Automatic Control 1

Transfer functions

Prof. Alberto Bemporad

University of Trento

Academic year 2010-2011

Laplace transform

Consider a function f(t), $f: \mathbb{R} \to \mathbb{R}$, f(t) = 0 for all t < 0.

Definition

The *Laplace transform* $\mathcal{L}[f]$ of f is the function $F: \mathbb{C} \to \mathbb{C}$ of complex variable $s \in \mathbb{C}$ defined by

$$F(s) = \int_0^{+\infty} e^{-st} f(t) dt$$

for all $s \in \mathbb{C}$ for which the integral exists

Pierre-Simon Laplace (1749-1827)

Once F(s) is computed using the integral, it's extended to all $s \in \mathbb{C}$ for which F(s) makes sense

Laplace transforms convert integral and differential equations into algebraic equations. We'll see how \dots

Examples of Laplace transforms

Unit step

$$f(t) = \mathbb{I}(t) = \begin{cases} 0 & \text{if } t < 0 \\ 1 & \text{if } t \ge 0 \end{cases} \Rightarrow F(s) = \int_0^{+\infty} e^{-st} dt = -\frac{1}{s} \Big|_0^{+\infty} = \frac{1}{s}$$

• Dirac's delta (or impulse function¹)

$$f(t) = \delta(t) \triangleq \begin{cases} 0 & \text{if } t \neq 0 \\ +\infty & \text{if } t = 0 \end{cases} \quad \text{such that } \int_{-\infty}^{+\infty} \delta(t) = 1$$

$$F(s) = \int_0^{+\infty} \delta(t)e^{-st}dt = e^{-s0} = 1, \ \forall s \in \mathbb{C}$$

$$f_{\epsilon}(t) = \begin{cases} \frac{1}{\epsilon} & \text{se } 0 \le t \le \epsilon \\ 0 & \text{otherwise} \end{cases}$$

To be mathematically correct, Dirac's δ is a *distribution*, not a function

¹The function $\delta(t)$ is can be considered as the limit of the sequence of functions $f_{\epsilon}(t)$ for $\epsilon \to 0$

Properties of Laplace transforms

Linearity

$$\mathcal{L}[k_1f_1(t) + k_2f_2(t)] = k_1\mathcal{L}[f_1(t)] + k_2\mathcal{L}[f_2(t)]$$

Example:
$$f(t) = \delta(t) - 2 \mathbb{I}(t) \Rightarrow \mathcal{L}[f] = 1 - \frac{2}{s}$$

• Time delay

$$\mathcal{L}[f(t-\tau)] = e^{-s\tau} \mathcal{L}[f(t)]$$

Example:
$$f(t) = 3 \mathbb{I}(t-2) \Rightarrow \mathcal{L}[f] = \frac{3e^{-2s}}{s}$$

Exponential scaling

$$\mathcal{L}[e^{at}f(t)] = F(s-a)$$
, where $F(s) = \mathcal{L}[f(t)]$

Example:
$$f(t) = e^{at} \mathbb{I}(t) \Rightarrow \mathcal{L}[f] = \frac{1}{s-a}$$

Example: $f(t) = \cos(\omega t) \mathbb{I}(t) = \frac{e^{i\omega t} + e^{-j\omega t}}{s-a} \mathbb{I}(t) \Rightarrow \frac{1}{s-a}$

Properties of Laplace transforms

• Time derivative²:

$$\mathcal{L}\left[\frac{d}{dt}f(t)\right] = s\mathcal{L}\left[f(t)\right] - f(0^{+})$$

Example
$$\Longrightarrow f(t) = \sin(\omega t) \mathbb{I}(t) \Rightarrow L[f] = \frac{\omega}{s^2 + \omega^2}$$

• Multiplication by t

$$\mathscr{L}[tf(t)] = -\frac{d}{ds}\mathscr{L}[f(t)]$$

Example
$$\Longrightarrow f(t) = t \mathbb{I}(t) \Rightarrow \mathcal{L}[f] = \frac{1}{s^2}$$

Initial and final value theorems

Initial value theorem

$$\lim_{t\to 0^+} f(t) = \lim_{s\to \infty} sF(s)$$

Example:
$$f(t) = \mathbb{I}(t) - t \, \mathbb{I}(t) \Rightarrow F(s) = \frac{1}{s} - \frac{1}{s^2}$$

 $f(0^+) = 1 = \lim_{s \to \infty} sF(s)$

Final value theorem

$$\lim_{t \to +\infty} f(t) = \lim_{s \to 0} sF(s)$$

Example:
$$f(t) = \mathbb{I}(t) - e^{-t} \mathbb{I}(t) \Rightarrow F(s) = \frac{1}{s} - \frac{1}{s+1}$$

 $f(+\infty) = 1 = \lim_{s \to 0} sF(s)$

Convolution

• The *convolution* h = f * g of two signals f and g is the signal

$$h(t) = \int_0^t f(\tau)g(t-\tau)d\tau$$

- It's easy to see that h = f * g = g * f
- The Laplace transform of the convolution:

$$\mathcal{L}[f(t) * g(t)] = \mathcal{L}[f(t)]\mathcal{L}[g(t)]$$

• Laplace transforms turn convolution into multiplication!

Common Laplace transforms

In MATLAB use

$$F = LAPLACE(f)$$

MATLAB

- » syms t
- \Rightarrow f=exp(2*t)+t-t^2
- \gg F=laplace(f)

$$1/(s-2)+1/s^2-2/s^3$$

courtesy of S. Boyd, http://www.stanford.edu/~boyd/ee102/

Properties of Laplace transforms

$$\begin{split} f(t) & F(s) = \int_0^\infty f(t)e^{-st}\,dt \\ f+g & F+G \\ \alpha f \ (\alpha \in \mathbf{R}) & \alpha F \\ & \frac{df}{dt} & sF(s) - f(0) \\ & \frac{d^kf}{dt^k} & s^kF(s) - s^{k-1}f(0) - s^{k-2}\frac{df}{dt}(0) - \cdots - \frac{d^{k-1}f}{dt^{k-1}}(0) \\ g(t) &= \int_0^t f(\tau)\,d\tau & G(s) = \frac{F(s)}{s} \\ f(\alpha t), \ \alpha > 0 & \frac{1}{\alpha}F(s/\alpha) \\ & e^{at}f(t) & F(s-a) \\ tf(t) & -\frac{dF}{ds} \\ t^kf(t) & (-1)^k\frac{d^kF(s)}{ds^k} \\ f(t-T) & t>T \ , \ T \geq 0 \quad G(s) = e^{-sT}F(s) \end{split}$$

courtesy of S. Boyd, http://www.stanford.edu/~boyd/ee102/

Transfer function

Let's apply the Laplace transform to continuous-time linear systems

$$\begin{cases} \dot{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) + Du(t) \end{cases}$$
$$x(0) = x_0$$

- Define $X(s) = \mathcal{L}[x(t)], U(s) = \mathcal{L}[u(t)], Y(s) = \mathcal{L}[y(t)]$
- Apply linearity and time-derivative rules

$$\begin{cases} sX(s) - x_0 = AX(s) + BU(s) \\ Y(s) = CX(s) + DU(s) \end{cases}$$

Transfer function

$$X(s) = (sI - A)^{-1}x_0 + (sI - A)^{-1}BU(s)$$

$$Y(s) = \underbrace{C(sI - A)^{-1}x_0}_{\text{Laplace transform of natural response}} + \underbrace{(C(sI - A)^{-1}B + D)U(s)}_{\text{Laplace transform of forced response}}$$

Definition

The transfer function of a continuous-time linear system (A, B, C, D) is the ratio

$$G(s) = C(sI - A)^{-1}B + D$$

between the Laplace transform Y(s) of output and the Laplace transform U(s) of the input signals for the initial state $x_0 = 0$

MATLAB »sys=ss(A,B,C,D); »G=tf(sys)

Transfer function

Example: The linear system

$$\begin{cases} \dot{x}(t) = \begin{bmatrix} -10 & 1 \\ 0 & -1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 2 & 2 \end{bmatrix} x(t) \end{cases}$$

has the transfer function

$$G(s) = \frac{2s + 22}{s^2 + 11s + 10}$$

Note: The transfer function does not depend on the input u(t)! It's only a property of the linear system.

Transfer functions and linear ODEs

• Consider the *n*th-order differential equation with input

$$\frac{dy^{(n)}(t)}{dt^n} + a_{n-1}\frac{dy^{(n-1)}(t)}{dt^{n-1}} + \dots + a_1\dot{y}(t) + a_0y(t) = b_m\frac{du^{(m)}(t)}{dt^m} + b_{m-1}\frac{du^{(m-1)}(t)}{dt^{m-1}} + \dots + b_1\dot{u}(t) + b_0u(t)$$

• For initial conditions $y(0) = \dot{y}(0) = y^{(n-1)}(0) = 0$, we obtain immediately the transfer function from u to y

$$G(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$

Example

$$\ddot{y} + 11\dot{y} + 10y = 2\dot{u} + 22u$$

$$G(s) = \frac{2s + 22}{s^2 + 11s + 10}$$

MATLAB

»G=tf([2 22],[1 11 10])

Transfer function:

Example

Differential equation

$$\ddot{y}(t) + 3\dot{y}(t) + y(t) = \dot{u}(t) + u(t)$$

• The transfer function is

$$G(s) = \frac{s+1}{s^2 + 3s + 1}$$

 The same transfer function G(s) can be obtained through a state-space realization

$$\begin{cases} \dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -1 & -3 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 1 \end{bmatrix} x(t) \end{cases}$$

from which we compute

$$G(s) = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{pmatrix} s \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -1 & -3 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{s+1}{s^2 + 3s + 1}$$

Some common transfer functions

Integrator

$$\begin{cases} \dot{x}(t) = u(t) \\ y(t) = x(t) \end{cases}$$

$$y(t) = \int_0^t u(\tau)d\tau$$

$$\xrightarrow{u(t)} \boxed{\frac{1}{s}} \xrightarrow{y(t)}$$

• Double integrator

$$\begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = u(t) \\ y(t) = x_1(t) \end{cases}$$

$$y(t) = \int_{0}^{t} u(\tau)d\tau$$

• *Damped oscillator* with frequency ω_0 rad/s and damping factor ζ

$$\begin{cases} \dot{x}(t) = \begin{bmatrix} 0 & \omega_0 \\ -\omega_0 & -2\zeta\omega_0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ k\omega_0 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) \end{cases}$$

Inverse Laplace transform

- The impulse response y(t) is therefore the inverse Laplace transform of the transfer function G(s), $v(t) = \mathcal{L}^{-1}[G(s)]$
- The general formula for computing the inverse Laplace transform is

$$f(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} F(s)e^{st}ds$$

where σ is large enough that F(s) is defined for $\Re s \geq \sigma$

This formula is not used very often

In MATLAB use

$$f = ILAPLACE(f)$$

MATI.AB

- » syms s
 » F=2*s/(s^2+1)
- » f=ilaplace(F)
- f = 2*cos(t)

Impulse response

• Remember that an input signal u(t) produces an output signal y(t) whose Laplace transform Y(s) is

$$Y(s) = G(s)U(s)$$

where $U(s) = \mathcal{L}[u]$, for initial state x(0) = 0

- Speciale case: impulsive input $u(t) = \delta(t)$, U(s) = 1. The corresponding output y(t) is called the *impulse response*
- G(s) is the Laplace transform of the impulse response y(t)

$$Y(s) = G(s) \cdot 1 = G(s)$$

Example:

$$G(s) = \frac{2}{s^2 + 3s + 1}$$

$$\mathcal{L}^{-1}\lceil G(s)\rceil = 2te^{-2t}$$

Examples

Integrator

$$u(t) = \delta(t)$$

$$y(t) = \mathcal{L}^{-1}\left[\frac{1}{s}\right] = \mathbb{I}(t)$$

Double integrator

$$u(t) = \delta(t)$$

$$y(t) = \mathcal{L}^{-1} \left[\frac{1}{2} \right] = \mathbb{I}(t)t$$

$$u(t) \longrightarrow \boxed{\frac{1}{s^2}} \longrightarrow$$

Undamped oscillator

$$u(t) = \delta(t)$$

$$y(t) = \mathcal{L}^{-1}\left[\frac{1}{s^2+1}\right] = \mathbb{I}(t)\sin t$$

$$\underbrace{\quad u(t) \quad} \boxed{\frac{1}{s^2 + 1} \quad} \boxed{y(t) \quad}$$

Poles and Zeros

• Rewrite the transfer function as the ratio of polynomials (m < n)

$$G(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0} = \frac{N(s)}{D(s)}$$

- The roots p_i of D(s) are called the *poles* of the linear system G(s)
- The roots z_i of N(s) are called the zeros of G(s)
- G(s) is often written in zero/pole/gain form

$$G(s) = K \frac{(s - z_1) \dots (s - z_m)}{(s - p_1) \dots (s - p_n)}$$

In MATLAB use ZPK to transform to zero/pole/gain form

Examples

Example 1

$$G(s) = \frac{s+2}{s^3 + 2s^2 + 3s + 2} = \frac{s+2}{(s+1)(s^2 + s + 2)}$$

poles:
$$\{-1, -\frac{1}{2} + j\frac{\sqrt{7}}{2}, -\frac{1}{2} - j\frac{\sqrt{7}}{2}\}$$
, zeros: $\{-2\}$

• Example 2

$$G(s) = \frac{2s + 22}{s^2 + 11s + 10} = \frac{2(s+11)}{(s+10)(s+1)}$$

poles: $\{-10, -1\}$, zeros: $\{-11\}$

MATLAB

- » G=tf([2 22],[1 11 10])
 » zpk(G)
- Zero/pole/gain:
 2 (s+11)
- -----
- (s+10) (s+1)

Partial fraction decomposition

• The partial fraction decomposition of a rational function G(s) = N(s)/D(s) is (assuming $p_i \neq p_j$)³

$$G(s) = \frac{\alpha_1}{s - p_1} + \dots + \frac{\alpha_n}{s - p_n}$$

• α_i is called the *residue*⁴ of G(s) in $p_i \in \mathbb{C}$

$$\alpha_i = \lim_{s \to p_i} (s - p_i) G(s)$$

• The inverse Laplace transform of *G*(*s*) is easily computed by inverting each term

$$\mathcal{L}^{-1}[G(s)] = \alpha_1 e^{p_1 t} + \dots + \alpha_n e^{p_n t}$$

$$\frac{\alpha_{i1}}{(s-p_i)} + \dots + \frac{\alpha_{ik}}{(s-p_i)^k}, \ \alpha_{ij} = \frac{1}{(k-j)!} \lim_{s \to p_i} \frac{d^{(k-j)}}{ds^{(k-j)}} [(s-p_i)^k G(s)]$$

and the inverse Laplace transform is

$$\alpha_{i1}e^{p_it}+\cdots+\alpha_{ik}\frac{t^{k-1}}{(k-1)!}e^{p_it}$$

³For multiple poles p_i with multiplicity k we have the terms

⁴Residues of conjugate poles are conjugate of each other: $p_i = \bar{p}_j \ \Rightarrow \ \alpha_i = \bar{\alpha}_j$

Linear algebra recalls

• The *inverse* of a matrix $A \in \mathbb{R}^{n \times n}$

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

is the matrix A^{-1} such that $A^{-1}A = AA^{-1} = I$

• The inverse A^{-1} can be computed using the adjugate matrix Adj A

$$A^{-1} = \frac{\text{Adj}A}{\det A}$$

• The adjugate matrix is the transpose of the *cofactor matrix C* of *A*

$$Adj A = C^{T}, C_{ij} = (-1)^{i+j} M_{ij}$$

where M_{ij} is the (i,j) *cofactor* of A, that is the determinant of the $(n-1) \times (n-1)$ matrix that results from deleting row i and column j of A

Numerical caveat

- Consider the linear system of n equalities Ax = b in the unknown vector $x \in \mathbb{R}^n$ $(A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n)$
- If $\det A \neq 0$, the unique solution is $x = A^{-1}B$
- However, computing A^{-1} is not a smart thing to do for finding x!
- Numerical example: n=1000; A=rand(n,n)+10*eye(n); b=rand(n,1);

```
MATLAB
» tic; x=inv(A)*b; toc
elapsed_time =
2.2190
```

First *A* is inverted, an operation that costs $O(n^3)$ arithmetic operations

The linear system is solved using Gauss method, an operation that costs $O(n^2)$ arithmetic operations

Poles, eigenvalues, modes

Linear system

$$\begin{cases} \dot{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) + Du(t) \end{cases}$$

$$G(s) = C(sI - A)^{-1}B + D \triangleq \frac{N_G(s)}{D_G(s)}$$

• Use the adjogate matrix to represent the inverse of sI - A

$$C(sI - A)^{-1}B + D = \frac{C \operatorname{Adj}(sI - A)B}{\det(sI - A)} + D$$

• The denominator $D_G(s) = \det(sI - A)$!

The poles of G(s) coincide with the eigenvalues of A

• Well, not always ...

Poles, eigenvalues, modes

- Some eigenvalues of *A* may not be poles of *G*(*s*) in case of *pole/zero cancellations*
- Example:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

 $\det(sI - A) = (s - 1)(s + 1)$

$$G(s) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{s-1} & 0 \\ 0 & \frac{1}{s+1} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{s+1}$$

- The pole s = 1 has no influence on the input/output behavior of the system (but it has influence on the free response $x_1(t) = e^t x_{10}$)
- We'll better understand cancellations when investigating reachability and observability properties

Steady-state solution and DC gain

- Let A asymptotically stable. Natural response vanishes asymptotically
- Assume constant $u(t) \equiv u_r$. What is the asymptotic value $x_r = \lim_{t \to \infty} x(t)$?

Impose
$$0 = \dot{x}_r(t) = Ax_r + Bu_r$$
 and get $x_r = -A^{-1}Bu_r$

The corresponding steady-state output $y_r = Cx_r + Du_r$ is

$$y_r = \underbrace{(-CA^{-1}B + D)}_{DC \text{ Gain}} u_r$$

• Cf. final value theorem:

$$y_r = \lim_{t \to +\infty} y(t) = \lim_{s \to 0} sY(s)$$

$$= \lim_{s \to 0} sG(s)U(s) = \lim_{s \to 0} sG(s)\frac{u_r}{s}$$

$$= G(0)u_r = (-CA^{-1}B + D)u_r$$

• G(0) is called the *DC* gain of the system

DC gain - Example

$$\begin{cases} \dot{x}(t) = \begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & 0 \end{bmatrix} x(t) + \begin{bmatrix} 2 \\ 0 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} \frac{1}{4} & \frac{3}{4} \end{bmatrix} x(t) \end{cases}$$

- DC gain: $-\left[\frac{1}{4}, \frac{3}{4}\right] \left[\frac{-\frac{1}{2}}{\frac{1}{2}}, \frac{-\frac{1}{2}}{0}\right]^{-1} \left[\frac{2}{0}\right] = 3$
- Transfer function: $G(s) = \frac{2s+3}{4s^2+2s+1}$. We have G(0)=3

Output y(t) for different initial conditions and input $u(t) \equiv 1$

MATLAB
<pre>»sys=tf([2 3],[4 2 1]); »dcgain(sys)</pre>
ans =
3

English-Italian Vocabulary

transfer function
Laplace transform
unit step
delay
damped oscillator
impulse response
inverse Laplace transform
partial fraction decomposition
DC gain
steady-state

funzione di trasferimento
trasformata di Laplace
gradino unitario
ritardo
oscillatore smorzato
risposta all'impulso
antitrasformata di Laplace
decomposizione in fratti semplici
guadagno in continua
regime stazionario

Translation is obvious otherwise.