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Lecture: Continuous-time linear systems Dynamical systems

Dynamical models

A dynamical system is an object (or a set of objects) that evolves over time,
possibly under external excitations.

Examples: a car, a robotic arm, a population of animals, an electrical circuit,
a portfolio of investments, etc.

The way the system evolves is called the dynamics of the system.

A dynamical model of a system is a set of mathematical laws explaining in a
compact form and in quantitative way how the system evolves over time,
usually under the effect of external excitations.
Main questions about a dynamical system:

1 Understanding the system (“How X and Y influence each other ?”)
2 Simulation (“What happens if I apply action Z on the system ?”)
3 Design (“How to make the system behave the way I want ?”)
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Lecture: Continuous-time linear systems Dynamical systems

Dynamical models

Qualitative models only useful in non-technical domains
(examples: politics, advertisement, psychology,...)

Experiments provide an answer, but have limitations:
1 maybe too expensive (example: launch a space shuttle)
2 maybe too dangerous (example: a nuclear plant)
3 maybe impossible (the system doesn’t exist yet!)

In contrast, mathematical models allows us to:
1 capture the main phenomena that take place in the system

(example: Newton’s law – a force on a mass produces an acceleration)
2 analyze the system (relations among dynamical variables)
3 simulate the system (=make predictions) about how the system behaves under

certain conditions and excitations (in analytical form, or on a computer)
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Lecture: Continuous-time linear systems Dynamical systems

Dynamical models

Working on a model has almost zero cost compared to real experiments (just
mathematical thinking, paper writing, computer coding)

However, a simulation (or any other inference obtained from the model) is as
better as the dynamical model is closer to the real system

Conflicting objectives:

1 Descriptive enough to capture the main behavior of the system

2 Simple enough for analyzing the system

“Make everything as simple as possible, but not simpler.”
– Albert Einstein

Albert Einstein
(1879-1955)

Making a good model is an art ! (that you are learning ...)
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Lecture: Continuous-time linear systems Differential equations

Ordinary differential equations (ODEs)

First order differential equation (=the simplest dynamical model):
¨

ẋ(t) = ax(t) a ∈ R, ẋ ¬ dx
dt

x(0) = x0 x0 ∈ R

Its unique solution is x(t) = eatx0
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Lecture: Continuous-time linear systems Differential equations

Examples

x(t) = voltage x(t) = velocity

x(t)

C

R

x(t)

M

!

Kirchhoff’s voltage law: Newton’s law:

−RCẋ(t)− x(t) = 0 −βx(t) =Mẋ(t)

x(t) = x(0)e−
t

RC x(t) = x(0)e−
β

M
t
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Lecture: Continuous-time linear systems Differential equations

First order differential equations with inputs

Introduce the forcing signal u(t)
�

ẋ(t) = ax(t) + bu(t) a, b ∈ R, u(t) ∈ R
x(0) = x0 x0 ∈ R

The unique solution x(t) is

x(t) = eatx0
︸︷︷︸

natural response

+

∫ t

0

ea(t−τ)bu(τ)dτ
︸ ︷︷ ︸

forced response

x`(t) = eatx0 effect of the initial condition

xf (t) =
∫ t

0
ea(t−τ)bu(τ)dτ effect of the input signal
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Lecture: Continuous-time linear systems Differential equations

Examples

x(t) = voltage x(t) = velocity

x(t)

C

R

u(t)

x(t)

M

!

u(t)

u(t)− RCẋ(t)− x(t) = 0 −βx(t) + u(t) =Mẋ(t)

ẋ(t) =− 1
RC

x(t)− 1
RC

u(t) ẋ(t) =− β
M

x(t) + 1
M
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Lecture: Continuous-time linear systems Linear systems

Continuous-time linear systems

System of n first-order differential equations with inputs


















ẋ1(t) = a11x1(t) + . . . + a1nxn(t) +b1u(t)
ẋ2(t) = a21x1(t) + . . . + a2nxn(t) +b2u(t)

...
...

...
ẋn(t) = an1x1(t) + . . . + annxn(t) +bnu(t)

x1(0) = x10, . . . xn(0) = xn0

Setting x = [x1 . . . xn]′ ∈ Rn, the equivalent matrix form is the so-called
linear system

ẋ(t) = Ax(t) + Bu(t)

with initial condition

x(0) = x0 = [x10 . . . xn0]
′ ∈ Rn
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Lecture: Continuous-time linear systems Linear systems

Example: RLC circuit

x!(t)

C
u(t)

R

x"(t)

L

(

u(t)− Rx1(t)− L dx1(t)
dt
− x2(t) = 0 Kirchhoff’s voltage law

x1(t) = C dx2(t)
dt

Kirchhoff’s current law

Rewrite as the 2nd order linear system
(

dx1(t)
dt
=−R

L
x1(t)−

1
L
x2(t) +

1
L
u(t)

dx2(t)
dt
= 1

C
x1(t)

or in matrix form

ẋ(t) =





−R
L
− 1

L
1
C

0





︸ ︷︷ ︸

A

x(t) +





1
L

0





︸ ︷︷ ︸

B

u(t)
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Lecture: Continuous-time linear systems Linear systems

Example: Mass-spring-damper system

x!(t), x"(t)

M!

u(t)
K

�

ẋ1(t) = x2(t) velocity = derivative of traveled distance

Mẋ2(t) = u− βx2(t)−Kx1(t) Newton’s law

Rewrite as the 2nd order linear system
(

dx1(t)
dt
= x2(t)

dx2(t)
dt
=− β

M
x2(t)−

K
M

x1(t) +
1
M

u(t)

or in matrix form

ẋ(t) =





0 1

− K
M
− β

M





︸ ︷︷ ︸

A

x(t) +





0
1
M





︸ ︷︷ ︸

B

u(t)
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Lecture: Continuous-time linear systems Linear algebra recalls

Linear algebra recalls

A=









a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . .

...
an1 an2 . . . ann









square matrix of order n, A ∈ Rn×n

I =









1 0 . . . 0
0 1 . . . 0
...

... . . .
...

0 0 . . . 1









identity matrix of order n

Characteristic equation of A:

det(λI− A) = 0

Characteristic polynomial of A:

P(λ) = det(λI− A) = λn + an−1λ
n−1 + . . .+ a1λ+ a0
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Lecture: Continuous-time linear systems Linear algebra recalls

Linear algebra recall

The eigenvalues of A ∈ Rn×n are the roots λ1, . . . , λn of its characteristic
polynomial

det(λiI− A) = 0, i= 1,2, . . . , n

An eigenvector of A is any vector vi ∈ Rn such that

Avi = λivi

for some i= 1,2, . . . , n.

Diagonalization of A:

Λ =







λ1 0 ... 0
0 λ2 ... 0

...
...

...
...

0 0 ... λn






= T−1AT, T =

�

v1|v2| . . . |vn
�

(not all matrices A are diagonalizable, see Jordan normal form)
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Lecture: Continuous-time linear systems Linear algebra recalls

Linear algebra recall

Example:

A=
�

1 3
−5 2

�

, det(λI− A) =

�

�

�

�

λ− 1 −3
5 λ− 2

�

�

�

�

= λ2 − 3λ+ 17

Eigenvalues: λ1 =
3
2
+ j
p

59
2

, λ2 =
3
2
− j
p

59
2

Complex numbers recall:
Imaginary unit: j¬

p
−1

Cartesian form: c= a+ jb, c ∈ C, a, b ∈ R
Real part of c: ℜc= a
Imaginary part of c: Im c= b
Conjugate of c: c̄= a− jb
Polar form: c= ρejθ , ρ ≥ 0,θ ∈ R
Modulus or magnitude: |c|=

p

a2 + b2 = ρ
Angle or phase: ∠c= θ
Complex exponential: ec = ea+jb = eaejb = ea(cos b+ j sin b)
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Lecture: Continuous-time linear systems Linear algebra recalls

Lagrange’s formula

For the continuous-time linear system ẋ = Ax+ Bu with initial condition
x(0) = x0 ∈ Rn, there exists a unique solution x(t)

x(t) = eAtx0
︸︷︷︸

natural response

+

∫ t

0

eA(t−τ)Bu(τ)dτ
︸ ︷︷ ︸

forced response

The exponential matrix is defined as

eAt ¬ I+ At+
A2t2

2
+ . . . +

Antn

n!
+ . . .

MATLAB
» E=expm(A*t)

If A ∈ Rn×n is diagonalizable, A= TΛT−1, then

Λ = T−1AT =







λ1 0 ... 0
0 λ2 ... 0

...
...

...
...

0 0 ... λn






⇒ eAt = T







eλ1 t 0 ... 0
0 eλ2 t ... 0
...

...
...

...
0 0 ... eλnt






T−1
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Lecture: Continuous-time linear systems Linear algebra recalls

Eigenvalues and modes

Let u(t)≡ 0 and assume A diagonalizable

The state trajectory is the natural response

x(t) = eAtx(0) = TeΛt T−1x0
︸ ︷︷ ︸

α

= [v1 . . . vn]





eλ1 t ... 0
...

0 ... eλnt



α

=
�

v1eλ1t . . . vneλnt
�





α1

...
αn



=
n
∑

i=1

αie
λitvi

where vi=eigenvector of A, λi=eigenvalue of A, α= T−1x(0) ∈ Rn

The evolution of the system depends on the eigenvalues λi of A, called modes
of the system (sometimes we also refer to eλit as the i-th mode)

A mode λi is called excited if αi 6= 0
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Lecture: Continuous-time linear systems Linear ordinary differential equations

Differential equations of order n

dy(n)(t)
dtn + an−1

dy(n−1)(t)
dtn−1 + · · ·+ a1ẏ(t) + a0y(t) = 0

By setting x1(t)¬ y(t), x2(t)¬ ẏ(t), . . . , xn(t)¬ yn−1(t), this is equivalent to the
system of n first-order equations



















ẋ1(t) = x2(t)
ẋ2(t) = x3(t)

...
...

ẋn(t) = −a0x1(t) + . . . − an−1xn(t)
x(0) = [y(0) ẏ(0) . . . yn−1(0)]′

Example:
ÿ(t) + 2ẏ(t) + 5y(t) = 0

x1(t) = y(t)
x2(t) = ẏ(t) ⇒







ẋ1(t) = x2(t)
ẋ2(t) = −5x1(t)− 2x2(t)
x(0) = [y(0) ẏ(0)]′
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Lecture: Continuous-time linear systems Linear ordinary differential equations

nth-order linear ODE with input

dy(n)(t)
dtn + an−1

dy(n−1)(t)

dtn−1 + · · ·+ a1ẏ(t) + a0y(t)

= bn−1
du(n−1)(t)

dt
+ bn−2

du(n−2)(t)
dt

+ · · ·+ b1u̇(t) + b0u(t)

One can verify by inspection that the given nth-order ODE is equivalent to the
following 1st-order linear system of ODEs:



















ẋ1(t) = x2(t)
ẋ2(t) = x3(t)

...
...

ẋn(t) = −a0x1(t) + . . . − an−1xn(t) + u(t)
y(t) = b0x1(t) + . . . + bn−1xn(t)

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) +Du(t)

A=











0 1 0 ... 0
0 0 1 ... 0
...

...
...

...
0 0 0 ... 1
−a0 −a1 −a2 ... −an−1











, B=









0
0
...
0
1









C = [ b0 b1 b2 ... bn−1 ] , D= 0

The operation of transforming a nth-order ODE into a linear system of 1st-order
ODEs is called state-space realization. There are infinitely many realizations.
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Lecture: Continuous-time linear systems Linear ordinary differential equations

Examples of state-space realizations

Example 1

ÿ(t)− 2ẏ(t) + y(t) = u(t) + 2u̇(t)

⇒







d
dt

x(t) =
�

0 1
−1 2

�

x(t) +
�

0
1

�

u(t)

y(t) =
�

1 2
�

x(t)

Double check:

ẏ =
�

1 2
�

ẋ =
�

1 2
�

��

0 1
−1 2

�

x(t) +
�

0
1

�

u(t)
�

=
�

−2 5
�

x(t) + 2u(t)

ÿ =
�

−2 5
�

ẋ+ 2u̇=
�

−5 8
�

x(t) + 5u(t) + 2u̇(t)

ÿ(t)− 2ẏ(t) + y(t) =
�

−5 8
�

x(t) + 5u(t) + 2u̇(t)− 2
��

−2 5
�

x(t) + 2u(t)
�

+
�

1 2
�

x(t)

=
�

−5+ 4+ 1 8− 10+ 2
�

x(t) + (5− 4)u(t) + 2u̇(t)

= u(t) + 2u̇(t) ok!
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Lecture: Continuous-time linear systems Linear ordinary differential equations

Alternative state-space realization method

In the following special case (=no input derivatives)

dy(n)(t)
dtn + an−1

dy(n−1)(t)

dtn−1 + · · ·+ a1ẏ(t) + a0y(t) = b0u(t)

we can define the following states

x1 = y → ẋ1 = x2
x2 = ẏ → ẋ2 = x3

... =
...

xn = dn−1y
dtn−1 → ẋn =

dny
dtn =−an−1

dy(n−1)(t)
dtn−1 − · · · − a1ẏ(t)− a0y(t) + b0u(t)

and therefore set

A=











0 1 0 ... 0
0 0 1 ... 0
...

...
...

...
0 0 0 ... 1
−a0 −a1 −a2 ... −an−1











, B=











0
0
...
0
b0











C = [ 1 0 0 ... 0 ] , D= 0
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Lecture: Continuous-time linear systems Linear ordinary differential equations

Other state-space realization methods

The following state-space realization is called controllable canonical form 1

A=











0 1 0 ... 0
0 0 1 ... 0
...

...
...

...
0 0 0 ... 1
−a0 −a1 −a2 ... −an−1











, B=









0
0
...
0
1









C = [ b0 b1 ... bn−1 ] , D= 0

The following state-space realization is called observable canonical form 2

A=











−an−1 1 0 0 ... 0
−an−2 0 1 ... 0 0

...
...

...
...

...
...

−a1 0 0 ... 0 1
−a0 0 0 ... 0 0











, B=













bn−1
bn−2

...
b1
b0













C = [ 1 0 0 ... 0 0 ] , D= 0

1We will see later in the course that the pair (A, B) is completely reachable.
2We will see later in the course that the pair (A, B) is completely observable.
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Lecture: Continuous-time linear systems Linear systems

State vector

Generally speaking, the state of a dynamical system is a set of variables that
completely summarizes the past history of the system, and allows us to
predict its future motion

For the linear system
�

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) +Du(t)

given the initial state x(0) and the input signal u(t), ∀t ∈ [0, T], we already
know how to compute the state x(t) and the output y(t) of the system,
∀t ∈ [0, T].
If we know the initial state x(0), we can neglect the past history u(−t), x(−t),
∀t≥ 0

The dimension n of the state x(t) ∈ Rn is called the order of the system
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Lecture: Continuous-time linear systems Linear systems

Some classes of dynamical systems

Causality: a dynamical system is causal if y(t) does not depend on future
inputs u(τ) ∀τ > t (strictly causal if ∀τ≥ t)

A linear system is always causal, and strictly causal iff D= 0

Linear time-varying (LTV) systems:
�

ẋ(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t) +D(t)u(t)

When A, B, C, D are constant, the system is said linear time-invariant (LTI)

Multivariable systems: more generally, a system can have m inputs
(u(t) ∈ Rm) and p outputs (y(t) ∈ Rp). For linear systems, we still have

�

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) +Du(t)

with
A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m

Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 2010-2011 23 / 42



Lecture: Continuous-time linear systems Linear systems

Some classes of dynamical systems

Nonlinear systems
�

ẋ(t) = f(x(t), u(t))
y(t) = g(x(t), u(t))

where f : Rn+m→ Rn, g : Rn+m→ Rp are (rather arbitrary) nonlinear
functions

Time-varying nonlinear systems are very general classes of dynamical systems
�

ẋ(t) = f(t, x(t), u(t))
y(t) = g(t, x(t), u(t))
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Lecture: Continuous-time linear systems Stability

Equilibrium

Consider the continuous-time nonlinear system
�

ẋ(t) = f(x(t), u(t))
y(t) = g(x(t), u(t))

Definition

A state xr ∈ Rn and an input ur ∈ Rm are an equilibrium pair if for
initial condition x(0) = xr and constant input u(t)≡ ur the state
remains constant: x(t)≡ xr, ∀t≥ 0

Equivalent definition: (xr, ur) is an equilibrium pair if f(xr, ur) = 0

xr is called equilibrium state, ur equilibrium input

The definition generalizes to time-varying nonlinear systems
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Lecture: Continuous-time linear systems Stability

Stability

Consider the nonlinear system
�

ẋ(t) = f(x(t), ur)
y(t) = g(x(t), ur)

and let xr an equilibrium state, f(xr, ur) = 0

Definition

The equilibrium state xr is stable if for each initial conditions x(0) “close
enough” to xr, the corresponding trajectory x(t) remains near xr for all t≥ 0 a

aAnalytic definition: ∀ε > 0 ∃δ > 0 : ‖x(0)− xr‖< δ⇒ ‖x(t)− xr‖< ε, ∀t≥ 0

The equilibrium point xris called asymptotically stable if it is stable and
x(t)→ xr for t→∞
Otherwise, the equilibrium point xr is called unstable

Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 2010-2011 26 / 42



Lecture: Continuous-time linear systems Stability

Stability of equilibria - Examples
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Lecture: Continuous-time linear systems Stability of continuous-time linear systems

Stability of first-order linear systems

Consider the first-order linear system

ẋ(t) = ax(t) + bu(t)

xr = 0, ur = 0 is an equilibrium pair
For u(t)≡ 0, ∀t≥ 0, the solution is

x(t) = eatx0

The origin xr = 0 is

unstable if a> 0

stable if a≤ 0

asymptotically stable if a< 0
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Lecture: Continuous-time linear systems Stability of continuous-time linear systems

Stability of continuous-time linear systems

Since the natural response of ẋ = Ax+ Bu is x(t) = eAtx0, the stability properties
depend only on A. We can therefore talk about system stability of a linear system
(A, B, C, D)

Theorem:

Let λ1, . . ., λm, m≤ n be the eigenvalues of A ∈ Rn×n. The system ẋ = Ax+ Bu is

asymptotically stable iff ℜλi < 0, ∀i= 1, . . . , m

(marginally) stable if ℜλi ≤ 0, ∀i= 1, . . . , m, and the eigenvalues with null
real part have equal algebraic and geometric multiplicity a

unstable if ∃ i such that ℜλi > 0

aAlgebraic multiplicity of λi = number of coincident roots λi of det(λI− A). Geometric
multiplicity of λi = number of linearly independent eigenvectors vi, Avi = λivi

The stability properties of a linear system only depend on the
real part of the eigenvalues of matrix A
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Lecture: Continuous-time linear systems Stability of continuous-time linear systems

Stability of continuous-time linear systems

Proof:

The natural response is x(t) = eAtx0 (eAt ¬ I+ At+ A2t2

2
+ . . . + Antn

n!
+ . . . )

If matrix A is diagonalizable3 , A= TΛT−1,

Λ =









λ1 0 ... 0
0 λ2 ... 0

...
...

...
...

0 0 ... λn









⇒ eAt = T









eλ1 t 0 ... 0
0 eλ2 t ... 0
...

...
...

...
0 0 ... eλnt









T−1

Take any eigenvalue λ= a+ jb:

|eλt|= eat|ejbt|= eat

A is always diagonalizable if algebraic multiplicity = geometric multiplicity

�

3If A is not diagonalizable, it can be transformed to Jordan form. In this case the natural
response x(t) contains modes tjeλt, j= 0,1, . . . , alg. multiplicity - geom. multiplicity
Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 2010-2011 30 / 42



Lecture: Continuous-time linear systems Stability of continuous-time linear systems

Example 1







ẋ(t) =
�

0 −1
2 −3

�

x(t)

x(0) =
� x10

x20

�

⇒ eigenvalues of A: {−1,−2}

solution:
�

x1(t) = x10(2e−t − e−2t) + x20(−e−t + e−2t)
x2(t) = x10(2e−t − 2e−2t) + x20(−e−t + 2e−2t)
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asymptotically stable
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Lecture: Continuous-time linear systems Stability of continuous-time linear systems

Example 2







ẋ(t) =
�

0 −1
1 0

�

x(t)

x(0) =
� x10

x20

�

⇒ eigenvalues of A: {+j,−j}

solution:
�

x1(t) = x10 cos t− x20 sin t
x2(t) = x10 sin t+ x20 cos t
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marginally stable
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Lecture: Continuous-time linear systems Stability of continuous-time linear systems

Example 3







ẋ(t) =
�

0 1
0 0

�

x(t)

x(0) =
� x10

x20

�

⇒ eigenvalues of A: {0, 0}

solution:
�

x1(t) = x10 + x20t
x2(t) = x20

Note: A is not diagonalizable !
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Lecture: Continuous-time linear systems Stability of continuous-time linear systems

Example 4







ẋ(t) =
�

1 0
1 −1

�

x(t)

x(0) =
� x10

x20

�

⇒ eigenvalues of A: {−1, 1}

solution:
¨

x1(t) = x10et

x2(t) =
1
2
x10et + (x20 −

1
2
x10)e−t
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Lecture: Continuous-time linear systems Linearization

Linearization of nonlinear systems

Consider the nonlinear system
�

ẋ(t) = f(x(t), u(t))
y(t) = g(x(t), u(t))

Let (xr, ur) be an equilibrium, f(xr, ur) = 0

Objective: investigate the dynamic behaviour of the system for small
perturbations ∆u(t)¬ u(t)− ur and ∆x(0)¬ x(0)− xr.

The evolution of ∆x(t)¬ x(t)− xr is given by

∆̇x(t) = ẋ(t)− ẋr = f(x(t), u(t))
= f(∆x(t) + xr,∆u(t) + ur)

≈
∂ f

∂ x
(xr, ur)

︸ ︷︷ ︸

A

∆x(t) +
∂ f

∂ u
(xr, ur)

︸ ︷︷ ︸

B

∆u(t)
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Lecture: Continuous-time linear systems Linearization

Linearization of nonlinear systems

Similarly

∆y(t)≈
∂ g

∂ x
(xr, ur)

︸ ︷︷ ︸

C

∆x(t) +
∂ g

∂ u
(xr, ur)

︸ ︷︷ ︸

D

∆u(t)

where ∆y(t)¬ y(t)− g(xr, ur) is the perturbation of the output from its
equilibrium

The perturbations ∆x(t), ∆y(t), and ∆u(t) are (approximately) ruled by the
linearized system

�

∆̇x(t) = A∆x(t) + B∆u(t)
∆y(t) = C∆x(t) +D∆u(t)
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Lecture: Continuous-time linear systems Linearization

Lyapunov’s indirect method

Consider the nonlinear system ẋ = f(x), with f differentiable, and assume
x = 0 is equilibrium point (f(0) = 0)

Consider the linearized system ẋ = Ax, with A= ∂ f
∂ x

�

�

�

x=0
If ẋ = Ax is asymptotically stable, then the origin x = 0 is also an
asymptotically stable equilibrium for the nonlinear system (locally)
If ẋ = Ax is unstable, then the origin x = 0 is an unstable equilibrium for the
nonlinear system
If A is marginally stable, nothing can be said about the stability of the origin
x = 0 for the nonlinear system

Aleksandr Mikhailovich Lyapunov

(1857-1918)
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Lecture: Continuous-time linear systems Linearization

Example: Pendulum

y(t)

l

m

u(t)=mg

h

y(t) = angular displacement
ẏ(t) = angular velocity
ÿ(t) = angular acceleration
u(t) = mg gravity force
hẏ(t) = viscous friction torque
l = pendulum length
ml2 = pendulum rotational inertia

mathematical model

ml2ÿ(t) =−lmg sin y(t)− hẏ(t)

in state-space form (x1 = y, x2 = ẏ)
¨

ẋ1 = x2

ẋ2 = − g
l
sin x1 −Hx2, H ¬ h

ml2
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Lecture: Continuous-time linear systems Linearization

Example: Pendulum

Look for equilibrium states:
�

x2r
− g

l
sin x1r −Hx2r

�

=
�

0
0

�

⇒
�

x2r = 0
x1r =±kπ, k= 0, 1, . . .

l

m

u(t)=mg

h

x2r = 0, x1r = 0,±2π, . . .

l

m

u(t)=mg

h

x2r = 0, x1r = 0,±π,±3π, . . .
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Lecture: Continuous-time linear systems Linearization

Example: Pendulum

Linearize the system around x1r = 0, x2r = 0

∆ẋ(t) =

�

0 1
− g

l
−H

�

︸ ︷︷ ︸

A

∆x(t)

find the eigenvalues of A

det(λI− A) = λ2 +Hλ+
g

l
= 0 ⇒ λ1,2 =

1

2

�

−H±
Ç

H2 − 4
g

l

�

ℜλ1,2 < 0⇒ ẋ = Ax
asymptotically stable

by Lyapunov’s indirect method
xr =

� 0
0

�

is also an asymptotically
stable equilibrium for the
pendulum
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Lecture: Continuous-time linear systems Linearization

Example: Pendulum

Linearize the system around x1r = π, x2r = 0

∆ẋ(t) =

�

0 1
g
l
−H

�

︸ ︷︷ ︸

A

∆x(t)

find the eigenvalues of A

det(λI− A) = λ2 +Hλ−
g

l
= 0 ⇒ λ1,2 =

1

2

�

−H±
Ç

H2 + 4
g

l

�

λ1 < 0, λ2 > 0⇒ ẋ = Ax unstable

by Lyapunov’s indirect method
xr =

� 0
0

�

is also an unstable
equilibrium for the pendulum
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t
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Lecture: Continuous-time linear systems Linearization

English-Italian Vocabulary

dynamics dinamica
natural response risposta libera
eigenvalue autovalore
eigenvector autovettore
modulus or magnitude modulo
angle or phase fase
nonlinear systems sistemi non lineari
controllable canonical form forma canonica di raggiungibilità
observable canonical form forma canonica di osservabilità

Translation is obvious otherwise.
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