MODEL PREDICTIVE CONTROL: Dreams, possibilities, and reality

Alberto Bemporad

http://cse.lab.imtlucca.it/~bemporad

NMPC'18, Madison, WI - August 19, 2018

• Embedded optimization for MPC (dreams, possibilities)

• Data-driven MPC (dreams, possibilities)

• MPC in the automotive industry (reality)

• Conclusions

MODEL PREDICTIVE CONTROL (MPC)

simplified likely Use a dynamical model of the process to predict its future evolution and choose the "best" control action

MPC IN INDUSTRY

• The MPC concept for process control dates back to the 60's

Discrete Dynamic Optimization Applied to On-Line Optimal Control Esso

(Rafal, Stevens, AiChE Journal, 1968)

• MPC used in the process industries since the 80's

(Qin, Badgewell, 2003) (Bauer, Craig, 2008)

MARSHALL D. RAFAL and WILLIAM F. STEVENS

- Research in MPC is still very active ! (274 authors in NMPC'18)
- Most automotive OEMs are looking into MPC solutions today

EMBEDDED LINEAR MPC AND QUADRATIC PROGRAMMING

• Linear MPC requires solving a Quadratic Program (QP)

$$\min_{z} \quad \frac{1}{2}z'Qz + x'(t)F'z$$

s.t.
$$Gz \le W + Sx(t) \qquad z = \begin{bmatrix} \\ \end{bmatrix}$$

A rich set of good QP algorithms is available today

 u_0

 u_1

 $|u_{N-1}|$

• Which QP algorithms are suitable for implementation in **embedded systems**?

MPC IN A PRODUCTION ENVIRONMENT

Key requirements for deploying MPC in production:

1. speed (throughput)

- worst-case execution time less than sampling interval
- also fast on average (to free the processor to execute other tasks)
- 2. limited memory and CPU power (e.g., 150 MHz / 50 kB)
- 3. numerical robustness (single precision arithmetic)
- 4. certification of worst-case execution time
- 5. code simple enough to be validated/verified/certified (library-free C code, easy to check by production engineers)

EMBEDDED MPC DESIGN: CHALLENGES AND DREAMS

Key challenges

- Numerical solvers
 - Fast/robust/compact/certifiable
 embedded optimization solvers
 - Solver and MPC problem should be coupled for most efficiency
 - Should we avoid real-time optimization (explicit MPC/ function regression)?
- Prediction models
 - Getting the predicition model(s) is usually the most time-consuming phase
 - Leverage on modern SYS-ID / machine learning methods (=less physical modeling)
 - Should we avoid identifying open-loop prediction models at all?

EMBEDDED OPTIMIZATION - SOME POSSIBILITIES

• Solve (dual) QP by fast gradient method

$ \begin{array}{c} \min_{z} \\ \text{s.t.} \end{array} $		$\frac{1}{2}z'Qz + x'F'z$ $Gz \le W + Sx$	w^k z^k	=	$y^k + \beta_k (y^k - y^{k-1})$ $-Kw^k - g$	<pre>while k<maxiter beta="max((k-1)/(k+2),0);" s="GL*z-bL;" w="y+beta*(y-y0);" y0="y;</pre" z="-(iMG*w+iMc);"></maxiter></pre>
K g I	/	$Q^{-1}G'$ $Q^{-1}Fx$ 1	s^k y^{k+1}	=	$\frac{1}{L}Gz^k - \frac{1}{L}(W + Sx)$ $\max\left\{w^k + s^k, 0\right\}$	<pre>% Termination if all(s<=epsGL) gapL=-w'*s; if gapL<=epsVL return end end</pre>
β_k	_	$\overline{\lambda_{\max}(GQ^{-1}G')}$ $\max\{\frac{k-1}{k+2}, 0\}$				y=w+s; k=k+1; end

• Very simple to code

1

- Convergence rate: $f(x^k) f(x^*) \le \frac{2L}{(k+2)^2} ||z_0 z^*||_2^2$
- Tight bounds on maximum number of iterations
- Extended to mixed-integer quadratic programming (MIQP) (Naik, Bemporad, 2017)

REGULARIZED ADMM FOR QUADRATIC PROGRAMMING

(Banjac, Stellato, Moehle, Goulart, Bemporad, Boyd, 2017)

• Robust "regularized" ADMM iterations:

$$z^{k+1} = -(Q + \rho A^T A + \epsilon I)^{-1} (c - \epsilon z_k + \rho A^T (u^k - z^k))$$

$$s^{k+1} = \min\{\max\{Az^{k+1} + y^k, \ell\}, u\}$$

$$u^{k+1} = u^k + Az^{k+1} - s^{k+1}$$

- Works for any $Q \succeq 0$, A, and choice of $\epsilon > 0$
- Simple to code, fast, robust, and free
- Only needs to factorize $\begin{bmatrix} Q + \epsilon I & A' \\ A & -\frac{1}{\rho}I \end{bmatrix}$ once
- Algorithm implemented in osQP solver (Python interface: \approx 20,000 downloads)

http://osqp.org

• Extended to solve **mixed-integer quadratic programming** problems

(Stellato, Naik, Bemporad, Goulart, Boyd, 2018)

ODYS QP SOLVER

• General purpose QP solver designed for industrial production

$$\begin{array}{ll} \min_{z} & \frac{1}{2}z'Qz + c'z \\ \text{s.t.} & Az \leq b \\ & Ez = f \end{array}$$

- Implements a dual-active set method for QP + optimized for MPC
- Emphasis on robustness (especially in single precision), speed of execution, low memory requirements
- Completely written in ANSI-C (no libraries)
- Currently evaluated for production by some major OEMs

up to 48% reduction

QP SOLVERS - AN EXPERIMENTAL COMPARISON

• Experimental setup:

- PC with MATLAB/Simulink
- RS232 adapter
- TMS320F28335 DSP (150 MHz)

vars \times constr.	ODYS QP	GPAD	ADMM
4× 16	0.12 ms	0.33 ms	1.4 ms
8× 24	0.44 ms	1.1 ms	4 ms
12×32	1.2 ms	2.6 ms	8.2 ms
	1	1	1

- Active set (AS) methods are usually the best on small/medium problems:
 - excellent quality solutions within few iterations
 - behavior is more predictable (less sensitive to preconditioning)
 - no linear algebra libraries required

SOLVING QP'S USING LEAST SQUARES

• Least Squares (LS): (Legendre, 1805) (Gauss, 1809)

$$v = \arg\min \|Av - b\|_2^2$$

In MATLAB:

>> v=A\b (one character !)

• Nonnegative Least Squares (NNLS): (Lawson, Hanson, 1974)

 $\begin{array}{ll} \min_v & \|Av - b\|_2^2 \\ \text{s.t.} & v \ge 0 \end{array} \end{array}$

very simple to solve (750 chars in Embedded MATLAB)

• Bounded-Variable Least Squares (BVLS): (Stark, Parker, 1995)

 $\begin{array}{ll} \min_{v} & \|Av - b\|_{2}^{2} \\ \text{s.t.} & \ell \leq v \leq u \end{array}$

See NMPC'18 talk TuMRb1.2

(Saraf, Zanon, Bemporad, NMPC, 2018)

SOLVING QP'S VIA NONNEGATIVE LEAST SQUARES

(Bemporad, 2016)

• Complete the squares and transform QP to least distance problem (LDP)

$$\min_{\substack{z \\ \text{s.t.}}} \frac{1}{2}z'Qz + c'z \qquad \qquad Q = L'L \\ u \triangleq Lz + L^{-T}c$$

$$\min_{u} \quad \frac{1}{2} \|u\|^2$$

s.t. $Mu \le d$

• An LDP can be solved by the NNLS (Lawson, Hanson, 1974)

$$\min_{y} \quad \frac{1}{2} \left\| \begin{bmatrix} M' \\ d' \end{bmatrix} y + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\|_{2}^{2}$$

s.t. $y \ge 0$

$$M = GL^{-1}$$
$$d = b + GQ^{-1}c$$

• If residual = 0 then QP is infeasible. Otherwise set

$$z^* = -\frac{1}{1+d'y^*}L^{-1}M'y^* - Q^{-1}c$$

• Extended to solving mixed-integer QP's (Bemporad, NMPC, 2015)

SOLVING QP'S VIA NNLS AND PROXIMAL POINT ITERATIONS

(Bemporad, 2018)

• Solve QP via NNLS within proximal-point iterations

$$z_{k+1} = \arg \min_{z} \quad \frac{1}{2}z'Qz + c'z + \frac{\epsilon}{2} ||z - z_{k}||_{2}^{2}$$

s.t. $Az \leq b$
 $Gx = g$

• Advantage: numerical robustness, as $Q + \epsilon I$ can be arbitrarily well conditioned

single precision arithmetic 30 vars, 100 constraints (Macbook Pro 3 GHz Intel Core i7)

• Extended to solve MIQP problems (Naik, Bemporad, 2017) ⇒ TuAPo1.15

EXPLICIT MPC

• The multiparametric solution of a strictly convex QP is continuous and piecewise affine

(Bemporad, Morari, Dua, Pistikopoulos, 2000) (Seron, De Donà, Goodwin, 2000) (Johansen, Petersen, Slupphaug, 2000)

$$z^*(x) = \arg \min_z \quad \frac{1}{2}z'Qz + x'F'z$$

s.t. $Gz \le W + Sx$

- Explicit MPC enables implementing MPC without an on-line solver
- New mpQP solver based on NNLS available (Bemporad, 2015) and included in MPC Toolbox since version R2014b

Is explicit MPC better than on-line QP (=implicit MPC)?

COMPLEXITY CERTIFICATION FOR ACTIVE-SET QP SOLVERS

• **Result**: The **number of iterations** to solve the QP via a dual active-set method is a **piecewise constant function** of the parameter *x*

• Examples (from MPC Toolbox):

(Cimini, Bemporad, 2017)

We can **exactly** quantify how many iterations (flops) the QP solver takes in the worst-case !

	inverted pendulum	DC motor	nonlinear demo	AFTI F16
Explicit MPC				
max flops	3382	1689	9184	16434
max memory (kB)	55	30	297	430
Implicit MPC				
max flops	3809	2082	7747	7807
sqrt	27	9	37	33
max memory (kB)	15	13	20	16

• QP certification algorithm currently used in production

DATA-DRIVEN MPC - SOME POSSIBILITIES

• Can we design an MPC controller **without** first identifying a model of the **open-loop process** ?

DATA-DRIVEN DIRECT CONTROLLER SYNTHESIS

(Campi, Lecchini, Savaresi, 2002) (Formentin et al., 2015)

- Collect a set of data $\{u(t), y(t), p(t)\}, t = 1, \dots, N$
- Specify a desired closed-loop linear model \mathcal{M} from r to y
- Compute $r_v(t) = \mathcal{M}^{\#} y(t)$ from pseudo-inverse model $\mathcal{M}^{\#}$ of \mathcal{M}
- Identify linear (LPV) model K_p from $e_v = r_v y$ (virtual tracking error) to u

DATA-DRIVEN MPC

• Design a linear MPC (reference governor) to generate the reference \boldsymbol{r}

(Bemporad, Mosca, 1994) (Gilbert, Kolmanovsky, Tan, 1994)

• MPC designed to handle input/output constraints and improve performance

(Piga, Formentin, Bemporad, 2017)

DATA-DRIVEN MPC - AN EXAMPLE

• Experimental results: MPC handles soft constraints on u, Δu and y

desired tracking performance achieved

constraints on input increments satisfied

No open-loop process model is identified to design the MPC controller!

• **Question**: How to choose the reference model \mathcal{M} ?

• Can we choose \mathcal{M} from data so that K_p is an **optimal controller**?

OPTIMAL DATA-DRIVEN MPC

• Idea: parameterize desired closed-loop model $\mathcal{M}(\theta)$ and optimize

$$\min_{\theta} J(\theta) = \frac{1}{N} \sum_{t=0}^{N-1} \underbrace{W_y(r(t) - y_p(\theta, t))^2 + W_{\Delta u} \Delta u_p^2(\theta, t)}_{\text{performance index}} + \underbrace{W_{\text{fit}}(u(t) - u_v(\theta, t))^2}_{\text{identification error}}$$

- Solution: solve a (non-convex) nonlinear program to get optimal θ
- Each function evaluation requires synthesizing $K_p(\theta)$ from data and simulating the nominal model and control law

$$y_p(\theta, t) = \mathcal{M}(\theta)r(t) \qquad u_p(\theta, t) = K_p(\theta)(r(t) - y_p(\theta, t))$$
$$\Delta u_p(\theta, t) = u_p(\theta, t) - u_p(\theta, t - 1)$$

• Results: linear process

$$G(z) = \frac{z - 0.4}{z^2 + 0.15z - 0.325}$$

The data-driven controller is **only 1.3% worse** than model-based LQR

• Results: nonlinear (Wiener) process

 $y_L(t) = G(z)u(t)$ $y(t) = |y_L(t)| \arctan(y_L(t))$

The data-driven controller is **24% better** than LQR based on identified open-loop model !

(Selvi, Piga, Bemporad, 2018)

LEARNING MPC FROM DATA: DREAMS AND POSSIBILITIES

• **Dream**: learn an MPC controller **without** a prediction model, that optimizes a given index

- Possibilities:
 - **Q-learning**: optimize parameters of Q-function defining the MPC law from data. Parameters can also include model coeffs, but not necessarily (Gros, Zanon, 2018)
 - Policy gradient methods: learn MPC policy coefficients directly from data using stochastic gradient descent (Ferrarotti, Bemporad, work in progress)
 - Direct weight optimization: only collect a database of input/state trajectories, then optimally interpolate them online

(Salvador, Muñoz de la Peña, Alamo, Bemporad, 2018) ⇒ **TuAPo1.1**

- More in this conference ...

Note: when open-loop model is used as a tuning parameter, very often learned model \neq best open-loop model (unless model perfectly fits data)

MPC FOR AUTOMOTIVE APPLICATIONS

- Coordinate torque request and steering to achieve safe and comfortable autonomous driving with no collisions
- MPC combines **path planning**, **path tracking**, and **obstacle avoidance**
- Stochastic prediction models are used to account for uncertainty and driver's behavior

MPC OF GASOLINE TURBOCHARGED ENGINES

• Optimize engine actuators (throttle, wastegate, intake/exhaust cams) to make engine torque track set-points, maximizing efficiency and satisfying constraints

(Bemporad, Bernardini, Long, Verdejo, 2018)

SUPERVISORY MPC OF POWERTRAIN WITH CVT

- Coordinate engine torque request and continuously variable transmission (CVT) ratio to improve fuel economy and drivability
- Real-time MPC is able to take into account **coupled dynamics** and **constraints**, optimizing performance also during transients

US06 Double Hill driving cycle

(Bemporad, Bernardini, Livshiz, Pattipati, 2018)

CONCLUSIONS

• Long history of success of MPC in the **process industries**, now spreading to other industries (especially **automotive**)

- A lot of excellent technical **possibilities** for MPC are available today (see this conference!)
- Key enablers for MPC to become a reality in embedded production systems:
 - 1. Fast, robust, and simple to code **QP solvers**, with proved execution time
 - 2. Good system identification / machine learning methods to deal with data
 - 3. Production managers that are willing to adopt new advanced control technologies

Is MPC a mature technology for industrial production?

EMBEDDED MPC DESIGN: REALITY

General Motors and **ODYS** have developed a multivariable constrained MPC system for torque tracking in turbocharged gasoline engines. The control system is **scheduled for production by GM in fall 2018**.

- Multivariable system, 4 inputs, 4 outputs.
 QP solved in real time on ECU (Bemporad, Bernardini, Long, Verdejo, 2018)
- Supervisory MPC for powertrain control also in production in 2018 (Bemporad, Bernardini, Livshiz, Pattipati, 2018)

First known mass production of MPC in the automotive industry

http://www.odys.it/odys-and-gm-bring-online-mpc-to-production

