

Ext	ensions
• Tracking of reference <i>r(t)</i> :	$\delta u(t) = F(x(t), u(t-1), r(t))$
 Rejection of measured disturbance v(t): 	$\delta u(t) = F(x(t), u(t-1), v(t))$
• Soft constraints: $y_{\min} - \epsilon \leq y(t + k t) \leq y_{\max} + \epsilon$	u(t) = F(x(t))
• Variable constraints: $\begin{array}{l} u_{\min}(t) \leq u(t+k) \leq u_{\max}(t) \\ y_{\min}(t) \leq y(t+k t) \leq y_{\max}(t) \end{array}$	$u(t) = F(x(t), u_{\min}(t), \dots, y_{\max}(t))$
• Linear norms: $\min_{U} J(U, x(t))$	$ \triangleq \sum_{k=0}^{p} \ Qy(t+k t)\ _{\infty} + \ Ru(t+k)\ _{\infty} $ (Bemporad, Borrelli, Morari, 2000)

MPC Regulation of a Ball on a Plate

Task:

- Tune an MPC controller by simulation, using the MPC Simulink Toolbox
- Get the *explicit solution* of the MPC controller.
- Validate the controller on *experiments*.

Hyb	rid MPC - Exa	mple	2
• MLD system	$\begin{array}{c c} x(t) & 2 \text{ variables} \\ u(t) & 1 \text{ variables} \\ \text{binary vector } \delta(t) & 1 \text{ variables} \\ \text{continuous vector } r(t) & 4 \text{ variables} \end{array}$		
• mp-MILP optimiza	tion problem		
$\begin{split} \min_{\left\{ v_{0}^{1} \right\}} J(v_{0}^{1},x(t)) &\triangleq \sum_{k=0}^{1} \ Q_{1}(v(k))\ \\ \text{subject to constraints} \end{split}$	$\ u_e\ _{\infty} + \ Q_2(\delta(k t) - \delta_e)\ _{\infty} + \ Q_3(z)\ _{\infty}$	$(k t) - z_e) _{0}$	$_{\infty}+\ Q_4(x(k t)-x_e)\ _{\infty}$
to be solved in the rec	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
 Computational com 	plexity of mp-MILP		
	Linear constraints Continuous variables Binary variables Parameters Time to solve mp-MILP Number of regions	84 20 2 2 3 min 7	

	MLD Mode	:		
$\begin{bmatrix} x(t) \\ E_2\delta(t) + E \end{bmatrix}$	$egin{aligned} +1) &= Ax(t) + B_1u(t) \ y(t) &= Cx(t) + D_1u(t) \ B_3z(t) &\leq E_4x(t) + E_1u(t) \end{aligned}$) +) + t)	$+ B_2\delta(t) + B_3z(t) + D_2\delta(t) + D_3z(t) + E_5$	
Ī	State x(t)	9	variables	
	Input u(t)	1	variable	
	Aux. Binary Var. d(t)	3	variables	
-	Aux. Continuous variables z(t)	4	variables	
g	The MLD matrices are aut enerated in Matlab format	om by	natically HYSDEL	

EXPERIMENTAL APPARATUS	
Tord Motor Company	Б

EXPERIMENTAL RESULTS

EXPERIMENTAL RESULTS

 Performance of the MPC controller is quite good given the limited development time, oversimplified
plant model used, and minimal development iterations.
• The MPC controller requires much less supervision by logical constructs than controllers developed with traditional techniques.
 Further testing in real-world environments is needed for a complete comparison with traditional controllers.