd, http://www.stanford.edu/ boyd/ee102/

P Alberto Bemporad (University of Trento)
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Laplace transform

In MATLAB use
F = LAPLACE (f)

MATLAB

» syms t
» f=exp(2xt)+t-t~2
» F=laplace (f)

F =

1/(s=-2)+1/s"2-2/s"3
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Lecture: Transfer functions

Laplace transform

Properties of Laplace transforms

1)
f+y
af (0 eR)

a
dt

di f

@

o0 = [ 1) dr
flat),a>0

e f(1)

0
gm:{f(t—T) t>T

0<t<T

F(s) = /u = f()et de
F+G

oF

sF(s)— f(0)

iF(s/a)
F(s—a)

_dar
ds
d"F(s)

dsk

/:CF(S) ds

(-D*

LT>0 G(s)=e*TF(s)

courtesy of S. Boyd, http://www.stanford.edu/ boyd/ee102/
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Lecture: Transfer functions  Transfer functions

Transfer function

@ Let’s apply the Laplace transform to continuous-time linear systems

x(t) = Ax(t)+Bu(t)
{ y(t) = Cx(t)+Du(t)
x(0) =x,

o Define X(s) = Z[x(1)], U(s) = L[u(t)], Y(s) = L[y(1)]
@ Apply linearity and time-derivative rules

{ sX(s) —xo AX(s) + BU(s)

CX(s)+DU(s)

Y(s)
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Lecture: Transfer functions  Transfer functions

Transfer function

X(s) = (sI—A) lxy+(sI—A)"'BU(s)
Y(s) = C(sI—A)'x, +(C(sI—A)'B+D)U(s)
Laplace —zlfransﬁorm Laplace transform
of natural response of forced response

Definition
The transfer function of a continuous-time linear system (A, B, C, D) is the ratio

G(s)=C(sI—A)'B+D

between the Laplace transform Y(s) of output and the Laplace transform U(s) of
the input signals for the initial state x, = 0

MATLAB
»sys=ss (A,B,C,D);
»G=tf (sys)
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Lecture: Transfer functions  Transfer functions

Transfer function

U(s) Y(s)

T z0=0

Example: The linear system

(0 [‘éo _11]x(t)+[(1)]u(t)
yo = [2 2]x@®

has the transfer function

MATLAB
»sys=ss ([-10 1;
G(s)zﬂ 0 -11,10;11, 12 21,0);
s2+11s+ 10 »G=t£ (sys)

Note: The transfer function does not depend on the | Transfer function:
. ) . 2 s + 22
input u(t)! It’s only a property of the linear system.

s"2 + 11 s + 10
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Lecture: Transfer functions

Transfer functions and linear ODEs

Transfer functions

@ Consider the n'-order differential equation with input

dy™(1) N dy" ()
I g
5 du™(t) du™(t)
™ dem b dmet

+-+ay(t) +ay(t) =

+ -+ bya(t) + bou(t)

@ For initial conditions y(0) =3(0) = y"1(0) = 0, we obtain immediately the transfer

function from u to y

G(s) =

byys™ + b8+ -+ bys+ by

Example

STt a, sS4t as+ag

7+ 11y + 10y = 21t + 22u

2s+ 22
G(s) = —=

Prof. Alberto Bemporad (University of Trento)
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MATLAB

»G=tf ([2

Transfer
2 s + 22

s"2 + 11

221,11 11 10])

function:
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Lecture: Transfer functions  Transfer functions

Example

o Differential equation

() + 3y(t) +y(t) = u(t) + u(t)

@ The transfer function is
s+1

$24+3s+1
@ The same transfer function G(s) can be obtained through a state-space

realization
() = [_01 _lg]x(t)+[(1’]u(t)

y©) = [1 1]x@®

from which we compute

G =[1 1](5[(1) (1)]_[—01 —13])71[(1)]:%

G(s) =
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Lecture: Transfer functions  Transfer functions

Some common transfer functions

@ Integrator

t
{ x(t) = ut) y(t) — f u(t)dr u(t) % y(t)
y(t) = x(t) 0
@ Double integrator
x() = x(t) t w [ .
k;(t) = uz(t) ()= f fo u(t)dt e
y(©) = x(b)
@ Damped oscillator with frequency w, rad/s and damping factor ¢
0 0 -
. = u(t) kw ()
x(t) [ —wy ZC ]X(t) + [ kw, ]u(t) " Qngs 2 y

yO=[1 0]x(®
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Lecture: Transfer functions

Inverse Laplace transform

@ The impulse response y(t) is therefore the inverse Laplace transform of the

Transfer functions

transfer function G(s), y(t) = £7[G(s)]
@ The general formula for computing the inverse Laplace transform is

1
f= 2_7'51 fa_joo

where o is large enough that F(s) is defined for s > o

@ This formula is not used very often

In MATLAB use

f = ILAPLACE (f)

Prof. Alberto Bemporad (University of Trento)

o+joo

F(s)e’ds

MATLAB

»
»
»

£

syms s
F=2%s/(s"2+1)
f=ilaplace (F)

= 2%cos (t)

Automatic Control 1
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Lecture: Transfer functions  Transfer functions

Impulse response

@ Remember that an input signal u(t) produces an output signal y(t) whose
Laplace transform Y(s) is
Y(s) = G(s)U(s)
where U(s) = £[u], for initial state x(0) =0
@ Speciale case: impulsive input u(t) = 6(t), U(s) = 1. The corresponding
output y(t) is called the impulse response
@ G(s) is the Laplace transform of the impulse response y(t)

Y(s)=G(s)-1=G(s)

Example: 0%
€> 0.3

2 8025

G(s)= —— g oo

( ) 52 +3s+1 2015

g 0.1]

L7UG(s)] = 2te™ 00

0 1 2 ? 4 5 6
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Lecture: Transfer functions  Transfer functions

Examples

@ Integrator

ut) = 6(v) ut) |1 |y
yo) = £731=10) s

@ Double integrator
ut) = 6(1) ut) | 1] y®
¥ = £ 3]=100) 52

@ Undamped oscillator
u(t) = 6() uft) 1 y(t)
y(©) = £7F5]=10)sint 241
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Lecture: Transfer functions  Transfer functions

Poles and Zeros

_— G(s) —_—

@ Rewrite the transfer function as the ratio of polynomials (m < n)

bys™ +by 18"+ +bis+by  N(s)

G(s) = =
©) STa,_ st as+ag D(s)

@ The roots p; of D(s) are called the poles of the linear system G(s)
@ The roots g; of N(s) are called the zeros of G(s)

@ G(s) is often written in zero/pole/gain form

(s—21)...(s—2p)
(s—p1)...(s—pn)

G(s)=K

In MATLAB use zpx to transform to zero/pole/gain form
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Lecture: Transfer functions  Transfer functions

Examples

@ Example 1
G(s)

poles: {—1,—3 +j4,—

@ Example 2

25+ 22

s+2

s+2

%—j@}, zeros: {—2}

2(s+11)

G(s)

poles: {—10,—1}, zeros:

Prof. Alberto Bemporad (University of Trento)

T2+11s+10  (5+10)s+1)

{—11}

Automatic Control 1

=s3+232+3$+2 - (s+1)(s2+s+2)

MATLAB

» G=tf([2 22],[1 11 101])

» zpk (G)

Zero/pole/gain:
2 (s+11)
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Lecture: Transfer functions  Transfer functions

Partial fraction decomposition

@ The partial fraction decomposition of a rational function G(s) = N(s)/D(s) is
(assuming p; # p;)*

@ q is called the residue* of G(s) in p; € C
a; = lim(s —p;)G(s)

@ The inverse Laplace transform of G(s) is easily computed by inverting each
term
L7HG(s)] = a;ePt + -+ + aefnt

3For multiple poles p; with multiplicity k we have the terms

an T T A 1 i d(kij)
oo , A = — lim -
(s—pi) (s—p)” 7Y (k=) s=pi dstkD
and the inverse Laplace transform is

[(s—P)'G()]

k—1
aePil 4.+ qq ———ePit
il ik (k—l)!

“4Residues of conjugate poles are conjugate of each other: p; = P = a;=a;
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Lecture: Transfer functions Linear algebra recalls

Linear algebra recalls

@ The inverse of a matrix A € R™"

ag aqg e aip
agy agy e Aon
any ano e Ann

is the matrix A~ such that A7!A = AA" =1
@ The inverse A™! can be computed using the adjugate matrix AdjA

A= AdjA
"~ detA

@ The adjugate matrix is the transpose of the cofactor matrix C of A
AdjA=C", C; = (—1)"M;

where Mj; is the (i,) cofactor of A, that is the determinant of the
(n—1) x (n— 1) matrix that results from deleting row i and column j of A
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Lecture: Transfer functions Linear algebra recalls

Numerical caveat

o Consider the linear system of n equalities Ax = b in the unknown vector
xeER" AR beRY)

@ If detA # 0, the unique solution is x =A™'B
@ However, computing A™! is not a smart thing to do for finding x !

@ Numerical example: n=1000; A=rand(n,n)+10xeye (n); b=rand(n,1);

MATLAB MATLAB
» tic; x=inv (A) xb; toc » tic; x=A\ b; toc
elapsed_time = elapsed_time =
2.2190 0.8440
First A is inverted, an operation that The linear system is solved using Gauss
costs O(n®) arithmetic operations method, an operation that costs O(n?)

arithmetic operations
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Lecture: Transfer functions Linear algebra recalls

Poles, eigenvalues, modes

@ Linear system

x(t) = Ax(t)+Bu(t) N (s)
y(©) = Cx(t)+Du(t) G(s)=C(sI—A) 'B+D = =S
x(0)=0 Dg(s)
@ Use the adjogate matrix to represent the inverse of s —A
~ CAdj(sI—A)B
C(sI—A)'B+D=—""" """
I=4) det(sI—A)
@ The denominator Dg(s) = det(sI—A) !
The poles of G(s) coincide with the eigenvalues of A y

@ Well, not always ...
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Lecture: Transfer functions Linear algebra recalls

Poles, eigenvalues, modes

@ Some eigenvalues of A may not be poles of G(s) in case of pole/zero

cancellations
1 O 0
A—[O _1],3—[1],C—[0 1]

det(sT—A)=(s—1)(s+1)

1
Gis)=[0 1][501 ?][(1)]=5+%

s+1

@ Example:

@ The pole s =1 has no influence on the input/output behavior of the system
(but it has influence on the free response x; (t) = e‘x;,)

@ We'll better understand cancellations when investigating reachability and
observability properties
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Lecture: Transfer functions Linear algebra recalls

Steady-state solution and DC gain

@ Let A asymptotically stable. Natural response vanishes asymptotically

@ Assume constant u(t) = u,. What is the asymptotic value x, = lim,_, ;o x(t) ?
Impose 0 = X,(t) = Ax, + Bu, and get x, = —A~'Bu,
The corresponding steady-state output y, = Cx, + Du, is

Yr= (_CA_IB +D)ur
~——
DC @ain

o Cf. final value theorem:

Yr Jim y(t) = lijng(s)
= limsG(s)U(s) = EE%SG(S)%
= G(0)u, = (—CA™'B+D)u,
@ G(0) is called the DC gain of the system
Automatic Control 1 Academic year 20102011 26/ 1



Lecture: Transfer functions Linear algebra recalls

DC gain - Example

x(t)

¥(t)

[‘f _05 }x(t)+[§]u(t)
[: 310

1_1771
anCgain:—[‘l—;?—;][%2 02] [3]=3

e Transfer function: G(s) = 232, We have G(0)=3

4s2+2s+1°
Output y(t) for different initial
® ® conditions and input u(t) = 1
4 4
S5 S5 MATLAB
B =
»sys=tf£([2 3],[4 2 1]);
2 2 »dcgain (sys)
4 ; ans =
0’ [0} 3

0 10 20 30 0 10 20 30
t t
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Lecture: Transfer functions Linear algebra recalls

English-Italian Vocabulary

transfer function fungione di trasferimento
Laplace transform trasformata di Laplace

unit step gradino unitario

delay ritardo

damped oscillator oscillatore smorzato

impulse response risposta all'impulso

inverse Laplace transform antitrasformata di Laplace
partial fraction decomposition | decomposizione in fratti semplici
DC gain guadagno in continua
steady-state regime stazionario

Translation is obvious otherwise.
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