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e Embedded optimization for MPC (dreams, possibilities)

e Data-driven MPC (dreams, possibilities)

e MPC in the automotive industry (reality)

e Conclusions
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MODEL PREDICTIVE CONTROL (MPC)

prediction model optin!ization
algorithm

\ model-based optimizer

" process

set-points “inputs s outputs
r(t) u(t) y(t)
'T‘ measurements
simplified Likel

Use a dynamical model of the process to predict its futur

evolution and choosethe“best*comntrotaction
a good

3/30



MPC IN INDUSTRY

e The MPC concept for process control dates back to the 60’s

e MPC used in the process industries since the 80’s

e Researchin MPC is still very active ! (274 authors in NMPC’18)

e Most automotive OEMs are looking into MPC solutions today

data
process

references inputs outputs
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EMBEDDED LINEAR MPC AND QUADRATIC PROGRAMMING

e Linear MPC requires solving a Quadratic Program (QP)

. 1, LN [ uo
min 5% Qz+z (t)F'z "
s.t. Gz < W + Sx(t) -
| uN—1 _

Arich set of good QP algorithms is available today

e Which QP algorithms are suitable for implementation in embedded systems ?
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MPC IN A PRODUCTION ENVIRONMENT

Key requirements for deploying MPC in production:

1. speed (throughput)

- worst-case execution time less than sampling interval
- alsofast on average (to free the processor to execute other tasks)

2. limited memory and CPU power (e.g., 150 MHz / 50 kB)

3. numerical robustness (single precision arithmetic)

4. certification of worst-case execution time

5. code simple enough to be validated/verified/certified
(library-free C code, easy to check by production engineers)
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EMBEDDED MPC DESIGN: CHALLENGES AND DREAMS

Key challenges

‘ model-based optimizer N
' process
. [ ]
Numerical solvers cetpoins s outputs
r(t) u(t) ? y(t)

- Fast/robust/compact/certifiable |
embedded optimization solvers ) measurements

— Solver and MPC problem should be coupled for most efficiency

- Should we avoid real-time optimization (explicit MPC/ function regression)?

e Prediction models

- Getting the predicition model(s) is usually the most time-consuming phase
- Leverage on modern SYS-1D / machine learning methods (=less physical modeling)

- Should we avoid identifying open-loop prediction models at all?
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EMBEDDED OPTIMIZATION - SOME POSSIBILITIES



FAST GRADIENT PROJECTION

e Solve (dual) QP by fast gradient method

min
z

S.t.

1
Ez’Qz—l—x/F’z
Gz < W+ Sx

Very simple to code

Convergence rate: f(z") — f(2*) <

k

yk + Bk(yk _ yk—l)

—Kuwk — g

1GzF — (W + Sz)

max {wk Sy L O}

2L

(k+2

Tight bounds on maximum number of iterations

Extended to mixed-integer quadratic programming (MIQP)

)QHZO — 2|3

while k<maxiter

beta=max((k-1)/(k+2),0);
w=y+beta*(y-y0);
z=-(iMG*w+iMc);
s=GL*z-bL;

yo=y;

% Termination
if all(s<=epsGL)
gapl=-w'*s;
if gapl<=epsVL
return
end
end

y=w+s;
k=k+1;

end
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REGULARIZED ADMM FOR QUADRATIC PROGRAMMING

e Robust “regularized” ADMM iterations:

T = (Q+ pAT A+ el)7 e — ez + pAT (uF — 2F))
st = min{max{ Az 4+ 4~ ¢}, u}
e S O g s

e Works forany () > 0, A, and choice of € > 0

e Simple to code, fast, robust, and free

+ el A’
A B
P

e Algorithm implemented in 0sQP solver

(Python interface: ~ 20,000 downloads)

e Only needs to factorize

e Extended to solve mixed-integer quadratic programming problems
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0DYS QP SOLVER

e General purpose QP solver designed for industrial production

1
min §Z/QZ +c'z
s.t. Az <b
Ez=f

Implements a dual-active set method for QP + optimized for MPC
Emphasis on robustness (especially in single precision), speed of execution,
low memory requirements

Completely written in ANSI-C (no libraries)

Currently evaluated for production by some major OEMs

http://odys.it/qp
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(P SOLVERS - AN EXPERIMENTAL COMPARISON

e Experimental setup:
- PC with MATLAB/Simulink
- RS232 adapter
- TMS320F28335 DSP (150 MHz)

vars x constr. | ODYS QP GPAD ADMM
4x 16 0.12 ms 0.33ms | 1.4ms
X 24 0.44 ms 1.7 ms 4 ms
12%x32 1.2 ms 2.6 ms 3.2 ms

e Active set (AS) methods are usually the best on small/medium problems:
- excellent quality solutions within few iterations
- behavior is more predictable (less sensitive to preconditioning)

- no linear algebra libraries required
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SOLVING QP'S USING LEAST SQUARES

e Least Squares (LS):
In MATLAB:

v = arg min || Av — b||3 >> v=A\b

(one character !)

e Nonnegative Least Squares (NNLS):
very simple ko solve

(750 chars in Embedded
MATLAR)

min, || Av — bl|3
st. v>0

e Bounded-Variable Least Squares (BVLS):

min, ||Av — bl|3 See NMPC’18 talk TuMRb1.2
st. f<v<u
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SOLVING QP'S VIA NONNEGATIVE LEAST SQUARES

e Complete the squares and transform QP to least distance problem (LDP)

n?1%%@z+dz Q=1L1L %P w2
s.t. Gz<g s.t. Mu<d
w2 Lz+ L Te

e An LDP can be solved by the NNLS

, 1 M’ n 0
min —

y 2 d’ Y 1 ,
st. y>0

e Ifresidual = 0then QP is infeasible. Otherwise set
1
* L—lM/ *  M—1
© 1+ dy* Qe

e Extended to solving mixed-integer QP’s 14/30



SOLVING QP'S VIA NNLS AND PROXIMAL POINT ITERATIONS

e Solve QP via NNLS within proximal-point iterations

Zpy1 =argming  12'Qz 4z + £z — 2|3
s.t. Az <b
Gxr =g

e Advantage: numerical robustness, as () + ¢l can be arbitrarily well conditioned

single precision arithmetic

30 vars, 100 constraints
(Macbook Pro 3 GHz Intel Core i7)

e Extended to solve MIQP problems
= TuAPo1.15 15/30



EXPLICIT MPC

e The multiparametric solution of a strictly g

convex QP is continuous and piecewise affine modetbased ptimize s N
set-points % outputs

(%) & u(t) ()

1‘ measurements |

2*(r) = argmin, 32'Qz+2'F'z
st. Gz< W+ Sz

e Explicit MPC enables implementing MPC without an on-line solver

e New mpQP solver based on NNLS available
and included in MPC Toolbox since version R2014b

Is explicit MPC better than on-line QP (=implicit MPC) ?
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COMPLEXITY CERTIFICATION FOR ACTIVE-SET QP SOLVERS

e Result: The number of iterations to solve the QP via a dual active-set method is
a piecewise constant function of the parameter z

e Examples (from MPC Toolbox):

inverted pendulum

Explicit MPC
max flops

max memory (kB)

3382
55

Implicit MPC
max flops
sqrt

max memory (kB)

3809
27
15

e QP certification algorithm currently used in production

We can exactly quantify how
many iterations (flops) the QP
solver takes in the worst-case !

DC motor nonlinear demo AFTI F16

Advanced Controls & Optimization



DATA-DRIVEN MPC - SOME POSSIBILITIES



DATA-DRIVEN MPC

optimization
algorithm
N\ modelbased optimizer W
process
set-points <" inputs outputs
—>
r(t) u(t) y(t)
1‘ measurements

e Canwe design an MPC controller without first identifying a model of the
open-loop process ?
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DATA-DRIVEN DIRECT CONTROLLER SYNTHESIS

o Collectasetofdata{u(t),y(t),p(t)},t=1,...,N
e Specify adesired closed-loop linear model M fromrtoy
e Computer,(t) = M#y(t) from pseudo-inverse model M7 of M

e |dentify linear (LPV) model K, from e, = r, — y (virtual tracking error) to u
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DATA-DRIVEN MPC

e Design alinear MPC (reference governor) to generate the reference r

p
By e — /ld P
! U N Y !
70 ——| MPC | > Kp gl - T
desired = | | A . |
reference :_M__________________________: Linear Frediﬁ&ioh model

(Eof:aiij khnowi 1)

70— MPC = M l
5 K

____________________

e MPC designed to handle input/output constraints and improve performance
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DATA-DRIVEN MPC - AN EXAMPLE

e Experimental results: MPC handles soft constraints on u, Au and y

0 u
45 T T T T 5 T T T T
T
with MPC —
4t without MPC |} 2.0
=
_5 1 1 1 1 1
= 3.5 T 5 10 15 20 25 30
a5
= Au
=3 0.5 — : : :
> h\ I
0
25+ = y{}f
b v
I I I | I _0.5 1 1 1 1 1
2 5 10 15 20 25 30

5 10 15 20 25 30 Time [s]
Time [s]

cownskrainks on EMFME

desired bracking
inecrements sakisfied

Per&:«r mance achieved

No open-loop process model is identified to design the MPC controller!
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OPTIMAL DATA-DRIVEN MPC

e Question: How to choose the reference model M ?

e Canwe choose M from data so that K, is an optimal controller ?
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OPTIMAL DATA-DRIVEN MPC

o Idea: parameterize desired closed-loop model M (6) and optimize

N-1

, 1
min J(0) = Wy (r(t) — yp(0,1))° + WauAus(0,1) + Wi (u(t) — uy, (6, t))2/
= Feréformo:;\ce ndex identification error

e Solution: solve a (non-convex) nonlinear program to get optimal 8

e Each function evaluation requires synthesizing K, (6) from data and simulating
the nominal model and control law

yp(0,1) = M(O)r(t)  up(0,t) = Kp(0)(r(t) — yp(0,1))
Aup(0,t) = up(0,t) —up(6,t — 1)
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OPTIMAL DATA-DRIVEN MPC

e Results: linear process i —
® |00 mder 00,0
G(2) z—0.4 4
z) = N
22 1 0.152 — 0.325 :f
The data-driven controller is only 1.3% worse )
than model-based LQR
e Results: nonlinear (Wiener) process

yr(t) = G(2)u(?) 1
y(t) = l|yo(t)|arctan(y(t))

The data-driven controller is 24% better than

LQR based on identified open-loop model ! 2

3 3.2 3.4 3.6

‘7%@) :

——y(t) under Crga(q) 7
———y(t) under C(¢*(6"),q)

i

I I I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time [s]
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LEARNING MPC FROM DATA: DREAMS AND POSSIBILITIES

e Dream: learn an MPC controller without | P
a prediction model, that optimizes a given index = moinoslapl s
set-points inputs outputs

t) &0 y(t)

optimization

'T‘ measurements |

e Possibilities:
- Q-learning: optimize parameters of Q-function defining the MPC law from data.
Parameters can also include model coeffs, but not necessarily

- Policy gradient methods: learn MPC policy coefficients directly from data using
stochastic gradient descent

- Direct weight optimization: only collect a database of input/state trajectories,

then optimally interpolate them online
= TuAPo1.1

- Morein this conference...

Note: when open-loop model is used as a tuning parameter, very often
learned model # best open-loop model (unless model perfectly fits data)
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MPC FOR AUTOMOTIVE APPLICATIONS



MPC FOR AUTONOMOUS DRIVING

e Coordinate torque request and steering to achieve safe and
comfortable autonomous driving with no collisions

e MPC combines path planning, path tracking, and obstacle
avoidance

e Stochastic prediction models are used to account for uncertainty
and driver’s behavior
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MPC OF GASOLINE TURBOGHARGED ENGINES

e Optimize engine actuators (throttle, wastegate, intake/exhaust cams) to make
engine torque track set-points, maximizing efficiency and satisfying constraints

MPC Engine
Desired Actuators Achieved
torque commands Torque
‘ Measurements

QP solved in real-time on ECU

engine operating at low pressure (66 kPa)
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SUPERVISORY MPC OF POWERTRAIN WITH CVT

e Coordinate engine torque request and continuously variable transmission
(CVT) ratio to improve fuel economy and drivability

e Real-time MPC is able to take into account coupled dynamics and constraints,
optimizing performance also during transients

Desired
axle torque

MPC

Engine
torque

request
—

Engine Control

—

CVT

ratio

request CVT Control US06 Double Hill driving cycle
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CONCLUSIONS

e |Long history of success of MPC in the process industries,
now spreading to other industries (especially automotive)

e A lot of excellent technical possibilities for MPC are available today
(see this conference!)

e Key enablers for MPC to become areality in embedded production systems:

1. Fast, robust, and simple to code QP solvers, with proved execution time
2. Good system identification / machine learning methods to deal with data

3. Production managers that are willing to adopt new advanced control technologies

Is MPC a mature technology for industrial production?
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EMBEDDED MPC DESIGN: REALITY

General Motors and ODYS have developed a multivariable constrained
MPC system for torque tracking in turbocharged gasoline engines. The
control system is scheduled for production by GM in fall 2018.

e Multivariable system, 4 inputs, 4 outputs.
QP solved in real time on ECU

e Supervisory MPC for powertrain control
also in productionin 2018

First known mass production of MPC in the automotive industry

http://www.odys.it/odys-and-gm-bring-online-mpc-to-production




