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e Motivating applications (MPC for aerospace industry)

e QP solvers for embedded MPC

e A new ‘“accelerated dual gradient projection” algorithm
e Numerical examples

e Conclusions
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MPC for aero applications

e Plenty of potential MPC applications in aerospace industry !

- Rendezvous and docking R SRR
- Satellite formation flying righalhnd constraints ¢ st

- Unmanned aerial vehicles

- Planetary rover locomotion (traction, guidance)
- EDL (Entry Descent and Landing)

- Ascent closed-loop guidance

- In orbit servicing

... and many others !

http://www.esa.int/SPECIALS/Technology/ ATV Johannes Kepler docks with International Space Station

e Only a few research groups active

- Richards, Trodden (Bristol, UK) - Murray, Dunbar (Caltech)
- Maciejowski, Hartley (Cambridge, UK) - How, Breger, Tillerson (MIT)
- Balas, Borrelli, Keviczky (Minnesota) - Bemporad, Pascucci, Rocchi (IMT Lucca)

e Aerospace industry has very demanding certification standards


http://www.esa.int/SPECIALS/Technology/
http://www.esa.int/SPECIALS/Technology/

MPC for aero applications eSa

e ESA funded project “ORCSAT” (2009-2011)

Main emphasis on real-time implementation capabilities of MPC
(architecture, automatic generation of C and HDL code, timing)

- Applications: orbit synchronization, impulsive hopping

- New MATLAB Toolbox MPCTOOL, adding many new features on
top of MPC Toolbox (such as LTV-MPC based on LP/QP)
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MPC for aero applications eSa

e ESA funded project “ROBMPC” (2010-2011)

- Main goal: explore MPC capabilities in new space apps s,
B
- Applications: Cooperating UAVs, planetary rover locomotion e o
(traction & guidance) __ ’;))) #7
: YA3R DLR
- New MATLAB Toolbox MPCSofT for LTV-MPC design === i
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Embedded optimization in aerospace
* PRISMA project for autonomous formation flying  (s. Persson, s. Veldman, P. Bodin, 2009)

http://www.lsespace.com/about-prisma.aspx

/ Swedish Space
/ Corporatlon

cnes

CENTRE NATIONAL D'ETUDES SPATIALES

e Objective: minimize fuel consumption 0o
subject to keeping motion within a box constraint V(1) Z [V E)llx
(solved by linear programming)




How to make MPC technology really “fly”
(in industry)?



Requirements for Embedded MPC algorithms

e Speed: fast enough to provide a solution within
short sampling intervals (such as 10-100 ms)

e Require simple hardware (microcontroller/FPGA)
and little memory to store problem data and code

» Code simple enough to be software-certifiable Gl awen,

e Tightly estimate worst-case execution time to certify
hard real-time system properties




Explicit model predictive control

 Presolve QP problem off-line for all states z(¢) in a given range
via multi-parametric programming
Contributors: Alessio, Baotic, Bemporad, Borrelli, Christophersen, De Dona, Dua, Filippi, Goodwin,

Grancharova, Grieder, Johansen, Jones, Kerrigan, Kvasnica, Mayne, Maciejowski, Morari, Munoz de la Pena,
Patrinos, Petersen, Pistikopulos, Rakovic, Sarimveis, Seron, Slupphaug, Spjetvold, Tendel, Zeilinger, ...

v Control law is piecewise affine
(and also continuous for linear MPC)

v Code very simple, fast, and certifiable

% Limited to small problems
(number of regions can grow exponentially
with number of constraints)

olseo |

i1

% Not applicable to time-varying models




On-line QP solution methods

e active set methods
(best for small/medium size problems)

e interior point methods
(best for large-scale problems)

* gradient projection methods (Coldstein, 1964) (Levitin & Poljak, 1965)
R (Nesterov, 1983)

e conjugate gradient methods

e augmented Lagrangian methods
(and alternating direction method of multipliers)



Accelerated Dual Gradient Projection (GPAD)

Results based on (Patrinos, Bemporad, CDC 2012)
(Patrinos, Bemporad, journal version, submitted 2012)



Linear MPC - QP problem setup

e MPC problem (possibly LTV, Linear Time Varying):

N-1 | :
Vip) =min  In(zn) + ) Le(zg, ug) 7§ cora
k=0
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e QP problem:

1 1 e o o o

— x(?) parameter vector
s.t. Gz< Ep—+5b - ()P




Dual QP problem

* NI 1, / 1, proiE i
Vi) =min oz Ma+ (Crt9)=+50YP original (primal) QP
s.t. Gz< Ep—+5b

B = G 1
D = GMlC+E ®*(p) = min §y + (Dp + d)'y + dp
d = GM~lg+1b st. (150

/\ dual QP

e Dual QP has simpler constraint set (=orthant) to project onto !

Projy,>o1 ¥ = Max{y, 0}

e Key idea: apply standard fast gradient projection algorithm
to solve dual QP problem (Nesterov, 1983)



Fast gradient projection algorithm

e Off-line operations:
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e On-line operations: initialization gvesn current p=x(¢)

gp = M{pyt mg, pp = —Efp)-bL
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e On-line operations: iterations
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Complexity (code, operations)

* Main on-line operations involve only simple linear algebra

il —Vveclor

products

pro&/'eczlfon ope/‘aZ‘ 1oN

= Sz‘mp/e COMPQH\S on !

e Few lines of (Embedded) MATLAB or Python/Numpy code !

e Operations can be easily parallelized (for example on GPU)



Complexity (code, operations)

 wy = Y+ By — Y—1)
< zv = —Mqgwy —gp

zv = (1—0y)z,_1+ 0,2,
 Yo+1 = max{wy + Grzv + pp, 0}

e Each iteration has complexity O(/N?) |N = prediction horizon]
(matrix-vector product)

e Using Riccati-like iterations, complexity gets down to O(N)

(Patrinos, Bemporad, CDC 2012)

e For LTV problems, all matrices must be computed on-line



Termination criteria

e We are interested in quality of primal solution

V(z,p) = V*(p) <ev ¢

- MaxX G,z— E;p—10b; < Eg
ZEN[l,m]

0  optimality tolerance

AVARR AV

Eg 0  feasibility tolerance

1 1 . :
A ) — EZ/MZ + (Cp+g9)z+ Ep’Yp primal cost function

e I is unknown, so we use the duality gap as a stopping criterion:

V(zv,p) — (D(yl/—l—lap> < ey

~MaXx Gizy — E;p—b; < Eg
ZEN[I,m]

1
P(y,p) = Ey’Hy + (Dp + d)'y + dp dual cost function



Bounds on the number of iterations

(Patrinos, Bemporad, 2012)

e Feasibility:

1
GZV—Ep—béeg[]
1

| — S

* Optimality: Vy*(p) solving dual problem

V(zv,p) — P(yp41) < ey

Y Yv > \P

V(zv,p) = V*(p) <ey

| —

 T———

(and also V(zu,p) — V*(p) > —ey, see proof)

e Aboundon |lzv — z*(p)|| exists too

The bounds depend on optimal dual solution y*(p) ...



Bounds on the number of iterations

o A global bound on I[¥"(p)|| for a given set P of parameters can

be computed off-line by solving a MILP or a LPCC

(Linear Program with linear Complementarity Constraints)
(Patrinos, Bemporad, 2012)

 When no constraints are active, solution is found in one step:
yo=y* =0, 2*=—-M"*(Cp+ g) is the optimal solution

* More generally: QP optimality conditions can be stated as

¥ =M H(G'y* 4+ Cp+g)

Solving QP = finding a solution of the system of PWA equations



GPAD vs other fast gradient projection methods

e Nesterov’s method applied to primal problem, only input-constrained
MPC with simple input constraints (Richter, Jones, Morari, CDC 2009)

e Relax state equations, solve the dual. Only simple constraints and
terminal sets. (Richter, Morari, Jones, CDC 2011, IEEE TAC 2012)

e Richter’s algorithms must be run for a constant number of iterations
(= theoretical bound), no termination criteria based on primal solution

o——@@@——o

e GPAD relaxes linear inequality constraints, not state equations.
Can handle arbitrary polyhedral constraints on inputs/states (and
polyhedral terminal sets). Practical termination criteria based on
primal solution are provided. Different theoretical bounds are proved.



GPAD vs Interior Point (IP) methods

e GPAD iterations only require a matrix-vector product,
IP requires solving a linear system

e GPAD canreach a solution of moderate accuracy quite fast, faster
than a simple gradient method (both in practice and in theory).
This is often enough for MPC purposes

 GPAD has much tighter theoretical complexity bounds than IP

e GPAD is much simpler to code !



Numerical results: speed

Embedded MATLAB code
10° 1 while keepgoing && (nu<maxiter),
2 beta=th*(inv(th0)-1);
3 w=y+beta*(y-y0);
4 zhat=-(MG*w+gP) ;
5 z=(1l-th)*z+th*zhat;
6
7 thO=th; % Update thO
; 8 th2=th"2;
10 9 th=(sqrt(th2°2+4*th2)-th2)/2;
10 yo=y;
11 y=max (w+GL*zhat+pD,0);
12
13 gaphat=.5*(y'*H*y+zhat '*M*zhat)+...
] 14 dp+c'*zhat+Dpd'*y;
| : : : : : 15 violhat=max(G*zhat-b);
oY ) S o o S . DANTZGMP | 16 if gaphat<=epsV && violhat<=epsG,
m:mxﬂﬂm:mﬂm:ﬁmm:ﬁmmfm&mim:———QUADPROG: 17 keepgoing=0;
B /A AR A DD ] 18 end
...... _CPLEX ] 19 nu:nu+l;
........ o —QPKWIK | S
......... QHWW@UMQMHM;WUQWWHQMU———QPOASES
| | | | | | I I I
0 10 20 30 40 50 60 70 80 90 100

number of variables

Average CPU time on random QP problems with n variables and 2n constraints

[standard algorithm with complexity O(n?)]



Numerical results: bounds

Ball & plate example, 2 states, 1 input,
bound constraints on states and inputs

(Richter, Jones, Morari, 2011)

(Waldvogel,2010)

Iterations
N

“’;‘ 2heoretical Aog‘?g/ 4

Horizon N



Numerical results: more complex example

Linear system:

e 2 M states, M-1 inputs

(Wang, Boyd, 2008)

e state and input constraints

e terminal set

4

2

iterations
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observed ( d\/e/‘aﬁea/> ;
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0.001 0.005 0.01 0.05 0.1
Y

y = shrinking of parameter set, Py = dom{z € Z(p)|g(z) + v < 0}



Numerical results: more complex example

CPU time [ms]

—658

m.

m |

658

number of iterations

M [N |GPAD Gurobi 5.0
avg max avg max
2| <G 0.40 I 181 4.48
2880 0.76 35 22 5.64 S0
4(10 1.41 2.63 5.61 7.49
6|30 SN 5.5 mmikemw 23.57
8120 8.65| 14.95| 16.42| 18.36
15110 11.00| 1l6.62| 21.52| 22.95
20120 39.01| 82.32| 82.71|134.05
30130 128.1| 218.13] 202.35| 465.80

M |N |GPAD Gurobi 5.0

avyg max aVvJg maxXx
2110 19.90 60 5.42 7
2150 20.40 1LO0 5.50 7
4110 41.80 80 6.05 8
6| 30 52.20 100 6.57 8
81 20 52.20 90 6.51 8
ESHEE 54.00 80 ©.56 ]
201( 20 61.60 140 6.85 8
S0 LIBKD, 62.00 100 6.94 8

QP interior point solver of Gurobi 5.0

tolerances: ey = ¢g = 1072

results averaged on 100 random states p




Conclusions

e GPAD solver for QP tailored to embedded MPC applications

Very simple to code

Tight bounds on estimated real-time execution

Quality control of solution (primal optimality & feasibility criteria)

Although not conceived for speed, still reasonably fast

e Current ongoing work

- Robustness to computation errors (=fixed-point implementation)
- Closed-loop stability of MPC under lower-quality solutions
- Combined GPAD and Newton’s method (for faster convergence)

- Applications to aero industry (with ESA [/ Astrium [/ A3R)



Conclusions

Research on QP started ~60 years ago ...

ON MiINMIZING A CoNvEX FuNcTION SUBJECT TO LINEAR INEQUALITIES

By E. M. L. BEALE

Admiralty Research Laboratory, Teddington, Middlesex

SUMMARY

THE minimization of a convex function of variables subject to linear inequalities is
discussed briefly in general terms. Dantzig’s Simplex Method is extended to yield
finite algorithms for minimizing either a convex quadratic function or the sum of
the r largest of a set of linear functions, and the solution of a generalization of the
latter problem is indicated. In the last two sections a form of linear programming
with random variables as coefficients is described, and shown to involve the minimiza-

tion of a convex function. (Beale, 1955)

... still research on new QP solvers for MPC can have most impact !
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weytbetaT(y-y0)
zhat=-(dot (NG, W) +gP)
if ~onlyzhat:

z=(i-th)*z+th*zhat
thOo=th # Update th
th2=the**2
the({sqgre(th2**2+4.0°th2)~-th2)/2.1
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