Automatic Control 1

Continuous-time linear systems

Prof. Alberto Bemporad

University of Trento

Academic year 2010-2011

Automatic Control 1

Dynamical models

• A *dynamical system* is an object (or a set of objects) that evolves over time, possibly under external excitations.

Examples: a car, a robotic arm, a population of animals, an electrical circuit, a portfolio of investments, etc.

- The way the system evolves is called the *dynamics* of the system.
- A *dynamical model* of a system is a set of mathematical laws explaining in a compact form and in *quantitative* way how the system evolves over time, usually under the effect of external excitations.
- Main questions about a dynamical system:
 - Understanding the system ("How X and Y influence each other ?")
 - Simulation ("What happens if I apply action Z on the system ?")
 - Obesign ("How to make the system behave the way I want ?")

Dynamical models

- *Qualitative* models only useful in non-technical domains (examples: politics, advertisement, psychology,...)
- *Experiments* provide an answer, but have limitations:
 - maybe too expensive (example: launch a space shuttle)
 - 2 maybe too dangerous (example: a nuclear plant)
 - Maybe impossible (the system doesn't exist yet!)
- In contrast, mathematical models allows us to:
 - capture the main phenomena that take place in the system (example: Newton's law – a force on a mass produces an acceleration)
 - analyze the system (relations among dynamical variables)
 - simulate the system (=make predictions) about how the system behaves under certain conditions and excitations (in analytical form, or on a computer)

Dynamical models

- Working on a model has almost zero cost compared to real experiments (just mathematical thinking, paper writing, computer coding)
- However, a simulation (or any other inference obtained from the model) is as better as the dynamical model is closer to the real system
- Conflicting objectives:
 - Descriptive enough to capture the main behavior of the system
 - 2 Simple enough for analyzing the system

"Make everything as simple as possible, but not simpler." – Albert Einstein

Albert Einstein (1879-1955)

Making a good model is an **art** ! (that you are learning ...)

Ordinary differential equations (ODEs)

• First order differential equation (=the simplest dynamical model):

$$\begin{cases} \dot{x}(t) = ax(t) & a \in \mathbb{R}, \quad \dot{x} \triangleq \frac{dx}{dt} \\ x(0) = x_0 & x_0 \in \mathbb{R} \end{cases}$$

• Its unique *solution* is $x(t) = e^{at}x_0$

x(t) = voltagex(t) = velocity Rx(t)x(t)MR Kirchhoff's voltage law: Newton's law: $-\beta x(t) = M\dot{x}(t)$ $x(t) = x(0)e^{-\frac{\beta}{M}t}$ $-RC\dot{x}(t) - x(t) = 0$ $x(t) = x(0)e^{-\frac{t}{RC}}$

First order differential equations with inputs

• Introduce the forcing signal *u*(*t*)

$$\begin{cases} \dot{x}(t) &= ax(t) + bu(t) \\ x(0) &= x_0 \end{cases} \qquad a, b \in \mathbb{R}, \ u(t) \in \mathbb{R} \\ x_0 \in \mathbb{R} \end{cases}$$

• The unique solution x(t) is

$$\begin{aligned} x(t) &= \underbrace{e^{at}x_0}_{natural\ response} + \underbrace{\int_0^t e^{a(t-\tau)}bu(\tau)d\tau}_{forced\ response} \\ x_\ell(t) &= e^{at}x_0 & \text{effect of the initial condition} \\ x_f(t) &= \int_0^t e^{a(t-\tau)}bu(\tau)d\tau & \text{effect of the input signal} \end{aligned}$$

Continuous-time linear systems

• System of *n* first-order differential equations with inputs

$$\begin{cases} \dot{x}_1(t) &= a_{11}x_1(t) + \dots + a_{1n}x_n(t) + b_1u(t) \\ \dot{x}_2(t) &= a_{21}x_1(t) + \dots + a_{2n}x_n(t) + b_2u(t) \\ \vdots &\vdots \\ \dot{x}_n(t) &= a_{n1}x_1(t) + \dots + a_{nn}x_n(t) + b_nu(t) \\ x_1(0) = x_{10}, \quad \dots \quad x_n(0) = x_{n0} \end{cases}$$

• Setting $x = [x_1 \dots x_n]' \in \mathbb{R}^n$, the equivalent matrix form is the so-called *linear system*

$$\dot{x}(t) = Ax(t) + Bu(t)$$

with initial condition

$$x(0) = x_0 = [x_{10} \ldots x_{n0}]' \in \mathbb{R}^n$$

Linear systems

_

Example: RLC circuit

Rewrite as the 2nd order linear system

$$\begin{cases} \frac{dx_1(t)}{dt} = -\frac{R}{L}x_1(t) - \frac{1}{L}x_2(t) + \frac{1}{L}u(t) \\ \frac{dx_2(t)}{dt} = \frac{1}{C}x_1(t) \end{cases}$$

or in matrix form

$$\dot{x}(t) = \underbrace{\begin{bmatrix} -\frac{R}{L} & -\frac{1}{L} \\ \frac{1}{C} & 0 \end{bmatrix}}_{A} x(t) + \underbrace{\begin{bmatrix} \frac{1}{L} \\ 0 \end{bmatrix}}_{B} u(t)$$

Linear systems

Example: Mass-spring-damper system

$$\begin{cases} \dot{x}_1(t) = x_2(t) & y \\ M\dot{x}_2(t) = u - \beta x_2(t) - Kx_1(t) & y \end{cases}$$

velocity = derivative of traveled distance Newton's law

Rewrite as the 2nd order linear system

$$\begin{cases} \frac{dx_{1}(t)}{dt} = x_{2}(t) \\ \frac{dx_{2}(t)}{dt} = -\frac{\beta}{M}x_{2}(t) - \frac{K}{M}x_{1}(t) + \frac{1}{M}u(t) \end{cases}$$

or in matrix form

$$\dot{x}(t) = \underbrace{\begin{bmatrix} 0 & 1 \\ -\frac{K}{M} & -\frac{\beta}{M} \end{bmatrix}}_{A} x(t) + \underbrace{\begin{bmatrix} 0 \\ \frac{1}{M} \end{bmatrix}}_{B} u(t)$$

Prof. Alberto Bemporad (University of Trento)

Automatic Control 1

Linear algebra recalls

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$
$$I = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

square matrix of order *n*, $A \in \mathbb{R}^{n \times n}$

identity matrix of order n

• Characteristic equation of A:

$$\det(\lambda I - A) = 0$$

• Characteristic polynomial of *A*:

$$P(\lambda) = \det(\lambda I - A) = \lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_1\lambda + a_0$$

Linear algebra recall

• The *eigenvalues* of $A \in \mathbb{R}^{n \times n}$ are the roots $\lambda_1, \ldots, \lambda_n$ of its characteristic polynomial

$$\det(\lambda_i I - A) = 0, \quad i = 1, 2, \dots, n$$

• An *eigenvector* of *A* is any vector $v_i \in \mathbb{R}^n$ such that

$$Av_i = \lambda_i v_i$$

for some
$$i = 1, 2, ..., n$$
.

• Diagonalization of *A*:

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix} = T^{-1}AT, \ T = \begin{bmatrix} v_1 | v_2 | \dots | v_n \end{bmatrix}$$

(not all matrices A are diagonalizable, see Jordan normal form)

Linear algebra recall

• Example:

$$A = \begin{bmatrix} 1 & 3 \\ -5 & 2 \end{bmatrix}, \quad \det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & -3 \\ 5 & \lambda - 2 \end{vmatrix} = \lambda^2 - 3\lambda + 17$$

Eigenvalues: $\lambda_1 = \frac{3}{2} + j\frac{\sqrt{59}}{2}, \ \lambda_2 = \frac{3}{2} - j\frac{\sqrt{59}}{2}$

- Complex numbers recall:
 - Imaginary unit: $j \triangleq \sqrt{-1}$
 - *Cartesian form*: c = a + jb, $c \in \mathbb{C}$, $a, b \in \mathbb{R}$
 - *Real part* of c: $\Re c = a$
 - *Imaginary part* of *c*: Im c = b
 - *Conjugate* of $c: \bar{c} = a jb$
 - Polar form: $c = \rho e^{j\theta}$, $\rho \ge 0, \theta \in \mathbb{R}$
 - *Modulus* or *magnitude*: $|c| = \sqrt{a^2 + b^2} = \rho$
 - *Angle* or *phase*: $\angle c = \theta$
 - Complex exponential: $e^c = e^{a+jb} = e^a e^{jb} = e^a (\cos b + j \sin b)$

Lagrange's formula

• For the continuous-time linear system $\dot{x} = Ax + Bu$ with initial condition $x(0) = x_0 \in \mathbb{R}^n$, there exists a unique solution x(t)

$$x(t) = \underbrace{e^{At}x_0}_{\text{natural response}} + \underbrace{\int_0^t e^{A(t-\tau)}Bu(\tau)d\tau}_{\text{forced response}}$$

• The *exponential matrix* is defined as $A^{2/2}$

$$e^{At} \triangleq I + At + \frac{A^2 t^2}{2} + \dots + \frac{A^n t^n}{n!} + \dots$$

MATLAB	
»	E=expm(A*t)

• If $A \in \mathbb{R}^{n \times n}$ is diagonalizable, $A = T \wedge T^{-1}$, then

$$\Lambda = T^{-1}AT = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix} \Rightarrow e^{At} = T \begin{bmatrix} e^{\lambda_1 t} & 0 & \dots & 0 \\ 0 & e^{\lambda_2 t} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & e^{\lambda_n t} \end{bmatrix} T^{-1}$$

Eigenvalues and modes

- Let $u(t) \equiv 0$ and assume *A* diagonalizable
- The state trajectory is the natural response

$$\begin{aligned} x(t) &= e^{At}x(0) = Te^{\Lambda t}\underbrace{T^{-1}x_0}_{\alpha} = \begin{bmatrix} v_1 \dots v_n \end{bmatrix} \begin{bmatrix} e^{\lambda_1 t} \dots & 0\\ & \ddots \\ 0 & \dots & e^{\lambda_n t} \end{bmatrix} \alpha \\ &= \begin{bmatrix} v_1 e^{\lambda_1 t} & \dots & v_n e^{\lambda_n t} \end{bmatrix} \begin{bmatrix} \alpha_1\\ \vdots\\ \alpha_n \end{bmatrix} = \sum_{i=1}^n \alpha_i e^{\lambda_i t} v_i \end{aligned}$$

where v_i =eigenvector of A, λ_i =eigenvalue of A, $\alpha = T^{-1}x(0) \in \mathbb{R}^n$

- The evolution of the system depends on the eigenvalues λ_i of A, called *modes* of the system (sometimes we also refer to e^{λ_it} as the *i*-th mode)
- A mode λ_i is called *excited* if $\alpha_i \neq 0$

Differential equations of order n

$$\frac{dy^{(n)}(t)}{dt^n} + a_{n-1}\frac{dy^{(n-1)}(t)}{dt^{n-1}} + \dots + a_1\dot{y}(t) + a_0y(t) = 0$$

By setting $x_1(t) \triangleq y(t), x_2(t) \triangleq \dot{y}(t), \dots, x_n(t) \triangleq y^{n-1}(t)$, this is equivalent to the system of *n* first-order equations

$$\begin{cases} \dot{x}_{1}(t) = x_{2}(t) \\ \dot{x}_{2}(t) = x_{3}(t) \\ \vdots & \vdots \\ \dot{x}_{n}(t) = -a_{0}x_{1}(t) + \dots - a_{n-1}x_{n}(t) \\ x(0) = [y(0)\dot{y}(0)\dots y^{n-1}(0)]' \end{cases}$$

Example:

$$\begin{aligned} \ddot{y}(t) + 2\dot{y}(t) + 5y(t) &= 0\\ x_1(t) &= y(t)\\ x_2(t) &= \dot{y}(t) \end{aligned} \Rightarrow \begin{cases} \dot{x}_1(t) &= x_2(t)\\ \dot{x}_2(t) &= -5x_1(t) - 2x_2(t)\\ x(0) &= [y(0)\dot{y}(0)]' \end{aligned}$$

n^{th} -order linear ODE with input

$$\frac{dy^{(n)}(t)}{dt^n} + a_{n-1}\frac{dy^{(n-1)}(t)}{dt^{n-1}} + \dots + a_1\dot{y}(t) + a_0y(t)$$
$$= b_{n-1}\frac{du^{(n-1)}(t)}{dt} + b_{n-2}\frac{du^{(n-2)}(t)}{dt} + \dots + b_1\dot{u}(t) + b_0u(t)$$

One can verify by inspection that the given n^{th} -order ODE is equivalent to the following 1st-order linear system of ODEs: $\dot{x}(t) = Ax(t) + Bu(t)$

The operation of transforming a n^{th} -order ODE into a linear system of 1^{st} -order ODEs is called *state-space realization*. There are infinitely many realizations.

Automatic Control 1

Examples of state-space realizations

• Example 1

$$\ddot{y}(t) - 2\dot{y}(t) + y(t) = u(t) + 2\dot{u}(t)$$

$$\Rightarrow \begin{cases} \frac{d}{dt}x(t) = \begin{bmatrix} 0 & 1\\ -1 & 2\\ y(t) = \begin{bmatrix} 1 & 2\\ 1 & 2\end{bmatrix}x(t) + \begin{bmatrix} 0\\ 1\end{bmatrix}u(t)$$

Double check:

$$\dot{y} = \begin{bmatrix} 1 & 2 \end{bmatrix} \dot{x} = \begin{bmatrix} 1 & 2 \end{bmatrix} \left(\begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \right) = \begin{bmatrix} -2 & 5 \end{bmatrix} x(t) + 2u(t)$$

$$\ddot{y} = \begin{bmatrix} -2 & 5 \end{bmatrix} \dot{x} + 2\dot{u} = \begin{bmatrix} -5 & 8 \end{bmatrix} x(t) + 5u(t) + 2\dot{u}(t)$$

$$\ddot{y}(t) - 2\dot{y}(t) + y(t) = \begin{bmatrix} -5 & 8 \end{bmatrix} x(t) + 5u(t) + 2\dot{u}(t) - 2\left(\begin{bmatrix} -2 & 5 \end{bmatrix} x(t) + 2u(t) \right)$$

$$+ \begin{bmatrix} 1 & 2 \end{bmatrix} x(t)$$

$$= \begin{bmatrix} -5 + 4 + 1 & 8 - 10 + 2 \end{bmatrix} x(t) + (5 - 4)u(t) + 2\dot{u}(t)$$

$$= u(t) + 2\dot{u}(t)$$
ok!

Alternative state-space realization method

• In the following special case (=no input derivatives)

$$\frac{dy^{(n)}(t)}{dt^n} + a_{n-1}\frac{dy^{(n-1)}(t)}{dt^{n-1}} + \dots + a_1\dot{y}(t) + a_0y(t) = b_0u(t)$$

we can define the following states

$$\begin{aligned} x_1 &= y & \rightarrow \dot{x}_1 = x_2 \\ x_2 &= \dot{y} & \rightarrow \dot{x}_2 = x_3 \\ \vdots &= \vdots \\ x_n &= \frac{d^{n-1}y}{dt^{n-1}} & \rightarrow \dot{x}_n = \frac{d^n y}{dt^n} = -a_{n-1}\frac{dy^{(n-1)}(t)}{dt^{n-1}} - \dots - a_1 \dot{y}(t) - a_0 y(t) + b_0 u(t) \end{aligned}$$

and therefore set

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & i \\ -a_0 - a_1 - a_2 & \dots - a_{n-1} \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ b_0 \end{bmatrix}$$
$$C = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \end{bmatrix}, D = 0$$

Other state-space realization methods

• The following state-space realization is called *controllable canonical form*¹

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ -a_0 -a_1 -a_2 & \dots & -a_{n-1} \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$
$$C = \begin{bmatrix} b_0 & b_1 & \dots & b_{n-1} \end{bmatrix}, D = 0$$

• The following state-space realization is called *observable canonical form*²

$$A = \begin{bmatrix} -a_{n-1} & 1 & 0 & 0 & \dots & 0 \\ -a_{n-2} & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ -a_1 & 0 & 0 & \dots & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} b_{n-1} \\ b_{n-2} \\ \vdots \\ b_1 \\ b_0 \end{bmatrix}$$
$$C = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 \end{bmatrix}, D = 0$$

¹We will see later in the course that the pair (A,B) is completely *reachable*. ²We will see later in the course that the pair (A,B) is completely *observable*.

State vector

- Generally speaking, the *state* of a dynamical system is a set of variables that completely summarizes the past history of the system, and allows us to predict its future motion
- For the linear system

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

given the initial state x(0) and the input signal u(t), $\forall t \in [0, T]$, we already know how to compute the state x(t) and the output y(t) of the system, $\forall t \in [0, T]$.

- If we know the initial state x(0), we can neglect the past history u(-t), x(-t), $\forall t \ge 0$
- The dimension *n* of the state $x(t) \in \mathbb{R}^n$ is called the *order* of the system

Linear systems

Some classes of dynamical systems

- *Causality*: a dynamical system is *causal* if y(t) does not depend on future inputs $u(\tau) \ \forall \tau > t$ (strictly causal if $\forall \tau \geq t$)
- A linear system is always causal, and strictly causal iff D = 0
- Linear time-varying (LTV) systems:

$$\begin{cases} \dot{x}(t) = A(t)x(t) + B(t)u(t) \\ y(t) = C(t)x(t) + D(t)u(t) \end{cases}$$

- When A, B, C, D are constant, the system is said *linear time-invariant* (LTI)
- *Multivariable systems*: more generally, a system can have *m* inputs $(u(t) \in \mathbb{R}^m)$ and p outputs $(y(t) \in \mathbb{R}^p)$. For linear systems, we still have

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

with

$$A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m}$$

Some classes of dynamical systems

• Nonlinear systems

$$\begin{cases} \dot{x}(t) = f(x(t), u(t)) \\ y(t) = g(x(t), u(t)) \end{cases}$$

where $f : \mathbb{R}^{n+m} \to \mathbb{R}^n, g : \mathbb{R}^{n+m} \to \mathbb{R}^p$ are (rather arbitrary) nonlinear functions

• *Time-varying nonlinear systems* are very general classes of dynamical systems

$$\begin{cases} \dot{x}(t) = f(t, x(t), u(t)) \\ y(t) = g(t, x(t), u(t)) \end{cases}$$

Equilibrium

• Consider the continuous-time nonlinear system

$$\begin{cases} \dot{x}(t) = f(x(t), u(t)) \\ y(t) = g(x(t), u(t)) \end{cases}$$

Definition

A state $x_r \in \mathbb{R}^n$ and an input $u_r \in \mathbb{R}^m$ are an *equilibrium pair* if for initial condition $x(0) = x_r$ and constant input $u(t) \equiv u_r$ the state remains constant: $x(t) \equiv x_r$, $\forall t \ge 0$

- Equivalent definition: (x_r, u_r) is an equilibrium pair if $f(x_r, u_r) = 0$
- x_r is called *equilibrium state*, u_r *equilibrium input*
- The definition generalizes to time-varying nonlinear systems

Stability

Consider the nonlinear system

$$\begin{cases} \dot{x}(t) &= f(x(t), u_r) \\ y(t) &= g(x(t), u_r) \end{cases}$$

and let x_r an equilibrium state, $f(x_r, u_r) = 0$

Definition

The equilibrium state x_r is *stable* if for each initial conditions x(0) "close enough" to x_r , the corresponding trajectory x(t) remains near x_r for all $t \ge 0^{a}$

^{*a*}Analytic definition: $\forall \epsilon > 0 \ \exists \delta > 0 : ||x(0) - x_r|| < \delta \Rightarrow ||x(t) - x_r|| < \epsilon, \ \forall t \ge 0$

- The equilibrium point x_r is called *asymptotically stable* if it is stable and $x(t) \rightarrow x_r$ for $t \rightarrow \infty$
- Otherwise, the equilibrium point x_r is called *unstable*

Stability of equilibria - Examples

asymptotically stable equilibrium

unstable equilibrium

Stability of first-order linear systems

• Consider the first-order linear system

$$\dot{x}(t) = ax(t) + bu(t)$$

- $x_r = 0$, $u_r = 0$ is an equilibrium pair
- For $u(t) \equiv 0$, $\forall t \ge 0$, the solution is

$$x(t) = e^{at}x_0$$

- The origin $x_r = 0$ is
 - unstable if a > 0
 - stable if $a \leq 0$
 - asymptotically stable if a < 0

Stability of continuous-time linear systems

Since the natural response of $\dot{x} = Ax + Bu$ is $x(t) = e^{At}x_0$, the stability properties depend only on *A*. We can therefore talk about *system stability* of a linear system (A, B, C, D)

Theorem:

Let $\lambda_1, \ldots, \lambda_m, m \le n$ be the eigenvalues of $A \in \mathbb{R}^{n \times n}$. The system $\dot{x} = Ax + Bu$ is

- asymptotically stable iff $\Re \lambda_i < 0, \forall i = 1, ..., m$
- (marginally) stable if $\Re \lambda_i \leq 0$, $\forall i = 1, ..., m$, and the eigenvalues with null real part have equal algebraic and geometric multiplicity ^{*a*}
- unstable if $\exists i$ such that $\Re \lambda_i > 0$

^{*a*}Algebraic multiplicity of λ_i = number of coincident roots λ_i of det($\lambda I - A$). Geometric multiplicity of λ_i = number of linearly independent eigenvectors v_i , $Av_i = \lambda_i v_i$

The stability properties of a linear system only depend on the **real part** of the eigenvalues of matrix *A*

Stability of continuous-time linear systems

Proof:

- The natural response is $x(t) = e^{At}x_0$ ($e^{At} \triangleq I + At + \frac{A^2t^2}{2} + \dots + \frac{A^nt^n}{n!} + \dots$)
- If matrix A is diagonalizable³, $A = T\Lambda T^{-1}$,

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix} \Rightarrow e^{At} = T \begin{bmatrix} e^{\lambda_1 t} & 0 & \dots & 0 \\ 0 & e^{\lambda_2 t} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & e^{\lambda_n t} \end{bmatrix} T^{-1}$$

• Take any eigenvalue $\lambda = a + jb$:

$$|e^{\lambda t}| = e^{at}|e^{jbt}| = e^{at}$$

• *A* is always diagonalizable if algebraic multiplicity = geometric multiplicity

³If A is not diagonalizable, it can be transformed to Jordan form. In this case the natural response x(t) contains modes $t^j e^{\lambda t}$, j = 0, 1, ..., alg. multiplicity - geom. multiplicity

$$\begin{cases} \dot{x}(t) = \begin{bmatrix} 0 & -1 \\ 2 & -3 \end{bmatrix} x(t) \\ x(0) = \begin{bmatrix} x_{10} \\ x_{20} \end{bmatrix} \Rightarrow \text{ eigenvalues of } A: \{-1, -2\} \end{cases}$$

solution:

$$\begin{cases} x_1(t) = x_{10}(2e^{-t} - e^{-2t}) + x_{20}(-e^{-t} + e^{-2t}) \\ x_2(t) = x_{10}(2e^{-t} - 2e^{-2t}) + x_{20}(-e^{-t} + 2e^{-2t}) \end{cases}$$

asymptotically stable

$$\begin{cases} \dot{x}(t) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} x(t) \\ x(0) = \begin{bmatrix} x_{10} \\ x_{20} \end{bmatrix} \Rightarrow \text{ eigenvalues of } A: \{+j, -j\} \end{cases}$$

solution:

$$\begin{aligned} x_1(t) &= x_{10}\cos t - x_{20}\sin t \\ x_2(t) &= x_{10}\sin t + x_{20}\cos t \end{aligned}$$

marginally stable

$$\begin{cases} \dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x(t) \\ x(0) = \begin{bmatrix} x_{10} \\ x_{20} \end{bmatrix} \end{cases} \Rightarrow \text{ eigenvalues of } A: \{0, 0\}$$

solution:

$$\begin{cases} x_1(t) = x_{10} + x_{20}t \\ x_2(t) = x_{20} \end{cases}$$

Note: A is not diagonalizable !

unstable

Prof. Alberto Bemporad (University of Trento)

$$\begin{cases} \dot{x}(t) = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} x(t) \\ x(0) = \begin{bmatrix} x_{10} \\ x_{20} \end{bmatrix} \end{cases} \Rightarrow \text{ eigenvalues of } A: \{-1, 1\}$$

solution:

$$\begin{cases} x_1(t) = x_{10}e^t \\ x_2(t) = \frac{1}{2}x_{10}e^t + (x_{20} - \frac{1}{2}x_{10})e^{-t} \end{cases}$$

unstable

Linearization of nonlinear systems

Consider the nonlinear system

$$\begin{cases} \dot{x}(t) = f(x(t), u(t)) \\ y(t) = g(x(t), u(t)) \end{cases}$$

- Let (x_r, u_r) be an equilibrium, $f(x_r, u_r) = 0$
- Objective: investigate the dynamic behaviour of the system for small perturbations $\Delta u(t) \triangleq u(t) - u_r$ and $\Delta x(0) \triangleq x(0) - x_r$.
- The evolution of $\Delta x(t) \triangleq x(t) x_r$ is given by

$$\dot{\Delta}x(t) = \dot{x}(t) - \dot{x}_r = f(x(t), u(t))$$

= $f(\Delta x(t) + x_r, \Delta u(t) + u_r)$
 $\approx \underbrace{\frac{\partial f}{\partial x}(x_r, u_r)}_{A} \Delta x(t) + \underbrace{\frac{\partial f}{\partial u}(x_r, u_r)}_{B} \Delta u(t)$

Linearization of nonlinear systems

Similarly

$$\Delta y(t) \approx \underbrace{\frac{\partial g}{\partial x}(x_r, u_r)}_{C} \Delta x(t) + \underbrace{\frac{\partial g}{\partial u}(x_r, u_r)}_{D} \Delta u(t)$$

where $\Delta y(t) \triangleq y(t) - g(x_r, u_r)$ is the perturbation of the output from its equilibrium

• The perturbations $\Delta x(t)$, $\Delta y(t)$, and $\Delta u(t)$ are (approximately) ruled by the linearized system

$$\begin{cases} \dot{\Delta}x(t) = A\Delta x(t) + B\Delta u(t) \\ \Delta y(t) = C\Delta x(t) + D\Delta u(t) \end{cases}$$

Linearization

Lyapunov's indirect method

- Consider the nonlinear system $\dot{x} = f(x)$, with f differentiable, and assume x = 0 is equilibrium point (f(0) = 0)
- Consider the linearized system $\dot{x} = Ax$, with $A = \frac{\partial f}{\partial x}\Big|_{x=0}$
- If $\dot{x} = Ax$ is asymptotically stable, then the origin x = 0 is also an asymptotically stable equilibrium for the nonlinear system (locally)
- If $\dot{x} = Ax$ is unstable, then the origin x = 0 is an unstable equilibrium for the nonlinear system
- If A is marginally stable, nothing can be said about the stability of the origin x = 0 for the nonlinear system

Aleksandr Mikhailovich Lyapunov

(1857-1918)

Example: Pendulum

mathematical model

y(t) =angular displacement $\dot{y}(t) =$ angular velocity $\ddot{y}(t) = angular acceleration$ u(t) = mg gravity force $h\dot{y}(t) =$ viscous friction torque l = pendulum length ml^2 = pendulum rotational inertia

$$ml^2\ddot{y}(t) = -lmg\sin y(t) - h\dot{y}(t)$$

• in state-space form $(x_1 = y, x_2 = \dot{y})$

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -\frac{g}{l} \sin x_1 - H x_2, \quad H \triangleq \frac{h}{ml^2} \end{cases}$$

Linearization

Example: Pendulum

Look for equilibrium states:

$$\begin{bmatrix} x_{2r} \\ -\frac{g}{l} \sin x_{1r} - Hx_{2r} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{cases} x_{2r} = 0 \\ x_{1r} = \pm k\pi, \ k = 0, 1, \dots \end{cases}$$

Example: Pendulum

• Linearize the system around $x_{1r} = 0$, $x_{2r} = 0$

$$\Delta \dot{x}(t) = \underbrace{\begin{bmatrix} 0 & 1 \\ -\frac{g}{l} & -H \end{bmatrix}}_{A} \Delta x(t)$$

• find the eigenvalues of A

$$\det(\lambda I - A) = \lambda^2 + H\lambda + \frac{g}{l} = 0 \implies \lambda_{1,2} = \frac{1}{2} \left(-H \pm \sqrt{H^2 - 4\frac{g}{l}} \right)$$

- $\Re \lambda_{1,2} < 0 \Rightarrow \dot{x} = Ax$ asymptotically stable
- by Lyapunov's indirect method $x_r = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is also an asymptotically stable equilibrium for the pendulum

Example: Pendulum

• Linearize the system around $x_{1r} = \pi$, $x_{2r} = 0$

$$\Delta \dot{x}(t) = \underbrace{\begin{bmatrix} 0 & 1 \\ \frac{g}{l} & -H \end{bmatrix}}_{A} \Delta x(t)$$

• find the eigenvalues of *A*

$$\det(\lambda I - A) = \lambda^2 + H\lambda - \frac{g}{l} = 0 \implies \lambda_{1,2} = \frac{1}{2} \left(-H \pm \sqrt{H^2 + 4\frac{g}{l}} \right)$$

•
$$\lambda_1 < 0, \lambda_2 > 0 \Rightarrow \dot{x} = Ax$$
 unstable

• by Lyapunov's indirect method $x_r = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is also an unstable equilibrium for the pendulum

English-Italian Vocabulary

dynamics	dinamica
natural response	risposta libera
eigenvalue	autovalore
eigenvector	autovettore
modulus or magnitude	modulo
angle or phase	fase
nonlinear systems	sistemi non lineari
controllable canonical form	forma canonica di raggiungibilità
observable canonical form	forma canonica di osservabilità

Translation is obvious otherwise.