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Model Predictive Control (MPC) (in a nutshell)

Recent advances in embedded quadratic programming (QP) solvers

Data-driven design of embedded MPC controllers

Embedded MPC in industry
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MODEL PREDICTIVE CONTROL (MPC)

prediction model =aplimizalion—
: algorithm

model-based optimizer v
process

set-points outputs
() y(®)
1‘ measurements
simplified Likel

Use a dynamical model of the process to predict its futur

evolution and choose-ttre“best”controt-action
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MODEL PREDICTIVE CONTROL (MPC)

e Goal: find the best control sequence over a future horizon of N steps

past | future

N—1
min Y [[W (g = r(0))]lz + W (ur = ur(9)) 3

k=0

sit. wpi1 = f(Tr, ur) Fredic&iovx model [ manipulated inputs

Y = 9(Tk, uk)
Umin < Up < Umax  coWskraints

Ymin S Yk S Ymax

i
xo = x(t) state feedback ././'/l
mul

optimization problem | et

o Ateachtimet: /
- get new measurements to update the estimate of the current state z(t)
- solve the optimization problem with respect to {uo, ..., un—1}
- apply only the first optimal move u(t) = ug, discard the remaining samples
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MPC IN INDUSTRY

e The MPC concept for process control dates back to the 60’s

iscrete Dynamic Optimization |
pplied to On-Line Optimal Control

MARSHALL D. RAFAL and WILLAM F. STEVENS

e MPC used inthe process industries since the 80’s

MPC is the standard for advanced control in the process industry

e Researchin MPCis still very active !

5/38



MPC IN INDUSTRY

e Impact of advanced control technologies in industry

C DY
TABLE 1 A list of the survey results in order of industry impact as perceived by
the committee members.

A y
Rank and Technology High-Impact Ratings Low- or No-Impact Ratings
PID control 100% 0%

System identification 61% 9%
Process data analytics 61% 17%
Soft sensing 52% 22%
Fault detection and 50% 18%
identification

Decentralized and/or 48% 30%
coordinated control

Intelligent control 35% 30%
Discrete-event systems 23% 32%
Nonlinear control 22% 35%
Adaptive control 17% 43%
Robust control 13% 43%
Hybrid dynamical systems 13% 43%

(. J
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AUTOMOTIVE APPLICATIONS OF MPC

Ford Motor Company

Powertrain

engine control, magnetic actuators, robotized gearbox, Jaguar
ower MGT in HEVSs, cabin heat control, electrical motors .

i DENSO Automotive FCA

Vehicle dynamics
traction control, active steering, semiactive suspensions,

autonomous driving
oDy 'Ss
“J\» ” (—; — [ ‘

suspension deflectio . Road: 1

General Motors

lane free, Mode: OA, k=108, Pi=1

5 i93
0 ( """" CL
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Most automotive OEMs are looking into MPC solutions today
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MPC FOR AUTONOMOUS DRIVING

e Coordinate torque request and steering to achieve safe and
comfortable autonomous driving with no collisions

e MPC combines path planning, path tracking, and obstacle
avoidance

e Stochastic prediction models are used to account for uncertainty
and driver’s behavior
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MPC OF GASOLINE TURBOCHARGED ENGINES

e Optimize engine actuators (throttle, wastegate, intake/exhaust cams) to make
engine torque track set—points maximizing efficiency and satisfying constraints

Achieved
Torque

Desired Actuators
torque commands

I Measurements

QP solved in real-time on ECU
2= J\F\hﬂ
ine

engine operating at low pressure (66 kPa)
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SUPERVISORY MPC OF POWERTRAIN WITH CVT

e Coordinate engine torque request and continuously variable transmission
(CVT) ratio to improve fuel economy and drivability

e Real-time MPC is able to take into account coupled dynamics and constraints,
optimizing performance also during transients

Engine
torque
request \e= ] ”
Desired oy
axle torque
—_—
MPC S
>
CvT -
ratio CVT Control
request entre US06 Double Hill driving cycle
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AEROSPACE APPLICATIONS OF MPC

e MPC capabilities explored in new space applications

cooperating UAVs

L

powered descent
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MPC FOR SMART ELECTRICITY GRIDS

transmission grid

Dispatch power in smart distribution grids, trade energy on energy markets

Challenges: account for dynamics, network topology, physical constraints, and
stochasticity (of renewable energy, demand, electricity prices)

FP7-ICT project “E-PRICE - Price-based Control of Electrical Power Systems”
(2010-2013) eprice O
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EMBEDDED LINEAR MPC AND QUADRATIC PROGRAMMING

e Linear MPC requires solving a Quadratic Program (QP)

uo

1
min §z’Qz +2'(t)F'z w1
z
s.t. Gz < W + Sx(t)

UN -1

ON MNMIZING A CONVEX FUNCTION SUBJECT TO LINEAR INEQUALITIES

By E. M. L. BEALE
Admiralty Research Laboratory, Teddington, Middlesex

SUMMARY

THE minimization of a convex function of variables subject-to linear inequalities is
discussed briefly in general terms. Dantzig’s Simplex Method is extended to yield
finite algorithms for minimizing either a convex quadratic function or the sum of
the 7 largest of a set of linear functions, and the solution of a generalization of the
latter problem is indicated. In the last two sections a form of linear programming
with random variables as coefficients is described, and shown to involve the minimiza-
tion of a convex function.

Arich set of good QP algorithms is available today

o Which QP algorithms are suitable for implementation in embedded systems ?
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MPC IN A PRODUCTION ENVIRONMENT

Key requirements for deploying MPC in production:

1. speed (throughput)
- worst-case execution time less than sampling interval
- alsofast on average (to free the processor to execute other tasks)

2. limited memory and CPU power (e.g., 150 MHz / 50 kB)

3. numerical robustness (single precision arithmetic)

4. certification of worst-case execution time

5. code simple enough to be validated/verified/certified
(library-free C code, easy to check by production engineers)




EMBEDDED SOLVERS IN INDUSTRIAL PRODUCTION

e Multivariable MPC controller
e Sampling frequency = 40 Hz (= 1 QP solved every 25 ms)
e Vehicle operating =1 hr/day for ~360 days/year on average

e Controller running on 10 million vehicles

~£20,000,000,000,000 Q“"/v“

and none of them should fail.

15/38



FAST GRADIENT PROJECTION

e Solve (dual) QP by fast gradient method

. 1 ! / 7 hile k<maxit
min —2'Qz+x'F'z k k k k—1 " petasmax((c-1)/ (ki2),0);
mpte wh = yP 4 By -y S
s.t. Gz<W + Sz & & Setrenl;
z = —Kuw —g yosy;
st = 1GZF - L(W + Sz) e
L L gapl=-w'*s;
if gapl<=epsVL
y*+1 = max {wk + sk, 0} i
end
o
k=k+1;
end
e Verysimple to code
. k * 2L * (12
e Convergencerate: f(z") — f(2") < ——1l20 — 27|12
(k+2)
e Tight bounds on maximum number of iterations

Extended to mixed-integer quadratic programming (MIQP)
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min %Z’Qz +cz
l

o Alternating Directions Method of Multipliers for QP st L<Az<u

k 1 ’ 1 ’ k k while k<maxiter
2ol = —(Q + pA’A) = (pA'(u” — s¥) +¢) E;‘;\gigm"(rho*(u-s)));
SkJrl — min{max{Aszrl 4 Uk, g}, u} z:mi.g?(nzm,ub),m;
WL = gk g AgkHl gkl o

(7 lines EML code)
(=40 lines of C code)

pu = dual vector

e Matrix (Q + pA’A) must be nonsingular
e The factorization of matrix (Q + pA’A) can be done at start and cached
e Verysimple to code. Sensitive to matrix scaling (as gradient projection)

e Used in many applications (control, signal processing, machine learning)

17/38



REGULARIZED ADMM FOR QUADRATIC PROGRAMMING

e Robust “regularized” ADMM iterations:

L = Q4 pATA+ el)~Y(c — ez + pAT (uF — %))
s = min{max{AzF T + ¥ ¢}, u}
uk+1 _ uk +A2k+1 _ Sk+1

Works for any @@ > 0, A, and choiceof ¢ > 0

Simple to code, fast, and robust
Q+el A
A —%I

Implemented in free osQP solver http://osgp.org

(Python interface: ~ 20,000 downloads)

Only needs to factorize

:| once

Extended to solve mixed-integer quadratic programming problems
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http://osqp.org

QP SOLVERS - AN EXPERIMENTAL COMPARISON

e Experimental setup:
- PCwith MATLAB/Simulink
- RS232 adapter
- TMS320F28335 DSP (150 MHz)

vars x constr. | ODYSQP | GPAD | ADMM

4x 16 0.12 ms 033ms | 1.4ms
8x 24 0.44 ms 1.1 ms 4ms
12x32 1.2ms 2.6ms 8.2 ms

e Active set (AS) methods are usually the best on small/medium problems:
- excellent quality solutions within few iterations
- behavior is more predictable (=less sensitive to preconditioning)

- no need for advanced linear algebra libraries
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CAN WE SOLVE QP'S USING LEAST SQUARES ?

The least squares (LS) problem is probably the
most studied problem in numerical linear algebra

v = arg min || Av — b||3

INMATLAB: >> v=A\b (one character ')

e Nonnegative Least Squares (NNLS):

min, [|Av — b3
st. v>0

pyo
T
i

Adrien-Marie Legendre
(1752-1833)

Carl Friedrich Gauss
(1777-1855)

very simple to solve (750 chars in Embedded MATLAB)
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SOLVING QP’S VIA NONNEGATIVE LEAST SQUARES

e Complete the squares and transform QP to least distance problem (LDP)

rrgin %z’Qerc’z Q=LL

st. Gz<g
utLz+ L Te

o An LDP can be solved by the NNLS
2

0

y+1

min
Yy

s.t.

MI
d/

2

< ol

>0

e Ifresidual = 0 then QP is infeasible. Otherwise set
1
Z* LflM/y* _Q*lc

__1—|—d’y*

e Extended to solving mixed-integer QP’s

. 1 2
min  4u]
s.t.

Mu<d
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SOLVING QP’S VIA NNLS AND PROXIMAL POINT ITERATIONS

e Solve QP via NNLS within proximal-point iterations

Zpp1 = argmin, 12'Qz+dz+ 5z — 2|3
st. Az <D
Gr=g

o Advantage: numerical robustness, as () + €I can be arbitrarily well conditioned

CPU time (ms) (worst-case)

single precision arithmetic
30 vars, 100 constraints
(Macbook Pro 3 GHz Intel Core i7) o

e Extended to solve MIQP problems
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MPC WITHOUT ON-LINE QP

prediction model

set-points
r(t)

model-based optimizer

outputs
y(t)

T measurements

e Canwe implement MPC without an on-line solver?
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EXPLICIT MODEL PREDICTIVE CONTROL AND MULTIPARAMETRIC QP

e The multiparametric solution of a strictly convex QP is continuous and
piecewise affine

z*(z) = argmin, 12/Qz+2'F'z
st. Gz<W+ Sz

e Corollary: linear MPC is continuous & piecewise affine !
Uo Fie+g1 if Hix<K;
Ul
2 = ) ug(x) = : .
Uy _1

Fyx+gn if -HMHC < Kyp
o New mpQP solver based on NNLS available
and included in MPC Toolbox since R2014b

Is explicit MPC better than on-line QP (=implicit MPC) ?
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COMPLEXITY CERTIFICATION FOR ACTIVE-SET QP SOLVERS

e Result: The number of iterations to solve the QP via a dual active-set method is
a piecewise constant function of the parameter x

20

10

We can exactly quantify how
many iterations (flops) the QP
solver takes in the worst-case !

T2

10

20
—20 —10 xl 10 20

e Examples (from MPC Toolbox):

inverted pendulum ~ DCmotor  nonlinear demo  AFTIF16
Explicit MPC
max flops 3382 1689 9184 16434
max memory (kB) 55 30 297 430
Implicit MPC
max flops 3809 2082 7747 7807
sgrt 27 9 37 33
max memory (kB) 15 13 20 16

e QP certification algorithm currently used in production oDN'SsS
Pttt 25/38



CERTIFICATION OF KR SOLVER

e The KR algorithmis a very simple and effective solver for box-constrained QP.
All violated/active constraints form the new active set at the next iteration

e Assumptions for convergence are quite conservative, and indeed KR can cycle

We can exactly map how many iterations KR takes to converge (or cycle)

# of iterations 1 (2 [ 13 M4 (15 [ 16
regions where KR fails Il

Example 1 Example 2 Example 3

Explicit MPC

max flops 324 1830 5401
max memory [kB] 3.97 15.9 89.69
Dual active-set

max flops + sqrt 580 +5 1922+13 3622+ 24
max memory [kB] 8.21 8.63 8.90
KR algorithm

max flops 489 1454 2961
max memory [kB] 3.19 3.39 3.51

26/38



DATA-DRIVEN MPC



MPC AND MACHINE LEARNING

e Model predictive control requires a model of the process

e Models are usually obtained from data (parameter estimation or black-box
modeling)

In industrial MPC most effort is spent in
identifying open-loop process models

)
e Many techniques and tools available from systems identification and machine

learning literature

e Chosen model structure must be tailored to MPC design and optimization
(linear/switching liner/nonlinear)
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LEARNING NONLINEAR MODELS FOR MPC

e |dea: use autoencoders and artificial neural networks to learn a nonlinear
state-space model of desired order from input/output data

Ok Ok+1

|
0000000 0000000
4 N
Y e f > 0
0000 o elelele

TE —— - Thtl €—p Thil

t t
QOOQ O statemap ,OOOQ

/ e Y / e \
0000000 0000000
Il.l Uk ITk
Or = Wk Yh-ml
I, = [y;c e y;c—na-‘—l U;c e u;f—nb-&-l],
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LEARNING NONLINEAR MODELS FOR MPC - AN EXAMPLE

e System generating the data = nonlinear 2-tank benchmark

$1(k +
z2(k +1) = z2(k) +
] I- y(k) = z2(k) + v(k)

) = x1(k) — k1/x1(k) + k2 (u(k) +w(k))
) ks/w1(k) — kay/z2(k)

Model is totally unknown to learning algorithm

www.mathworks.com

e Artificial neural network (ANN): 3 hidden layers
60 exponential linear unit (ELU) neurons

e For given number of model parameters,
autoencoder approach is superior to NNARX

e Jacobians directly obtained from ANN structure
for Kalman filtering & MPC problem construction

NN

50 100 150 200
time steps.

LTV-MPC results
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DATA-DRIVEN MPC

optimization
algorithm

process

set-points

r(t)

outputs

y(t)

'T‘ measurements

e Can we design an MPC controller without first identifying a model of the
open-loop process ?
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DATA-DRIVEN DIRECT CONTROLLER SYNTHESIS

_____________________________

_____________________________

Collect aset of data {u(t),y(t),p(t)},t=1,...,N

Specify a desired closed-loop linear model M fromr to y

Compute 1, (t) = M#y(t) from pseudo-inverse model M# of M

Identify linear (LPV) model K, frome, = r, — y (virtual tracking error) to u
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DATA-DRIVEN MPC

e Design alinear MPC (reference governor) to generate the reference r

P |

L 'f"‘ e I e d | y
! u- o. |

ro MPC {+—0— K, = L
desired EMT_) E

| Linear Fredickioh model
(EoEaLL-j known )

reference

e MPC designed to handle input/output constraints and improve performance
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DATA-DRIVEN MPC - AN EXAMPLE

45 5 T T
T
with MPC —
s without MPC >T 0 il
5l . . .

0 [rad]
3
c

Au[V]
o
=

-
=

5 10 15 20 25 30 Time [s]
Time [s]

constrainks on anu&

desired tracking
tncrements satisfied

performance achieved

No open-loop process model is identified to design the MPC controller!
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OPTIMAL DATA-DRIVEN MPC

e Question: How to choose the reference model M ?

____________________________

¢ Canwe choose M from data so that K, is an optimal controller ?
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OPTIMAL DATA-DRIVEN MPC

e ldea: parameterize desired closed-loop model M (6) and optimize

mgin J(0) = Wy (r(t) — yp(0,1))* + WauAup (0, ) + Wae(u(t) — uo(0,1))?

performance index identification error

e Evaluating J(6) requires synthesizing K, (¢) from data and simulating the
nominal model and control law

Yp(0,1) = M(O)r(t)  up(8,t) = Kp(0)(r(t) —yp(0,1))
Aup(0,t) = up(0,t) —up(0,t — 1)

e Optimal 6 obtained by solving a (hon-convex) nonlinear programming problem
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OPTIMAL DATA-DRIVEN MPC

e Results: linear process ¢

z—0.4
22 4+0.152 — 0.325 S

G(z) =

The data-driven controller is only 1.3% worse
than model-based LQR

e Results: nonlinear (Wiener) process 2

<
h
—
~+
N>
I

G(z)u(t) .
lyr(t)] arctan(yr(t)) ;

(1), ()
—

<

—~
~

=
I

The data-driven controller is 24% better than B
LQR based on identified open-loop model !




CONCLUSIONS

¢ Long history of success of MPC in the process industries, —
now spreading to automotive (and many others) [}j

w Zlinn

o Key enablers for MPC to be successful in industry:

1. Fast, robust, and simple to code QP solvers, with proved execution time
2. Good system identification / machine learning methods to deal with data

3. Production managers that are willing to adopt new advanced control technologies

Is MPC a mature technology for the automotive industry ?
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MPC GOES T0 AUTOMOTIVE PRODUCTION NOW !

General Motors and ODYS have developed a multivariable constrained
MPC system for torque tracking in turbocharged gasoline engines. The
control system is scheduled for production by GM in fall 2018.

e Multivariable system, 4 inputs, 4 outputs.
QP solved inreal time on ECU

e Supervisory MPC for powertrain control
also in production in 2018

First known mass production of MPC in the automotive industry

/
http://www.odys.it/odys-and-gm-bring-online-mpc-to-production D D \
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