Automatic Control 1

Continuous-time linear systems

Prof. Alberto Bemporad

University of Trento

Academic year 2010-2011

Dynamical models

- A dynamical system is an object (or a set of objects) that evolves over time, possibly under external excitations.

Examples: a car, a robotic arm, a population of animals, an electrical circuit, a portfolio of investments, etc.

- The way the system evolves is called the dynamics of the system.
- A dynamical model of a system is a set of mathematical laws explaining in a compact form and in quantitative way how the system evolves over time, usually under the effect of external excitations.
- Main questions about a dynamical system:
(1) Understanding the system ("How X and Y influence each other ?")
(2) Simulation ("What happens if I apply action Z on the system ?")
(3) Design ("How to make the system behave the way I want ?")

Dynamical models

- Qualitative models only useful in non-technical domains (examples: politics, advertisement, psychology,...)
- Experiments provide an answer, but have limitations:
(1) maybe too expensive (example: launch a space shuttle)
(2) maybe too dangerous (example: a nuclear plant)
(3) maybe impossible (the system doesn't exist yet!)
- In contrast, mathematical models allows us to:
(1) capture the main phenomena that take place in the system (example: Newton's law - a force on a mass produces an acceleration)
(2) analyze the system (relations among dynamical variables)
(3) simulate the system (=make predictions) about how the system behaves under certain conditions and excitations (in analytical form, or on a computer)

Dynamical models

- Working on a model has almost zero cost compared to real experiments (just mathematical thinking, paper writing, computer coding)
- However, a simulation (or any other inference obtained from the model) is as better as the dynamical model is closer to the real system
- Conflicting objectives:
(1) Descriptive enough to capture the main behavior of the system
(2) Simple enough for analyzing the system
"Make everything as simple as possible, but not simpler." - Albert Einstein

Albert Einstein (1879-1955)

Making a good model is an art! (that you are learning ...)

Ordinary differential equations (ODEs)

- First order differential equation (=the simplest dynamical model):

$$
\left\{\begin{array}{rlrl}
\dot{x}(t) & =a x(t) & & a \in \mathbb{R}, \quad \dot{x} \triangleq \frac{d x}{d t} \\
x(0) & =x_{0} & x_{0} \in \mathbb{R}
\end{array}\right.
$$

- Its unique solution is $x(t)=e^{a t} x_{0}$

Examples

$x(t)=$ voltage

Kirchhoff's voltage law:
$-R C \dot{x}(t)-x(t)=0$
$x(t)=x(0) e^{-\frac{t}{R C}}$
$x(t)=$ velocity

Newton's law:
$-\beta x(t)=M \dot{x}(t)$
$x(t)=x(0) e^{-\frac{\beta}{M} t}$

First order differential equations with inputs

- Introduce the forcing signal $u(t)$

$$
\left\{\begin{aligned}
\dot{x}(t) & =a x(t)+b u(t) & & a, b \in \mathbb{R}, u(t) \in \mathbb{R} \\
x(0) & =x_{0} & & x_{0} \in \mathbb{R}
\end{aligned}\right.
$$

- The unique solution $x(t)$ is

$$
\begin{array}{cl}
x(t)=\underbrace{e^{a t} x_{0}}_{\text {natural response }}+\underbrace{\int_{0}^{t} e^{a(t-\tau)} b u(\tau) d \tau}_{\text {forced response }} \\
x_{\ell}(t)=e^{a t} x_{0} & \text { effect of the initial condition } \\
x_{f}(t)=\int_{0}^{t} e^{a(t-\tau)} b u(\tau) d \tau & \text { effect of the input signal }
\end{array}
$$

Examples

$x(t)=$ voltage

$$
\begin{aligned}
& u(t)-R C \dot{x}(t)-x(t)=0 \\
& \dot{x}(t)=-\frac{1}{R C} x(t)-\frac{1}{R C} u(t)
\end{aligned}
$$

$x(t)=$ velocity

$-\beta x(t)+u(t)=M \dot{x}(t)$
$\dot{x}(t)=-\frac{\beta}{M} x(t)+\frac{1}{M}$

Continuous-time linear systems

- System of n first-order differential equations with inputs

$$
\left.\left\{\begin{array}{rll}
\dot{x}_{1}(t) & =a_{11} x_{1}(t)+\ldots+a_{1 n} x_{n}(t) & +b_{1} u(t) \\
\dot{x}_{2}(t) & =a_{21} x_{1}(t)+\ldots+a_{2 n} x_{n}(t) & +b_{2} u(t) \\
\vdots & & \vdots \\
\dot{x}_{n}(t) & = & a_{n 1} x_{1}(t)+\ldots+a_{n n} x_{n}(t)
\end{array}\right)+b_{n} u(t)\right\}
$$

- Setting $x=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{\prime} \in \mathbb{R}^{n}$, the equivalent matrix form is the so-called linear system

$$
\dot{x}(t)=A x(t)+B u(t)
$$

with initial condition

$$
x(0)=x_{0}=\left[\begin{array}{lll}
x_{10} & \ldots & x_{n 0}
\end{array}\right]^{\prime} \in \mathbb{R}^{n}
$$

Example: RLC circuit

Rewrite as the $2^{\text {nd }}$ order linear system

$$
\left\{\begin{array}{l}
\frac{d x_{1}(t)}{d t}=-\frac{R}{L} x_{1}(t)-\frac{1}{L} x_{2}(t)+\frac{1}{L} u(t) \\
\frac{d x_{2}(t)}{d t}=\frac{1}{C} x_{1}(t)
\end{array}\right.
$$

or in matrix form

$$
\dot{x}(t)=\underbrace{\left[\begin{array}{cc}
-\frac{R}{L} & -\frac{1}{L} \\
\frac{1}{C} & 0
\end{array}\right]}_{A} x(t)+\underbrace{\left[\begin{array}{c}
\frac{1}{L} \\
0
\end{array}\right]}_{B} u(t)
$$

Example: Mass-spring-damper system

$$
\begin{cases}\dot{x}_{1}(t)=x_{2}(t) & \text { velocity }=\text { derivative of traveled distance } \\ M \dot{x}_{2}(t)=u-\beta x_{2}(t)-K x_{1}(t) & \text { Newton's law }\end{cases}
$$

Rewrite as the $2^{\text {nd }}$ order linear system

$$
\left\{\begin{aligned}
\frac{d x_{1}(t)}{d t} & =x_{2}(t) \\
\frac{d x_{2}(t)}{d t} & =-\frac{\beta}{M} x_{2}(t)-\frac{K}{M} x_{1}(t)+\frac{1}{M} u(t)
\end{aligned}\right.
$$

or in matrix form

$$
\dot{x}(t)=\underbrace{\left[\begin{array}{cc}
0 & 1 \\
-\frac{K}{M} & -\frac{\beta}{M}
\end{array}\right]}_{A} x(t)+\underbrace{\left[\begin{array}{c}
0 \\
\frac{1}{M}
\end{array}\right]}_{B} u(t)
$$

Linear algebra recalls

$$
\begin{array}{ll}
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ldots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right] & \text { square matrix of order } n, A \in \mathbb{R}^{n \times n} \\
I=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right] & \text { identity matrix of order } n
\end{array}
$$

- Characteristic equation of A :

$$
\operatorname{det}(\lambda I-A)=0
$$

- Characteristic polynomial of A :

$$
P(\lambda)=\operatorname{det}(\lambda I-A)=\lambda^{n}+a_{n-1} \lambda^{n-1}+\ldots+a_{1} \lambda+a_{0}
$$

Linear algebra recall

- The eigenvalues of $A \in \mathbb{R}^{n \times n}$ are the roots $\lambda_{1}, \ldots, \lambda_{n}$ of its characteristic polynomial

$$
\operatorname{det}\left(\lambda_{i} I-A\right)=0, \quad i=1,2, \ldots, n
$$

- An eigenvector of A is any vector $v_{i} \in \mathbb{R}^{n}$ such that

$$
A v_{i}=\lambda_{i} v_{i}
$$

for some $i=1,2, \ldots, n$.

- Diagonalization of A :

$$
\Lambda=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]=T^{-1} A T, T=\left[v_{1}\left|v_{2}\right| \ldots \mid v_{n}\right]
$$

(not all matrices A are diagonalizable, see Jordan normal form)

Linear algebra recall

- Example:

$$
A=\left[\begin{array}{cc}
1 & 3 \\
-5 & 2
\end{array}\right], \quad \operatorname{det}(\lambda I-A)=\left|\begin{array}{cc}
\lambda-1 & -3 \\
5 & \lambda-2
\end{array}\right|=\lambda^{2}-3 \lambda+17
$$

Eigenvalues: $\lambda_{1}=\frac{3}{2}+j \frac{\sqrt{59}}{2}, \lambda_{2}=\frac{3}{2}-j \frac{\sqrt{59}}{2}$

- Complex numbers recall:
- Imaginary unit: $j \triangleq \sqrt{-1}$
- Cartesian form: $c=a+j b, \quad c \in \mathbb{C}, a, b \in \mathbb{R}$
- Real part of $c: ~ \Re c=a$
- Imaginary part of $c: \operatorname{Im} c=b$
- Conjugate of $c: \bar{c}=a-j b$
- Polar form: $c=\rho e^{j \theta}, \quad \rho \geq 0, \theta \in \mathbb{R}$
- Modulus or magnitude: $|c|=\sqrt{a^{2}+b^{2}}=\rho$
- Angle or phase: $\angle c=\theta$
- Complex exponential: $e^{c}=e^{a+j b}=e^{a} e^{j b}=e^{a}(\cos b+j \sin b)$

Lagrange's formula

- For the continuous-time linear system $\dot{x}=A x+B u$ with initial condition $x(0)=x_{0} \in \mathbb{R}^{n}$, there exists a unique solution $x(t)$

$$
x(t)=\underbrace{e^{A t} x_{0}}_{\text {natural response }}+\underbrace{\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau}_{\text {forced response }}
$$

- The exponential matrix is defined as

$$
e^{A t} \triangleq I+A t+\frac{A^{2} t^{2}}{2}+\ldots+\frac{A^{n} t^{n}}{n!}+\ldots
$$

MATLAB
» $\mathrm{E}=\operatorname{expm}(\mathrm{A} * \mathrm{t})$

- If $A \in \mathbb{R}^{n \times n}$ is diagonalizable, $A=T \Lambda T^{-1}$, then

$$
\Lambda=T^{-1} A T=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right] \Rightarrow e^{A t}=T\left[\begin{array}{cccc}
e^{\lambda_{1} t} & 0 & \cdots & 0 \\
0 & e^{\lambda_{2} t} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & e^{\lambda_{n} t}
\end{array}\right] T^{-1}
$$

Eigenvalues and modes

- Let $u(t) \equiv 0$ and assume A diagonalizable
- The state trajectory is the natural response

$$
\begin{aligned}
x(t) & =e^{A t} x(0)=T e^{\Lambda t} \underbrace{T^{-1} x_{0}}_{\alpha}=\left[v_{1} \ldots v_{n}\right]\left[\begin{array}{ccc}
e^{\lambda_{1} t} & \ldots & 0 \\
& \ddots & \\
0 & \ldots & e^{\lambda_{n} t}
\end{array}\right] \alpha \\
& =\left[\begin{array}{lll}
v_{1} e^{\lambda_{1} t} & \ldots & v_{n} e^{\lambda_{n} t}
\end{array}\right]\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right]=\sum_{i=1}^{n} \alpha_{i} e^{\lambda_{i} t} v_{i}
\end{aligned}
$$

where $v_{i}=$ eigenvector of $A, \lambda_{i}=$ eigenvalue of $A, \alpha=T^{-1} x(0) \in \mathbb{R}^{n}$

- The evolution of the system depends on the eigenvalues λ_{i} of A, called modes of the system (sometimes we also refer to $e^{\lambda_{i} t}$ as the i-th mode)
- A mode λ_{i} is called excited if $\alpha_{i} \neq 0$

Differential equations of order n

$$
\frac{d y^{(n)}(t)}{d t^{n}}+a_{n-1} \frac{d y^{(n-1)}(t)}{d t^{n-1}}+\cdots+a_{1} \dot{y}(t)+a_{0} y(t)=0
$$

By setting $x_{1}(t) \triangleq y(t), x_{2}(t) \triangleq \dot{y}(t), \ldots, x_{n}(t) \triangleq y^{n-1}(t)$, this is equivalent to the system of n first-order equations

$$
\left\{\begin{aligned}
\dot{x}_{1}(t) & =x_{2}(t) \\
\dot{x}_{2}(t)= & x_{3}(t) \\
\vdots & \vdots \\
\dot{x}_{n}(t) & =-a_{0} x_{1}(t)+\ldots-a_{n-1} x_{n}(t) \\
x(0) & =\left[y(0) \dot{y}(0) \ldots y^{n-1}(0)\right]^{\prime}
\end{aligned}\right.
$$

Example:

$$
\begin{aligned}
& \ddot{y}(t)+2 \dot{y}(t)+5 y(t)=0 \\
& x_{1}(t)=y(t)=\left\{\begin{array} { r l }
{ \dot { x } _ { 1 } (t) } & { = x _ { 2 } (t) } \\
{ x _ { 2 } (t) } & { = \dot { y } (t) }
\end{array} \Rightarrow \left\{\begin{array}{rl}
x_{2}(t) & =-5 x_{1}(t)-2 x_{2}(t) \\
x(0) & =[y(0) \dot{y}(0)]^{\prime}
\end{array}\right.\right.
\end{aligned}
$$

$n^{\text {th }}$-order linear ODE with input

$$
\begin{aligned}
& \frac{d y^{(n)}(t)}{d t^{n}}+a_{n-1} \frac{d y^{(n-1)}(t)}{d t^{n-1}}+\cdots+a_{1} \dot{y}(t)+a_{0} y(t) \\
& =b_{n-1} \frac{d u^{(n-1)}(t)}{d t}+b_{n-2} \frac{d u^{(n-2)}(t)}{d t}+\cdots+b_{1} \dot{u}(t)+b_{0} u(t)
\end{aligned}
$$

One can verify by inspection that the given $n^{\text {th }}$-order ODE is equivalent to the following $1^{\text {st }}$-order linear system of ODEs:

$$
\begin{aligned}
& \left\{\begin{aligned}
& \dot{x}_{1}(t)= \\
& x_{2}(t) \\
& \dot{x}_{2}(t)=x_{3}(t) \\
& \vdots \vdots \\
& \dot{x}_{n}(t)=-a_{0} x_{1}(t)+\ldots-a_{n-1} x_{n}(t)+u(t) \\
& y(t)=b_{0} x_{1}(t)+\ldots+b_{n-1} x_{n}(t)
\end{aligned}\right. \\
& \square A=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & 0 & \cdots & i \\
-a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n-1}
\end{array}\right], B=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right] \\
& C=\left[\begin{array}{llll}
b_{0} & b_{1} & b_{2} & \ldots
\end{array} b_{n-1}\right], D=0
\end{aligned}
$$

The operation of transforming a $n^{\text {th }}$-order ODE into a linear system of $1^{\text {st }}$-order ODEs is called state-space realization. There are infinitely many realizations.

Examples of state-space realizations

- Example 1

$$
\begin{gathered}
\ddot{y}(t)-2 \dot{y}(t)+y(t)=u(t)+2 \dot{u}(t) \\
\Rightarrow\left\{\begin{aligned}
& \frac{d}{d t} x(t)=\left[\begin{array}{cr}
0 & 1 \\
-1 & 2
\end{array}\right] x(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
1 & 2
\end{array}\right] x(t)
\end{aligned}\right.
\end{gathered}
$$

Double check:

$$
\begin{aligned}
& \dot{y}=\left[\begin{array}{ll}
1 & 2
\end{array}\right] \dot{x}=\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left(\left[\begin{array}{cc}
0 & 1 \\
-1 & 2
\end{array}\right] x(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t)\right)=\left[\begin{array}{ll}
-2 & 5
\end{array}\right] x(t)+2 u(t) \\
& \ddot{y}=\left[\begin{array}{ll}
-2 & 5
\end{array}\right] \dot{x}+2 \dot{u}=\left[\begin{array}{ll}
-5 & 8
\end{array}\right] x(t)+5 u(t)+2 \dot{u}(t) \\
& \ddot{y}(t)-2 \dot{y}(t)+y(t)=\left[\begin{array}{ll}
-5 & 8
\end{array}\right] x(t)+5 u(t)+2 \dot{u}(t)-2\left(\left[\begin{array}{ll}
-2 & 5
\end{array}\right] x(t)+2 u(t)\right) \\
& +\left[\begin{array}{ll}
1 & 2
\end{array}\right] x(t) \\
& \left.=\begin{array}{ll}
-5+4+1 & 8-10+2
\end{array}\right] x(t)+(5-4) u(t)+2 \dot{u}(t) \\
& =u(t)+2 \dot{u}(t) \quad o k!
\end{aligned}
$$

Alternative state-space realization method

- In the following special case (=no input derivatives)

$$
\frac{d y^{(n)}(t)}{d t^{n}}+a_{n-1} \frac{d y^{(n-1)}(t)}{d t^{n-1}}+\cdots+a_{1} \dot{y}(t)+a_{0} y(t)=b_{0} u(t)
$$

we can define the following states

$$
\begin{array}{rlll}
x_{1} & =y & \rightarrow & \dot{x}_{1}=x_{2} \\
x_{2} & =\dot{y} & \rightarrow & \dot{x}_{2}=x_{3} \\
\vdots & =\vdots & & \\
x_{n} & =\frac{d^{n-1} y}{d t^{n-1}} & \rightarrow & \dot{x}_{n}=\frac{d^{n} y}{d t^{n}}=-a_{n-1} \frac{d y^{(n-1)}(t)}{d t^{n-1}}-\cdots-a_{1} \dot{y}(t)-a_{0} y(t)+b_{0} u(t)
\end{array}
$$

and therefore set

$$
\begin{aligned}
& A=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \vdots \\
-a_{0} & -a_{1} & -a_{2} & \ldots & -a_{n-1}
\end{array}\right], B=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
b_{0}
\end{array}\right] \\
& C=\left[\begin{array}{llll}
1 & 0 & 0 & \ldots
\end{array}\right], D=0
\end{aligned}
$$

Other state-space realization methods

- The following state-space realization is called controllable canonical form ${ }^{1}$

$$
\left.\begin{array}{l}
A=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \\
0 & 0 & 0 & \cdots \\
-a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n-1}
\end{array}\right], B=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right] \\
C=\left[\begin{array}{lll}
b_{0} & b_{1} & \cdots
\end{array} b_{n-1}\right.
\end{array}\right], D=0,
$$

- The following state-space realization is called observable canonical form ${ }^{2}$

$$
\begin{aligned}
& A=\left[\begin{array}{cccccc}
-a_{n-1} & 1 & 0 & 0 & \ldots & 0 \\
-a_{n-2} & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
-a_{1} & 0 & 0 & \ldots & 0 & 1 \\
-a_{0} & 0 & 0 & \ldots & 0 & 0
\end{array}\right], B=\left[\begin{array}{c}
b_{n-1} \\
b_{n-2} \\
\vdots \\
b_{1} \\
b_{0}
\end{array}\right] \\
& C=\left[\begin{array}{lllll}
1 & 0 & \ldots & 0 & 0
\end{array}\right], D=0
\end{aligned}
$$

[^0]
State vector

- Generally speaking, the state of a dynamical system is a set of variables that completely summarizes the past history of the system, and allows us to predict its future motion
- For the linear system

$$
\left\{\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}\right.
$$

given the initial state $x(0)$ and the input signal $u(t), \forall t \in[0, T]$, we already know how to compute the state $x(t)$ and the output $y(t)$ of the system, $\forall t \in[0, T]$.

- If we know the initial state $x(0)$, we can neglect the past history $u(-t), x(-t)$, $\forall t \geq 0$
- The dimension n of the state $x(t) \in \mathbb{R}^{n}$ is called the order of the system

Some classes of dynamical systems

- Causality: a dynamical system is causal if $y(t)$ does not depend on future inputs $u(\tau) \forall \tau>t$ (strictly causal if $\forall \tau \geq t$)
- A linear system is always causal, and strictly causal iff $D=0$
- Linear time-varying (LTV) systems:

$$
\left\{\begin{array}{l}
\dot{x}(t)=A(t) x(t)+B(t) u(t) \\
y(t)=C(t) x(t)+D(t) u(t)
\end{array}\right.
$$

- When A, B, C, D are constant, the system is said linear time-invariant (LTI)
- Multivariable systems: more generally, a system can have m inputs $\left(u(t) \in \mathbb{R}^{m}\right)$ and p outputs $\left(y(t) \in \mathbb{R}^{p}\right)$. For linear systems, we still have

$$
\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
y(t)=C x(t)+D u(t)
\end{array}\right.
$$

with

$$
A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m}
$$

Some classes of dynamical systems

- Nonlinear systems

$$
\left\{\begin{array}{l}
\dot{x}(t)=f(x(t), u(t)) \\
y(t)=g(x(t), u(t))
\end{array}\right.
$$

where $f: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n}, g: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{p}$ are (rather arbitrary) nonlinear functions

- Time-varying nonlinear systems are very general classes of dynamical systems

$$
\left\{\begin{array}{l}
\dot{x}(t)=f(t, x(t), u(t)) \\
y(t)=g(t, x(t), u(t))
\end{array}\right.
$$

Equilibrium

- Consider the continuous-time nonlinear system

$$
\left\{\begin{array}{l}
\dot{x}(t)=f(x(t), u(t)) \\
y(t)=g(x(t), u(t))
\end{array}\right.
$$

Definition

A state $x_{r} \in \mathbb{R}^{n}$ and an input $u_{r} \in \mathbb{R}^{m}$ are an equilibrium pair if for initial condition $x(0)=x_{r}$ and constant input $u(t) \equiv u_{r}$ the state remains constant: $x(t) \equiv x_{r}, \forall t \geq 0$

- Equivalent definition: $\left(x_{r}, u_{r}\right)$ is an equilibrium pair if $f\left(x_{r}, u_{r}\right)=0$
- x_{r} is called equilibrium state, u_{r} equilibrium input
- The definition generalizes to time-varying nonlinear systems

Stability

- Consider the nonlinear system

$$
\left\{\begin{array}{l}
\dot{x}(t)=f\left(x(t), u_{r}\right) \\
y(t)=g\left(x(t), u_{r}\right)
\end{array}\right.
$$

and let x_{r} an equilibrium state, $f\left(x_{r}, u_{r}\right)=0$

Definition

The equilibrium state x_{r} is stable if for each initial conditions $x(0)$ "close enough" to x_{r}, the corresponding trajectory $x(t)$ remains near x_{r} for all $t \geq 0^{a}$

```
'a}\mathrm{ Analytic definition: }\forall\epsilon>0\exists\delta>0:|x(0)-\mp@subsup{x}{r}{}|<\delta=>|x(t)-\mp@subsup{x}{r}{}|<\epsilon,\forallt\geq
```

- The equilibrium point x_{r} is called asymptotically stable if it is stable and $x(t) \rightarrow x_{r}$ for $t \rightarrow \infty$
- Otherwise, the equilibrium point x_{r} is called unstable

Stability of equilibria - Examples

stable equilibrium

$\frac{d x}{d t}=\left[\begin{array}{c}-2 x_{1}(t)-4 x_{2}(t) \\ 2 x_{1}(t)+2 x_{2}(t)\end{array}\right]$

asymptotically stable equilibrium

$\frac{d x}{d t}=\left[\begin{array}{c}-x_{1}(t)-2 x_{2}(t) \\ 2 x_{1}(t)-x_{2}(t)\end{array}\right]$

unstable equilibrium

$\frac{d x}{d t}=\left[\begin{array}{c}2 x_{1}(t)-2 x_{2}(t) \\ x_{1}(t)\end{array}\right]$

Stability of first-order linear systems

- Consider the first-order linear system

$$
\dot{x}(t)=a x(t)+b u(t)
$$

- $x_{r}=0, u_{r}=0$ is an equilibrium pair
- For $u(t) \equiv 0, \forall t \geq 0$, the solution is

$$
x(t)=e^{a t} x_{0}
$$

- The origin $x_{r}=0$ is
- unstable if $a>0$
- stable if $a \leq 0$
- asymptotically stable if $a<0$

Stability of continuous-time linear systems

Since the natural response of $\dot{x}=A x+B u$ is $x(t)=e^{A t} x_{0}$, the stability properties depend only on A. We can therefore talk about system stability of a linear system (A, B, C, D)

Theorem:

Let $\lambda_{1}, \ldots, \lambda_{m}, m \leq n$ be the eigenvalues of $A \in \mathbb{R}^{n \times n}$. The system $\dot{x}=A x+B u$ is

- asymptotically stable iff $\Re \lambda_{i}<0, \forall i=1, \ldots, m$
- (marginally) stable if $\Re \lambda_{i} \leq 0, \forall i=1, \ldots, m$, and the eigenvalues with null real part have equal algebraic and geometric multiplicity ${ }^{a}$
- unstable if $\exists i$ such that $\Re \lambda_{i}>0$

[^1]The stability properties of a linear system only depend on the real part of the eigenvalues of matrix A

Stability of continuous-time linear systems

Proof:

- The natural response is $x(t)=e^{A t} x_{0}\left(e^{A t} \triangleq I+A t+\frac{A^{2} t^{2}}{2}+\ldots+\frac{A^{n} t^{n}}{n!}+\ldots\right)$
- If matrix A is diagonalizable ${ }^{3}, A=T \Lambda T^{-1}$,

$$
\Lambda=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right] \Rightarrow e^{A t}=T\left[\begin{array}{cccc}
e^{\lambda_{1} t} & 0 & \ldots & 0 \\
0 & e^{\lambda_{2} t} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & e^{\lambda_{n} t}
\end{array}\right] T^{-1}
$$

- Take any eigenvalue $\lambda=a+j b$:

$$
\left|e^{\lambda t}\right|=e^{a t}\left|e^{j b t}\right|=e^{a t}
$$

- A is always diagonalizable if algebraic multiplicity $=$ geometric multiplicity

[^2]
Example 1

$$
\left\{\begin{array}{l}
\dot{x}(t)=\left[\begin{array}{ll}
0 & -1 \\
2 & -3
\end{array}\right] x(t) \Rightarrow \text { eigenvalues of } A:\{-1,-2\} \\
x(0)=\left[\begin{array}{l}
x_{10} \\
x_{20}
\end{array}\right]
\end{array}\right.
$$

solution:

$$
\left\{\begin{array}{l}
x_{1}(t)=x_{10}\left(2 e^{-t}-e^{-2 t}\right)+x_{20}\left(-e^{-t}+e^{-2 t}\right) \\
x_{2}(t)=x_{10}\left(2 e^{-t}-2 e^{-2 t}\right)+x_{20}\left(-e^{-t}+2 e^{-2 t}\right)
\end{array}\right.
$$

asymptotically stable

Example 2

$$
\left\{\begin{array}{l}
\dot{x}(t)=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] x(t) \Rightarrow \text { eigenvalues of } A:\{+j,-j\} \\
x(0)=\left[\begin{array}{l}
x_{10} \\
x_{20}
\end{array}\right]
\end{array}\right.
$$

solution:

$$
\left\{\begin{array}{l}
x_{1}(t)=x_{10} \cos t-x_{20} \sin t \\
x_{2}(t)=x_{10} \sin t+x_{20} \cos t
\end{array}\right.
$$

Example 3

$$
\left\{\begin{array}{l}
\dot{x}(t)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] x(t) \\
x(0)=\left[\begin{array}{l}
x_{10} \\
x_{20}
\end{array}\right]
\end{array} \Rightarrow \text { eigenvalues of } A:\{0,0\}\right.
$$

solution:

$$
\left\{\begin{array}{l}
x_{1}(t)=x_{10}+x_{20} t \\
x_{2}(t)=x_{20}
\end{array}\right.
$$

Note: A is not diagonalizable!

unstable

Example 4

$$
\left\{\begin{array}{l}
\dot{x}(t)=\left[\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right] x(t) \Rightarrow \text { eigenvalues of } A:\{-1,1\} \\
x(0)=\left[\begin{array}{l}
x_{10} \\
x_{20}
\end{array}\right]
\end{array}\right.
$$

solution:

$$
\left\{\begin{array}{l}
x_{1}(t)=x_{10} e^{t} \\
x_{2}(t)=\frac{1}{2} x_{10} e^{t}+\left(x_{20}-\frac{1}{2} x_{10}\right) e^{-t}
\end{array}\right.
$$

unstable

Linearization of nonlinear systems

- Consider the nonlinear system

$$
\left\{\begin{array}{l}
\dot{x}(t)=f(x(t), u(t)) \\
y(t)=g(x(t), u(t))
\end{array}\right.
$$

- Let $\left(x_{r}, u_{r}\right)$ be an equilibrium, $f\left(x_{r}, u_{r}\right)=0$
- Objective: investigate the dynamic behaviour of the system for small perturbations $\Delta u(t) \triangleq u(t)-u_{r}$ and $\Delta x(0) \triangleq x(0)-x_{r}$.
- The evolution of $\Delta x(t) \triangleq x(t)-x_{r}$ is given by

$$
\begin{aligned}
& \dot{\Delta} x(t)=\dot{x}(t)-\dot{x}_{r}=f(x(t), u(t)) \\
& =f\left(\Delta x(t)+x_{r}, \Delta u(t)+u_{r}\right) \\
& \approx \underbrace{\frac{\partial f}{\partial x}\left(x_{r}, u_{r}\right)}_{A} \Delta x(t)+\underbrace{\frac{\partial f}{\partial u}\left(x_{r}, u_{r}\right)}_{B} \Delta u(t)
\end{aligned}
$$

Linearization of nonlinear systems

- Similarly

$$
\Delta y(t) \approx \underbrace{\frac{\partial g}{\partial x}\left(x_{r}, u_{r}\right)}_{C} \Delta x(t)+\underbrace{\frac{\partial g}{\partial u}\left(x_{r}, u_{r}\right)}_{D} \Delta u(t)
$$

where $\Delta y(t) \triangleq y(t)-g\left(x_{r}, u_{r}\right)$ is the perturbation of the output from its equilibrium

- The perturbations $\Delta x(t), \Delta y(t)$, and $\Delta u(t)$ are (approximately) ruled by the linearized system

$$
\left\{\begin{array}{l}
\dot{\Delta x}(t)=A \Delta x(t)+B \Delta u(t) \\
\Delta y(t)=C \Delta x(t)+D \Delta u(t)
\end{array}\right.
$$

Lyapunov's indirect method

- Consider the nonlinear system $\dot{x}=f(x)$, with f differentiable, and assume $x=0$ is equilibrium point $(f(0)=0)$
- Consider the linearized system $\dot{x}=A x$, with $A=\left.\frac{\partial f}{\partial x}\right|_{x=0}$
- If $\dot{x}=A x$ is asymptotically stable, then the origin $x=0$ is also an asymptotically stable equilibrium for the nonlinear system (locally)
- If $\dot{x}=A x$ is unstable, then the origin $x=0$ is an unstable equilibrium for the nonlinear system
- If A is marginally stable, nothing can be said about the stability of the origin $x=0$ for the nonlinear system

Aleksandr Mikhailovich Lyapunov
(1857-1918)

Example: Pendulum

$y(t)=$ angular displacement $\dot{y}(t)=$ angular velocity $\ddot{y}(t)=$ angular acceleration $u(t)=m g$ gravity force $h \dot{y}(t)=$ viscous friction torque $l=$ pendulum length
$m l^{2}=$ pendulum rotational inertia

- mathematical model

$$
m l^{2} \ddot{y}(t)=-l m g \sin y(t)-h \dot{y}(t)
$$

- in state-space form $\left(x_{1}=y, x_{2}=\dot{y}\right)$

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-\frac{g}{l} \sin x_{1}-H x_{2}, \quad H \triangleq \frac{h}{m l^{2}}
\end{array}\right.
$$

Example: Pendulum

Look for equilibrium states:

$$
\left[\begin{array}{c}
x_{2 r} \\
-\frac{g}{l} \sin x_{1 r}-H x_{2 r}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
x_{2 r}=0 \\
x_{1 r}= \pm k \pi, k=0,1, \ldots
\end{array}\right.
$$

$$
x_{2 r}=0, x_{1 r}=0, \pm 2 \pi, \ldots \quad x_{2 r}=0, x_{1 r}=0, \pm \pi, \pm 3 \pi, \ldots
$$

Example: Pendulum

- Linearize the system around $x_{1 r}=0, x_{2 r}=0$

$$
\Delta \dot{x}(t)=\underbrace{\left[\begin{array}{cc}
0 & 1 \\
-\frac{g}{l} & -H
\end{array}\right]}_{A} \Delta x(t)
$$

- find the eigenvalues of A

$$
\operatorname{det}(\lambda I-A)=\lambda^{2}+H \lambda+\frac{g}{l}=0 \Rightarrow \lambda_{1,2}=\frac{1}{2}\left(-H \pm \sqrt{H^{2}-4 \frac{g}{l}}\right)
$$

- $\Re \lambda_{1,2}<0 \Rightarrow \dot{x}=A x$ asymptotically stable
- by Lyapunov's indirect method $x_{r}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is also an asymptotically stable equilibrium for the pendulum

Example: Pendulum

- Linearize the system around $x_{1 r}=\pi, x_{2 r}=0$

$$
\Delta \dot{x}(t)=\underbrace{\left[\begin{array}{cc}
0 & 1 \\
g & -H
\end{array}\right]}_{A} \Delta x(t)
$$

- find the eigenvalues of A

$$
\operatorname{det}(\lambda I-A)=\lambda^{2}+H \lambda-\frac{g}{l}=0 \Rightarrow \lambda_{1,2}=\frac{1}{2}\left(-H \pm \sqrt{H^{2}+4 \frac{g}{l}}\right)
$$

- $\lambda_{1}<0, \lambda_{2}>0 \Rightarrow \dot{x}=A x$ unstable
- by Lyapunov's indirect method $x_{r}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is also an unstable equilibrium for the pendulum

English-Italian Vocabulary

Translation is obvious otherwise.

[^0]: ${ }^{1}$ We will see later in the course that the pair (A, B) is completely reachable.
 ${ }^{2}$ We will see later in the course that the pair (A, B) is completely observable.

[^1]: ${ }^{a}$ Algebraic multiplicity of $\lambda_{i}=$ number of coincident roots λ_{i} of $\operatorname{det}(\lambda I-A)$. Geometric multiplicity of $\lambda_{i}=$ number of linearly independent eigenvectors $v_{i}, A v_{i}=\lambda_{i} v_{i}$

[^2]: ${ }^{3}$ If A is not diagonalizable, it can be transformed to Jordan form. In this case the natural response $x(t)$ contains modes $t^{j} e^{\lambda t}, j=0,1, \ldots$, alg. multiplicity - geom. multiplicity

