Solving Mixed-Integer Quadratic Programs via Nonnegative Least Squares

Alberto Bemporad

http://cse.lab.imtlucca.it/~bemporad/

MPC in a production environment

embedded model-based optimizer process

- **Requirements for production:**
- 1. **Speed (throughput)**: solve optimization problem within sampling interval
- 2. Robust with respect to finite-precision arithmetics
- 3. Be able to run on limited hardware (e.g., 150 MHz) with little memory
- 4. Worst-case execution time must be (tightly) estimated
- Code simple enough to be validated/verified/certified (in general, it must be understandable by production engineers)

(C) 2015 by A. Bemporad

Embedded Liner MPC

• Linear MPC requires solving a **Quadratic Program (QP)**

$$\min_{\substack{z \\ s.t.}} \frac{1}{2} z' H z + x'(t) F' z + \frac{1}{2} x'(t) Y x(t) \\ s.t. \quad Gz \le W + S x(t)$$
 $z = \begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ u_{N-1} \end{bmatrix}$

• Several algorithms exist to solve the QP **on-line** given x(t):

active set (AS), interior point (IP), gradient projection (GP), alternating direction method of multipliers (ADMM), proximal methods, ...

• or **offline** (*explicit MPC*)

A rich set of good QP algorithms is available today ON MINIMIZING A CONVEX FUNCTION SUBJECT TO LINEAR INEQUALITIES

By E. M. L. BEALE

Admiralty Research Laboratory, Teddington, Middlesex

SUMMARY

The minimization of a convex function of variables subject to linear inequalities is discussed briefly in general terms. Dantzig's Simplex Method is extended to yield finite algorithms for minimizing either a convex quadratic function or the sum of the t largest of a set of linear functions, and the solution of a generalization of the latter problem is indicated. In the last two sections a form of linear programming with random variables as coefficients is described, and shown to involve the minimization of a convex function.

(Beale, 1955)

Experiments with embedded QP

- Experimental setup:
 - PC with MATLAB/Simulink
 - RS232 adapter
 - TMS320F28335 Experimenter Kit

var \times constr.	GPAD	AS	ADMM	FBN	
4 × 16	332 µs (18)	(120 μ s)(3)	1.42 ms (62)	208 µs (2)	
8 × 24	1.1 ms (22)	440 μ S (5)	4 ms (77)	396 μ s (2)	
12×32	2.59 ms (27)	1.19 ms (7)	8.25 ms (82)	652 µs (2)	
	•	•			

- Active set (AS) methods usually are best on small problems:
 - excellent quality solutions within few iterations
 - less sensitive to preconditioning (= behavior is more predictable)
 - no need for advanced linear algebra packages

* GPAD = Dual Accelerated Gradient Projection (Patrinos, Bemporad, 2014)

* FBN = Forward-Backwards Netwon (proximal method) (Patrinos, Guiggiani, Bemporad, 2014)

Beyond embedded linear MPC ...

• One Linear Time-Invariant (LTI) model is often not enough for MPC (nonlinearities, model dependence on external signals, binary decisions)

Embedded hybrid MPC

$$\min_{\xi} \sum_{k=0}^{N-1} y'_{k}Qy_{k} + u'_{k}Ru_{k} \\ \text{s.t.} \begin{cases} x_{k+1} = Ax_{k} + B_{1}u_{k} + B_{2}\delta_{k} + B_{3}z_{k} + B_{5} \\ y_{k} = Cx_{k} + D_{1}u_{k} + D_{2}\delta_{k} + D_{3}z_{k} + D_{5} \\ E_{2}\delta_{k} + E_{3}z_{k} \leq E_{4}x_{k} + E_{1}u_{k} + E_{5} \end{cases}$$
 Mixed Logical
 Mixed Logical
 Dynamical model
 (Bemporad, Morari, 1999)

$$\min_{\xi} \frac{1}{2} \xi' H\xi + x'(t) F\xi$$
s.t. $G\xi \leq W + Sx(t)$

Mixed Integer Quadratic Program (MIQP)

• Optimization vector $\ \ \xi \in \mathbb{R}^{n_c} \times \{0,1\}^{n_b}$ |

has both **real** and **binary** values

Can we embed a MIQP solver in a control module ?

MIQP for embedded hybrid MPC

- Excellent free and commercial solvers available for MIQP and MILP (Gurobi, CPLEX, GLPK, Xpress-MP, CBC) ...
- ... but none of them is really tailored to embedded applications
- Contributions to embedded MIQP algorithms:
- Branch and bound (B&B) + dual active set solvers

(Leyffer, Fletcher, 1998) (Axehill, Hansson, 2006)

 Branch-and-bound + fast embedded interior point solvers with offline preprocessing heuristics
 (Frick, Domahidi, Morari, 2015)

This contribution: a new B&B MIQP algorithm exploiting a novel dual active set method for QP based on nonnegative least squares

Why Least Squares ?

The **Least Squares (LS)** problem is probably the most studied problem in numerical linear algebra

$$v = \arg\min \|Av - b\|_2^2$$

In MATLAB: >> **v=A\b** % (1 character)

• Nonnegative Least Squares (NNLS):

$$\begin{array}{ll} \min_{v} \|Av - b\|_{2}^{2} \\ \text{s.t.} \ v \ge 0 \end{array}$$

• Partially Nonnegative Least Squares (PNNLS):

$$\begin{array}{ll} \min_{v,u} & \|Av + Bu - c\|_2^2\\ \text{s.t.} & v \ge 0, \ u \ \text{free} \end{array}$$

PNNLS = pseudo-inverse of *B* + solve NNLS

Active-set method for Nonnegative Least Squares

(Lawson, Hanson, 1974)

$$\begin{array}{ll} \min_v & \|Av - b\|_2^2 \\ \text{s.t.} & v \ge 0 \end{array}$$

Algorithm: While maintaining primal var v feasible, keep switching active set until dual var w is also feasible

1)
$$\mathcal{P} \leftarrow \emptyset, v \leftarrow 0;$$

2) $w \leftarrow A'(Av - b);$
3) if $w \ge 0$ or $\mathcal{P} = \{1, \dots, m\}$ then go to Step 11;
4) $i \leftarrow \arg\min_{i \in \{1, \dots, m\} \setminus \mathcal{P}} w_i, \mathcal{P} \leftarrow \mathcal{P} \cup \{i\};$
5) $y_{\mathcal{P}} \leftarrow \arg\min_{z_{\mathcal{P}}} ||((A')_{\mathcal{P}})'z_{\mathcal{P}} - b||_2^2, v_{\{1,\dots, m\} \setminus \mathcal{P}} \leftarrow 0;$
6) if $y_{\mathcal{P}} \ge 0$ then $v \leftarrow y$ and go to Step 2;
7) $j \leftarrow \arg\min_{k \in \mathcal{P}: y_h \le 0} \left\{ \frac{v_h}{v_h - y_h} \right\};$
8) $v \leftarrow v + \frac{v}{v_j - y_j}(y - v);$
9) $\mathcal{I} \leftarrow \{h \in \mathcal{P}: v_h = 0\}, \mathcal{P} \leftarrow \mathcal{P} \setminus \mathcal{I};$
10) go to Step 5;
11) $v^* \leftarrow v$; end.

• NNLS algorithm is very simple (750 chars in Embedded MATLAB), the key operation is to solve a standard LS problem at each iteration (via QR, LDL', or Cholesky factorization)

Solving QP's via nonnegative least squares

• Use NNLS to solve strictly convex QP

(Bemporad, IEEE TAC, 2016)

Relation between NNLS problem and dual QP

• Relation with dual QP problem:

$$\begin{split} \min_{z} \quad \frac{1}{2}z'Qz + c'z & \min_{y} \quad \frac{1}{2} \left\| \begin{bmatrix} M' \\ d' \end{bmatrix} y + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\|_{2}^{2} \\ \text{s.t. } y \geq 0 \\ \end{split}$$

$$\begin{aligned} \text{duality} \quad MM' = GL^{-1}L^{-T}G' = GQ^{-1}G' \\ \hline \min_{\lambda} \quad \frac{1}{2}\lambda'(MM')\lambda + d'\lambda \\ \text{s.t. } \lambda \geq 0 \\ \end{aligned}$$

$$\begin{split} \min_{\lambda} \quad \frac{1}{2}\lambda'(MM')\lambda + d'\lambda \\ \text{s.t. } \lambda \geq 0 \\ \text{can be unbounded if primal} \\ \mathbb{Q}P \text{ is infeasible} \\ \end{split}$$

$$\begin{split} \text{LDP} \quad \min_{y} \quad \frac{1}{2} \left\| \begin{bmatrix} M' \\ d' \end{bmatrix} y + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\|_{2}^{2} \\ \text{s.t. } y \geq 0 \\ \text{always bounded by } -k' \\ (\text{cost} = -k' \text{ if primal } \mathbb{Q}P \text{ is infeasible}) \end{split}$$

• If primal QP is feasible, we can prove that $\lambda^* = \frac{1}{1 + d'y^*}y^*$

• During NNLS iterations, dual QP cost can be easily obtained from y

Solving QP via NNLS: Numerical results

(Bemporad, IEEE TAC, 2016)

* Step t=0 not considered for QPOASES not to penalize the benefits of the method with warm starting

• A rather fast and relatively simple-to-code QP solver !

NNLS for multiparametric QP

• A variety of mpQP solvers is available

(Bemporad *et al.*, 2002) (Baotic, 2002) (Tøndel, Johansen, Bemporad, 2003) (Spjøtvold *et al.*, 2006)(Patrinos, Sarimveis, 2010)

• Most computations are spent in **operations on polyhedra** (=critical regions)

$$\widehat{G}z^*(x) \leq \widehat{W} + \widehat{S}x$$
 feasibility of primal solution
 $\widetilde{\lambda}^*(x) \geq 0$ feasibility of dual solution

- checking emptiness of polyhedra
- removal of **redundant inequalities**
- checking full-dimensionality of polyhedra

• All such operations are usually done via linear programming (LP)

NNLS for multiparametric QP

• Key result:

A polyhedron $P = \{u \in \mathbb{R}^n : Au \leq b\}$ is nonempty iff the PNNLS problem $(v^*, u^*) = \arg \min_{v,u} \|v + Au - b\|_2^2$ s.t. $v \geq 0, u$ free has zero residual $\|v^* + Au^* - b\|_2^2 = 0$

• Numerical results on elimination of redundant inequalities:

m	NNLS	LP
2	0.0006	0.0046
4	0.0019	0.0103
6	0.0038	0.0193
8	0.0071	0.0340
10	0.0111	0.0554
12	0.0178	0.0955
14	0.0263	0.1426
16	0.0357	0.1959
	welling little and some	

random polyhedra of \mathbb{R}^m with 10m inequalities

NNLS = compiled Embedded MATLAB

LP = compiled C code (GLPK)

CPU time = seconds (this Mac)

• Many other polyhedral operations can be also tackled by NNLS

(Bemporad, IEEE TAC 2015)

- New mpQP algorithm based on NNLS + dual QP formulation to compute active sets and deal with degeneracy
 (Bemporad, IEEE TAC, 2015)
- Comparison with:
 - Hybrid Toolbox (Bemporad, 2003)

- Multiparametric Toolbox 2.6 (with default opts)

(Kvasnica, Grieder, Baotic, 2006)

Included in MPC Toolbox 5.0 (≥R2014b)
 ▲ The MathWorks (Bemporad, Morari, Ricker, 1998-2015)

q	m	Hybrid Tbx	MPT	NNLS
4	2	0.0174	0.0256	0.0026
4	3	0.0203	0.0356	0.0038
4	4	0.0432	0.0559	0.0061
4	5	0.0650	0.0850	0.0097
4	6	0.0827	0.1105	0.0126
8	2	0.0347	0.0396	0.0050
8	3	0.0583	0.0680	0.0092
8	4	0.0916	0.0999	0.0140
8	5	0.1869	0.2147	0.0322
8	6	0.3177	0.3611	0.0586
12	2	0.0398	0.0387	0.0054
12	3	0.1121	0.1158	0.0191
12	4	0.2067	0.2001	0.0352
12	5	0.6180	0.6428	0.1151
12	6	1.2453	1.3601	0.2426
20	2	0.1029	0.0763	0.0152
20	3	0.3698	0.2905	0.0588
20	4	0.9069	0.7100	0.1617
20	5	2.2978	1 9761	0.4395
20	6	6.1220	6.2518	1.2853

• We consider a MIQP problem of the following form

$$\begin{array}{ll} \min_{z} & V(z) \triangleq \frac{1}{2}z'Qz + c'z \\ \text{s.t.} & \ell \leq Az \leq u \\ & Gz = g \\ & \bar{A}_{i}z \in \{\bar{\ell}_{i}, \bar{u}_{i}\}, \ i = 1, \dots, q \end{array}$$

$$Q = Q' \succ 0$$

• Binary constraints on z are a special case:

$$\bar{\ell}_i = 0$$
, $\bar{u}_i = 1$, $\bar{A}_i = [0 \dots 0 \ 1 \ 0 \dots 0]$

- QP algorithm based on NNLS is **extended** here to handle
 - equality constraints
 - bilateral constraints
 - warm-starts

so to solve MIQP relaxations ($\bar{\ell}_i \leq \bar{A}_i z \leq \bar{u}_i$) very efficiently

- Branching: pick up index i such that $\overline{A}_i z$ is closest to $\frac{\overline{\ell}_i + \overline{u}_i}{2}$
- Solve two new QP problems:

 $\begin{array}{ll} \min_{z} & V(z) \triangleq \frac{1}{2}z'Qz + c'z \\ \text{s.t.} & \ell \leq Az \leq u \\ & Gz = g \end{array}$ QP_0 $\bar{\ell} < \bar{A}z < \bar{u}$ $\min_{z} \quad V(z) \triangleq \frac{1}{2}z'Qz + c'z$ s.t. $\ell \leq Az \leq u$ QP_1 QP_2 Gz = g $A_i z = \bar{\ell}_i$ $\min_{z} \quad V(z) \triangleq \frac{1}{2}z'Qz + c'z$ $\bar{\ell}_j \leq \bar{A}_j z \leq \bar{u}_j, \ j \neq i$ s.t. $\ell \leq Az \leq u$ Gz = g $A_i z = \bar{u}_i$ Warm start from previous solution $\bar{\ell}_j \leq \bar{A}_j z \leq \bar{u}_j, \ j \neq i$ of QP₀ heavily exploited in solving QP₁, QP₂!

 \overline{u}_i

(C) 2015 by A. Bemporad

NMPC'15, Sevilla, September 18, 2015

• Lower bound V on optimal solution of QP relaxation are immediately available during the iterations of the QP algorithm

stop solving QP relaxation if $V \ge V_0$

This saves a lot of QP active set iterations !

• When no further branching is possible, either the MIQP problem is recognized infeasible or the optimal solution has been found

Numerical results

• Worst-case CPU time on random **MIQP** problems:

n	m	q	$NNLS_{LDL}$	$NNLS_{QR}$	GUROBI	CPLEX
10	5	2	2.3	1.2	1.4	8.0
10	100	2	5.7	3.3	6.1	31.4
50	25	5	4.2	6.1	14.1	30.1
50	200	10	68.8	104.4	114.6	294.1
100	50	2	4.6	10.2	37.2	69.2
100	200	15	137.5	365.7	259.8	547.8
150	100	5	15.6	49.2	157.2	260.1
150	300	20	1174.4	3970.4	1296.1	2123.9

n = # variables, *m* = # inequality constraints, no equalities, *q* = # binary constraints

QP algorithm in compiled Embedded MATLAB code, B&B in interpreted MATLAB code. CPU time measured on this Mac

NNLS_{LDL} = **recursive LDL' factorization** used to solve least-square problems in QP solver NNLS_{QR} = **recursive QR factorization** used instead (numerically more robust)

(C) 2015 by A. Bemporad

Numerical results

• Worst-case CPU time on random **purely binary QP** problems:

\overline{n}	m	q	NNLS _{LDL}	NNLS _{QR}	GUROBI	CPLEX
2	10	2	5.1	4.0	0.7	8.4
4	20	4	8.9	4.3	4.5	16.7
8	40	8	19.2	18.0	37.1	14.7
12	60	12	59.7	57.8	82.3	47.9
20	100	20	483.5	457.7	566.8	99.6
25	250	25	110.4	93.3	1054.4	169.4
30	150	30	1645.4	1415.8	2156.2	184.5

• Worst-case CPU time on a hybrid MPC problem

(Bemporad, Morari, 1999)

			0		
N = prediction horizon		$NNLS_{LDL}$	$NNLS_{QR}$	GUROBI	CPLEX
	2	2.2	2.3	1.2	3.0
	3	3.4	3.9	2.0	6.5
MIQP regularized to	4	5.0	6.5	2.6	8.1
make O strictly > 0	5	7.6	9.8	3.7	9.0
	6	12.3	17.7	4.3	11.0
(> solution difference	7	20.5	30.5	5.8	13.1
is negligible)	8	28.9	47.1	7.3	17.3
	9	38.8	62.5	9.5	18.9
	10	55.4	98.2	10.9	22.4
n = 40, m = 160, q = 10					

Conclusions

- Need to dig into the numerical details of MIQP to make hybrid MPC suitable for fast embedded applications (when explicit is not possible)
- Ongoing work:
 - combine hybrid modeling and B&B solver

(Bemporad, Giorgetti, 2006)

- recursive hybrid systems identification for adaptive hybrid MPC

(Bemporad, Breschi, Piga, submitted)

