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Outline

• Model Predictive Control (MPC) (in a nutshell)

• Recent advances in embedded quadratic programming (QP) solvers

• Data-driven design of embeddedMPC controllers

• EmbeddedMPC in industry

2/38



Model Predictive Control (MPC)
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Use a dynamical model of the process to predict its future

evolution and choose the “best” control action

simplified likely

--------------------
a good
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Model Predictive Control (MPC)

• Goal: find the best control sequence over a future horizon ofN steps

min

N−1∑
k=0

∥Wy
(yk − r(t))∥2

2 + ∥Wu
(uk − ur(t))∥2

2

s.t. xk+1 = f(xk, uk) prediction model
yk = g(xk, uk)

umin ≤ uk ≤ umax constraints
ymin ≤ yk ≤ ymax

x0 = x(t) state feedback

optimization problem

• At each time t:

– get newmeasurements to update the estimate of the current state x(t)

– solve the optimization problemwith respect to {u0, . . . , uN−1}
– apply only the first optimal move u(t) = u∗

0 , discard the remaining samples
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MPC in industry

• TheMPC concept for process control dates back to the 60’s

3

(Rafal, Stevens, AiChE Journal, 1968)

• MPC used in the process industries since the 80’s
(Qin, Badgewell, 2003) (Bauer, Craig, 2008)

MPC is the standard for advanced control in the process industry

• Research inMPC is still very active !
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MPC in industry
(Samad, IEEE CSMagazine, 2017)

• Impact of advanced control technologies in industry

FEBRUARY 2017 « IEEE CONTROL SYSTEMS MAGAZINE 17

A Survey on Industry Impact and Challenges Thereof

t its 2014 World Congress, the 
International Federation of Auto-
matic Control (IFAC) launched 

a “pilot” industry committee with 
the objective of increasing industry 
participation in, and impact from, 
IFAC activities. The chair of this com-
mittee is Tariq Samad, with support 
from Roger Goodall (Loughborough 
University, United Kingdom) and 
Serge Boverie (Continental, France) as 
cochairs. This committee was estab-
lished as an outcome of an industry 
task force led by Roger Goodall in the 
last IFAC triennium (2011–2014).

In 2015, the committee surveyed its 
members to get their views on the im-
pact of advanced control and challenges 
associated with enhancing the impact. 
The survey had two questions, and 23 
of the 27 committee members (excluding 
the chair) responded. The majority of 
the committee is either currently with, 
or has prior affiliation with, industry; all 
others have had substantial industry in-
volvement. To be more exact, 12 of the re-
spondents were affiliated with industry, 
ten with academia, and one with gov-
ernment. The committee’s experience 
base covers many of the industry sectors 
that have benefited from control science 
and engineering, including aerospace, 
automotive, refining, petrochemicals, 
chemicals, metals, mining, biomedical, 
finance, and beer brewing. The geo-
graphic distribution is also broad, with 
representatives from 21 countries and all 
continents except Antarctica. Most of the 
members were nominated by IFAC na-
tional member organizations and tech-
nical committees.

Although limited in many ways, the 
survey responses should still be of inter-
est to the control community and any 
feedback is always welcome, so please 
send comments to samad@ieee.org. 

Note that an earlier version of this col-
umn is published on the IFAC blog site 
http://blog.ifac-control.org/.

SURVEY QUESTION 1:  
IMPACT OF SPECIFIC ADVANCED 
CONTROL TECHNOLOGIES
First, members were asked about their 
perceptions of the industry success (or 
lack thereof) of a dozen advanced con-
trol technologies. Proportional-integral-
derivative (PID) control was also included 
in the list for calibration purposes. A glos-
sary was included with the survey, listing 
topics covered under each technology. 
Members were asked to assess the impact 
of each of these technologies by selecting 
one of the following:

 » High multi-industry impact: Sub-
stantial benefits in each of several 
industry sectors; adoption by 
many companies in different sec-
tors; standard practice in industry.

 » High single-industry impact: Sub-
stantial benefits in one industry 
sector; adoption by many compa-

nies in the sector; standard prac-
tice in the industry.

 » Medium impact: Significant ben-
efits in one or more industry sec-
tors; adoption by one or two 
companies; not standard practice.

 » Low impact: A few successful 
applications in one or more 
companies/industries.

 » No impact: Not aware of any 
successful deployed real-world 
application.

The results are provided in Table 1.
On the face of it, these results are 

disappointing. No advanced control 
technology is unanimously acknowl-
edged by industry-aware control ex-
perts as having had high industry 
impact—90 years after its invention 
(or discovery), we still have noth-
ing that compares with PID! It’s also 
concerning that the “crown jewels” 
of control theory appear near the bot-
tom of the list. However, the fact that 
all the technologies had at least some 
positive assessments suggests that the 

Digital Object Identifier 10.1109/MCS.2016.2621438
Date of publication: 19 January 2017

Rank and Technology High-Impact Ratings Low- or No-Impact Ratings 

PID control 100% 0%

Model predictive control 78% 9%

System identification 61% 9%

Process data analytics 61% 17%

Soft sensing 52% 22%

Fault detection and 
identification

50% 18%

Decentralized and/or 
coordinated control

48% 30%

Intelligent control 35% 30%

Discrete-event systems 23% 32%

Nonlinear control 22% 35%

Adaptive control 17% 43%

Robust control 13% 43%

Hybrid dynamical systems 13% 43%

TABLE 1  A list of the survey results in order of industry impact as perceived by 
the committee members.

A
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Automotive applications of MPC
(Bemporad, Bernardini, Borrelli, Cimini, Di Cairano, Esen, Giorgetti, Graf-Plessen, Hrovat, Kolmanovsky
Levijoki, Ripaccioli, Trimboli, Tseng, Yanakiev, ... (2001-present))

Powertrain
engine control, magnetic actuators, robotized gearbox,

powerMGT in HEVs, cabin heat control, electrical motors

Vehicle dynamics
traction control, active steering, semiactive suspensions,

autonomous driving

FordMotor Company

Jaguar

DENSOAutomotive
FCA

GeneralMotors
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4

tire deflection

suspension deflection


4

tire deflection

suspension deflection



Most automotiveOEMs are looking intoMPC solutions today
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MPC for autonomous driving

• Coordinate torque request and steering to achieve safe and

comfortable autonomous driving with no collisions

• MPC combines path planning, path tracking, and obstacle

avoidance

• Stochastic predictionmodels are used to account for uncertainty

and driver’s behavior
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MPC of gasoline turbocharged engines
• Optimize engine actuators (throttle, wastegate, intake/exhaust cams) tomake

engine torque track set-points, maximizing efficiency and satisfying constraints

Measurements

Desired 
torque

Actuators
commands

Achieved
Torque

EngineMPC

QP solved in real-time on ECU

(Bemporad, Bernardini, Long, Verdejo, 2018)

engine operating at low pressure (66 kPa)
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Supervisory MPC of powertrain with CVT

• Coordinate engine torque request and continuously variable transmission

(CVT) ratio to improve fuel economy and drivability

• Real-timeMPC is able to take into account coupled dynamics and constraints,

optimizing performance also during transients

CVT Control

Desired 
axle torque

MPC

Engine Control

Engine 
torque

request

CVT
ratio

request

(Bemporad, Bernardini, Livshiz, Pattipati, 2018)

US06Double Hill driving cycle
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Aerospace applications of MPC

• MPC capabilities explored in new space applications

cooperating UAVs powered descent planetary rover

  

(Bemporad, Rocchi, 2011) (Pascucci, Bennani, Bemporad, 2016) (Krenn et. al., 2012)
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MPC for Smart Electricity Grids
(Patrinos, Trimboli, Bemporad, 2011)

hydro-storage

wind	farm

photovoltaic

natural	gas

coal	1

coal	2

transmission	grid

? ? ?

? ? 

? ? ?

demand
? ? ?

Dispatch power in smart distribution grids, trade energy on energymarkets

Challenges: account for dynamics, network topology, physical constraints, and

stochasticity (of renewable energy, demand, electricity prices)

FP7-ICT project “E-PRICE - Price-based Control of Electrical Power Systems”
(2010-2013)
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Embedded Linear MPC and Quadratic Programming
• LinearMPC requires solving aQuadratic Program (QP)

min
z

1

2
z′Qz + x′(t)F ′z

s.t. Gz ≤ W + Sx(t)
z =


u0

u1

...

uN−1


x*

Ax  b

1
2x

0Qx+ c0x = constant

(Beale, 1955)

A rich set of goodQP algorithms is available today

• WhichQP algorithms are suitable for implementation in embedded systems ?
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MPC in a production environment
Key requirements for deployingMPC in production:

mi
n

1
2
x

0
Q

x

+ c

0
x

s.t
.

A

x

 b

1. speed (throughput)

– worst-case execution time less than sampling interval

– also fast on average (to free the processor to execute other tasks)

2. limitedmemory and CPU power (e.g., 150MHz / 50 kB)

3. numerical robustness (single precision arithmetic)

4. certification of worst-case execution time

5. code simple enough to be validated/verified/certified

(library-free C code, easy to check by production engineers)
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Embedded solvers in industrial production

• MultivariableMPC controller

• Sampling frequency = 40Hz (= 1QP solved every 25ms)

• Vehicle operating≈1 hr/day for≈360 days/year on average

• Controller running on 10million vehicles

~520,000,000,000,000 QP/yr
and none of them should fail.
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Fast gradient projection
(Nesterov, 1983) (Patrinos, Bemporad, 2014)

• Solve (dual) QP by fast gradientmethod

min
z

1

2
z′Qz + x′F ′z

s.t. Gz ≤ W + Sx

K = Q−1G′

g = Q−1Fx

L ≥ 1
λmax(GQ−1G′)

βk = max{ k−1
k+2

, 0}

wk = yk + βk(y
k − yk−1)

zk = −Kwk − g

sk = 1
LGzk − 1

L (W + Sx)

yk+1 = max
{
wk + sk, 0

}

while k<maxiter
beta=max((k-1)/(k+2),0);
w=y+beta*(y-y0);
z=-(iMG*w+iMc);
s=GL*z-bL;

y0=y;

% Termination
if all(s<=epsGL)
gapL=-w'*s;
if gapL<=epsVL

return
end

end

y=w+s;
k=k+1;

end

• Very simple to code

• Convergence rate: f(xk)− f(x∗) ≤ 2L

(k + 2)2
∥z0 − z∗∥22

(Necoara, Nesterov, Glineur, 2018)

• Tight bounds onmaximum number of iterations

• Extended tomixed-integer quadratic programming (MIQP) (Naik, Bemporad, 2017)
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ADMM
(Gabay,Mercier, 1976) (Glowinski, Marrocco, 1975) (Douglas, Rachford, 1956) (Boyd et al., 2010)

• Alternating DirectionsMethod ofMultipliers for QP
min 1

2
z′Qz + c′z

s.t. ℓ ≤ Az ≤ u

zk+1 = −(Q+ ρA′A)−1(ρA′(uk − sk) + c)

sk+1 = min{max{Azk+1 + uk, ℓ}, u}
uk+1 = uk +Axk+1 − sk+1

ρu = dual vector

while k<maxiter
k=k+1;
z=-iM*(c+A'*(rho*(u-s)));
Az=A*z;
s=max(min(Az+u,ub),lb);
u=u+Az-s;

end

(7 lines EML code)

(≈40 lines of C code)

• Matrix (Q+ ρA′A)must be nonsingular

• The factorization of matrix (Q+ ρA′A) can be done at start and cached

• Very simple to code. Sensitive tomatrix scaling (as gradient projection)

• Used inmany applications (control, signal processing, machine learning)
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Regularized ADMM for quadratic programming
(Banjac, Stellato, Moehle, Goulart, Bemporad, Boyd, 2017)

• Robust “regularized” ADMM iterations:

zk+1 = −(Q+ ρATA+ ϵI)−1(c− ϵzk + ρAT (uk − zk))

sk+1 = min{max{Azk+1 + yk, ℓ}, u}
uk+1 = uk +Azk+1 − sk+1

• Works for anyQ ≽ 0,A, and choice of ϵ > 0

• Simple to code, fast, and robust

• Only needs to factorize

[
Q+ ϵI A′

A − 1
ρ
I

]
once

• Implemented in free osQP solver http://osqp.org
(Python interface:≈ 20,000 downloads)

• Extended to solvemixed-integer quadratic programming problems

(Stellato, Naik, Bemporad, Goulart, Boyd, 2018)
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QP solvers - An experimental comparison

• Experimental setup:

– PCwithMATLAB/Simulink

– RS232 adapter

– TMS320F28335DSP (150MHz)

vars × constr. ODYS QP GPAD ADMM
4× 16 0.12 ms 0.33 ms 1.4 ms
8× 24 0.44 ms 1.1 ms 4 ms
12×32 1.2 ms 2.6 ms 8.2 ms

• Active set (AS) methods are usually the best on small/medium problems:

– excellent quality solutions within few iterations

– behavior is more predictable (=less sensitive to preconditioning)

– no need for advanced linear algebra libraries
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Can we solve QP’s using least squares ?

The least squares (LS) problem is probably the

most studied problem in numerical linear algebra

v = argmin ∥Av − b∥22

InMATLAB: >> v=A\b (one character !)

Adrien-Marie Legendre
(1752–1833)

Carl Friedrich Gauss
(1777–1855)

• Nonnegative Least Squares (NNLS): (Lawson, Hanson, 1974)

minv ∥Av − b∥22
s.t. v ≥ 0

very simple to solve (750 chars in Embedded MATLAB)
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Solving QP’s via nonnegative least squares
(Bemporad, 2016)

• Complete the squares and transformQP to least distance problem (LDP)

min
z

1
2z

′Qz + c′z

s.t. Gz ≤ g

Q = L′L

u , Lz + L−T c

min
u

1
2∥u∥

2

s.t. Mu ≤ d

• An LDP can be solved by the NNLS (Lawson, Hanson, 1974)

min
y

1

2

∥∥∥∥∥
[
M ′

d′

]
y +

[
0

1

]∥∥∥∥∥
2

2

s.t. y ≥ 0

M = GL−1

d = b+GQ−1c

• If residual= 0 thenQP is infeasible. Otherwise set

z∗ = − 1

1 + d′y∗
L−1M ′y∗ −Q−1c

• Extended to solvingmixed-integer QP’s (Bemporad, NMPC, 2015) 21/38



Solving QP’s via NNLS and proximal point iterations
(Bemporad, 2018)

• SolveQP via NNLSwithin proximal-point iterations

zk+1 = argminz
1
2z

′Qz + c′z + ϵ
2∥z − zk∥22

s.t. Az ≤ b

Gx = g

• Advantage: numerical robustness, asQ+ ϵI can be arbitrarilywell conditioned

single precision arithmetic

30 vars, 100 constraints
(Macbook Pro 3 GHz Intel Core i7)

• Extended to solveMIQP problems (Naik, Bemporad, 2018)
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MPC without on-line QP

prediction model

model-based optimizer

set-points outputsinputs

measurements

r(t) u(t) y(t)

optimization  
algorithm

process

m
in

1
2
x
0 Q
x
+
c
0 x

s.t
.

A
x

b

• Canwe implementMPCwithout an on-line solver ?
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Explicit model predictive control and multiparametric QP
(Bemporad,Morari, Dua, Pistikopoulos, 2002)

• Themultiparametric solution of a strictly convexQP is continuous and

piecewise affine

z∗(x) = argminz
1
2z

′Qz + x′F ′z

s.t. Gz ≤ W + Sx

• Corollary: linearMPC is continuous & piecewise affine !

z
∗
=


u0

u1

.

.

.

u∗
N−1

 u∗
0(x) =


F1x+ g1 if H1x ≤ K1

...
...

FMx+ gM if HMx ≤ KM

• NewmpQP solver based onNNLS available (Bemporad, 2015)

and included inMPCToolbox since R2014b (Bemporad,Morari, Ricker, 1998-today)

Is explicit MPC better than on-line QP (=implicit MPC) ?
24/38
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Complexity certification for active-set QP solvers
• Result: The number of iterations to solve theQP via a dual active-set method is

a piecewise constant function of the parameter x

(Cimini, Bemporad, 2017)

We can exactly quantify how

many iterations (flops) the QP

solver takes in the worst-case !

• Examples (fromMPC Toolbox):

inverted pendulum DC motor nonlinear demo AFTI F16
Explicit MPC
max flops 3382 1689 9184 16434
max memory (kB) 55 30 297 430
Implicit MPC
max flops 3809 2082 7747 7807
sqrt 27 9 37 33
max memory (kB) 15 13 20 16

• QP certification algorithm currently used in production
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Certification of KR solver

• TheKR algorithm is a very simple and effective solver for box-constrainedQP.

All violated/active constraints form the new active set at the next iteration

(Kunisch, Rendl, 2003) (Hungerländer, Rendl, 2015)

• Assumptions for convergence are quite conservative, and indeedKR can cycle

We can exactlymap howmany iterations KR takes to converge (or cycle)

(Cimini, Bemporad, 2019)

Table 4
Benchmark of KR and GI algorithms for an increasing con-
trol horizon for the inverted pendulum problem

Nu KR algorithm GI algorithm

nmax
KR

(±, ∗,÷)
mKR [kB]
16|32 bit

tKR [s] nmax
GI

(±, ∗,÷)|sqrt
mGI [kB]
16|32 bit

5 1454 3.39|3.70 10.82 1922|13 8.63|9.38

6 2290 3.51|3.93 31.35 2746|19 8.90|9.90

7 2875 3.65|4.20 79.16 4081|21 9.21|10.50

8 3902 3.81|4.50 231.76 5894|28 9.56|11.19

9 4616 3.98|4.82 292.54 8155|36 9.95|11.94

10 5421 4.17|5.19 391.65 10916|45 10.37|12.78

11 6296 4.37|5.57 509.91 14231|55 10.83|13.69

12 8039 4.59|6.00 892.35 18176|78 11.34|14.69

Figure 2 shows the polyhedral regions associated with
the tuples iterated by Algorithm 2. Again, the same color
means the same number of iterations of the KR algo-
rithm to find the solution. Black regions are those defin-
ing the tuples T i ∈ T̄, i = 1, . . . ,# T̄. This shows how
the certification algorithm is able to detect exactly the
regions where the KR algorithm is cycling, due to T̄ 6= ∅.
This result helps the control designer to eventually ex-
clude KR from the list of candidate algorithms to solve
the optimization problem, or alternatively can open the
avenue to use KR algorithm even if it cycles.

Indeed, by knowing exactly the regions where this hap-
pens, one could apply a semi-explicit approach similar to
the one proposed in [9], by storing the explicit solution
only for the regions of cycling. Given the certification re-
sult for the non-cycling polyhedra, and the straightfor-
ward computation of the worst-case flops for the evalua-
tion of the partial explicit law, one can exactly certify if
the semi-explicit approach with KR as an implicit solver
is superior to other algorithms.

5 Conclusion

We have presented a certification algorithm that exactly
computes the worst-case number of iterations and flops,
or failure to converge, of the KR primal-dual infeasible
block principal pivoting method for solving a family of
box-constrained QP’s, that depend on a vector of pa-
rameters in the linear term of the cost function and/or
in the upper and lower bounds on the optimization vec-
tor. Compared to active-set methods, the considered KR
block principal pivoting algorithm can be much faster
and easier to code, although it lacks guarantees of con-
vergence for all strictly convex box-constrained QPs.
The results of this paper open the opportunity to adopt
the KR solver in embedded MPC applications when
the certification analysis provide a positive result, or to
prohibit its use by providing counter-examples where

# of iterations 1 2 3 4 5 6

regions where KR fails

0 1 2 3 4
−2

−1

0

1

2

θ1

θ 2

Figure 2. Complexity certification of the KR algorithm for
the toy QP problem (19). The black regions represent subsets
of the parameter space for which the KR algorithm cycles.

it would fail. The complexity certification and conver-
gence verification have been successfully demonstrated
on well-known MPC problems, in which the sufficient
conditions for convergence available from the literature
are not satisfied.
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Example 1 Example 2 Example 3

Explicit MPC
max flops 324 1830 5401
max memory [kB] 3.97 15.9 89.69

Dual active-set
max flops + sqrt 580 + 5 1922+ 13 3622+ 24
max memory [kB] 8.21 8.63 8.90

KR algorithm
max flops 489 1454 2961
max memory [kB] 3.19 3.39 3.51
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Data-driven MPC



MPC and Machine Learning
• Model predictive control requires amodel of the process

• Models are usually obtained from data (parameter estimation or black-box

modeling)

In industrial MPC most effort is spent in

identifying open-loop processmodels

• Many techniques and tools available from systems identification andmachine

learning literature

• Chosenmodel structuremust be tailored toMPC design and optimization

(linear/switching liner/nonlinear)
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Learning nonlinear models for MPC
(Masti, Bemporad, CDC 2018)

• Idea: use autoencoders and artificial neural networks to learn a nonlinear

state-spacemodel of desired order from input/output data

(Hinton, Salakhutdinov, 2006)

dead-beat 
observer

output 
map

state map

Ok = [y′
k . . . y′

k−m]′

Ik = [y′
k . . . y′

k−na+1 u
′
k . . . u′

k−nb+1]
′
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LTV MPC

● The performance achieved with the derivative-based controller suggests that 
an LTV-MPC formulation might also works well. We also assess its 
robustness using a model achieving 61% BFR in open loop 

ODYS CONFIDENTIAL

Computation time per step: ~40ms

LTV-MPC results

Learning nonlinear models for MPC - An example
(Masti, Bemporad, CDC 2018)

• System generating the data = nonlinear 2-tank benchmark

www.mathworks.com


x1(k + 1) = x1(k)− k1

√
x1(k) + k2(u(k) + w(k))

x2(k + 1) = x2(k) + k3
√

x1(k)− k4
√

x2(k)

y(k) = x2(k) + v(k)

Model is totally unknown to learning algorithm

• Artificial neural network (ANN): 3 hidden layers

60 exponential linear unit (ELU) neurons

• For given number of model parameters,

autoencoder approach is superior to NNARX

• Jacobians directly obtained fromANN structure

for Kalman filtering &MPC problem construction
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Data-driven MPC

prediction model

model-based optimizer

set-points outputsinputs

measurements

r(t) u(t) y(t)

optimization 
algorithm

process

m
in

1
2
x
0 Q
x
+
c
0 x

s.t
.

A
x

b

• Canwe design anMPC controllerwithout first identifying amodel of the

open-loop process ?
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Data-driven direct controller synthesis
(Campi, Lecchini, Savaresi, 2002) (Formentin et al., 2015)Virtual reference feedback tuning

G

p

yo
Kp

r
�

y
d

ue

M

M
rv y

Collect a sequence of data {u(k), y(k), p(k)}Nk=1

Specify a desired closed-loop behaviour M. Compute the reference signal rv(k)
such that the y(k) is the output of M when fed by a reference signal rv(k) (i.e.,
rv(k) = M†y(k)).

Compute the virtual tracking error ev(k) = rv(k)� y(k). When the observed
input sequence u(k) is applied to the plant, the output signal will be (in a
noise-free scenario) the observed sequence y(k). Then, a “good” controller is the
one that generates the observed sequence u(k) when fed by the virtual tracking
error ev(k).

Compute the dynamical system (i.e., the designed controller) describing the
dynamic relation between ev(k) and u(k).
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• Collect a set of data {u(t), y(t), p(t)}, t = 1, . . . , N

• Specify a desired closed-loop linearmodelM from r to y

• Compute rv(t) = M#y(t) from pseudo-inversemodelM# ofM

• Identify linear (LPV) modelKp from ev = rv − y (virtual tracking error) to u
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Data-driven MPC

• Design a linearMPC (reference governor) to generate the reference r

(Bemporad,Mosca, 1994) (Gilbert, Kolmanovsky, Tan, 1994)

Linear prediction model 
(totally known !)

desired
reference
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• MPC designed to handle input/output constraints and improve performance

(Piga, Formentin, Bemporad, 2017)
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Data-driven MPC - An example
• Experimental results: MPC handles soft constraints on u,∆u and y
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No open-loop process model is identified to design theMPC controller!
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Optimal data-driven MPC

• Question: How to choose the referencemodelM ?

Hierarchical control architecture

Can we improve the closed-loop performance and impose input/output constraints?
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The model M describes the relation between r and y !

Control design scheme: MMPCro y
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r
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M0
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• Canwe chooseM from data so thatKp is an optimal controller ?
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Optimal data-driven MPC
(Selvi, Piga, Bemporad, 2018)

• Idea: parameterize desired closed-loopmodelM(θ) and optimize

min
θ

J(θ) =
1

N

N−1∑
t=0

Wy(r(t)− yp(θ, t))
2 +W∆u∆u2

p(θ, t)︸ ︷︷ ︸
performance index

+ Wfit(u(t)− uv(θ, t))
2︸ ︷︷ ︸

identification error

• Evaluating J(θ) requires synthesizingKp(θ) from data and simulating the
nominal model and control law

yp(θ, t) = M(θ)r(t) up(θ, t) = Kp(θ)(r(t)− yp(θ, t))

∆up(θ, t) = up(θ, t)− up(θ, t− 1)

• Optimal θ obtained by solving a (non-convex) nonlinear programming problem
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Optimal data-driven MPC
(Selvi, Piga, Bemporad, 2018)

• Results: linear process

G(z) =
z − 0.4

z2 + 0.15z − 0.325

The data-driven controller is only 1.3%worse

thanmodel-based LQR

• Results: nonlinear (Wiener) process

yL(t) = G(z)u(t)

y(t) = |yL(t)| arctan(yL(t))

The data-driven controller is 24% better than

LQR based on identified open-loopmodel !
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Conclusions

• Long history of success ofMPC in the process industries,

now spreading to automotive (andmany others)

• Key enablers forMPC to be successful in industry:

1. Fast, robust, and simple to codeQP solvers, with proved execution time

2. Good system identification /machine learningmethods to deal with data

3. Productionmanagers that are willing to adopt new advanced control technologies

IsMPC amature technology for the automotive industry ?
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Model predictive control toolset 1

MPC goes to automotive production now !

General Motors and ODYS have developed a multivariable constrained

MPC system for torque tracking in turbocharged gasoline engines. The

control system is scheduled for production by GM in fall 2018.

• Multivariable system, 4 inputs, 4 outputs.

QP solved in real time on ECU

(Bemporad, Bernardini, Long, Verdejo, 2018)

• SupervisoryMPC for powertrain control

also in production in 2018

(Bemporad, Bernardini, Livshiz, Pattipati, 2018)

First knownmass production ofMPC in the automotive industry

http://www.odys.it/odys-and-gm-bring-online-mpc-to-production
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