Simple and Certifiable QP Algorithms for Embedded Linear MPC

Alberto Bemporad, Panagiotis Patrinos

Institutions Markets Technologies

IMT

INSTITUTE FOR ADVANCED STUDIES LUCCA DYSCO

Research Unit

Dynamical Systems, Control, and Optimization

Noordwijkerhout, The Netherlands, August 23, 2012

Outline

- Motivating applications (MPC for aerospace industry)
- QP solvers for embedded MPC
- A new "accelerated dual gradient projection" algorithm
- Numerical examples
- Conclusions

ESA-ESTEC, Noordwijk, The Netherlands

MPC for aero applications

- Plenty of potential MPC applications in aerospace industry !
 - Rendezvous and docking
 - Satellite formation flying
 - Unmanned aerial vehicles
 - Planetary rover locomotion (traction, guidance)
 - EDL (Entry Descent and Landing)
 - Ascent closed-loop guidance
 - In orbit servicing
 - ... and many others !

http://www.esa.int/SPECIALS/Technology/

- Only a few research groups active
 - Richards, Trodden (Bristol, UK)
 - Maciejowski, Hartley (Cambridge, UK)
 - Balas, Borrelli, Keviczky (Minnesota)

ATV Johannes Kepler docks with International Space Station

- Murray, Dunbar (Caltech)
- How, Breger, Tillerson (MIT)
- Bemporad, Pascucci, Rocchi (IMT Lucca)

Aerospace industry has very demanding certification standards

MPC for aero applications

- ESA funded project "ORCSAT" (2009-2011)
 - Main emphasis on real-time implementation capabilities of MPC (architecture, automatic generation of C and HDL code, timing)
 - Applications: orbit synchronization, impulsive hopping
 - New MATLAB Toolbox MPCTOOL, adding many new features on top of MPC Toolbox (such as LTV-MPC based on LP/QP)

MPC for aero applications

- ESA funded project "ROBMPC" (2010-2011)
 - Main goal: explore MPC capabilities in new space SprRAINED
 - Applications: Cooperating UAVs, planetary rover locomotion STERAINED SYSTER (traction & guidance)
 - New MATLAB Toolbox MPCSofT for LTV-MPC design

ThalesAlenia

ROBM

(Bemporad, Rocchi, CDC 2011)

ROBMPC - Robust MPC for Space Constrained Systems

Embedded optimization in aerospace

• PRISMA project for autonomous formation flying (S. Persson, S. Veldman, P. Bodin, 2009)

http://www.lsespace.com/about-prisma.aspx

 Objective: minimize fuel consumption subject to keeping motion within a box constraint (solved by linear programming)

Embedded LP is operational in space !

How to make MPC technology really "fly" (in industry)?

Requirements for Embedded MPC algorithms

 Speed: fast enough to provide a solution within short sampling intervals (such as 10-100 ms)

 Require simple hardware (microcontroller/FPGA) and little memory to store problem data and code

Code simple enough to be software-certifiable

 Tightly estimate worst-case execution time to certify hard real-time system properties

Explicit model predictive control

Presolve QP problem off-line for all states x(t) in a given range via multi-parametric programming

Contributors: Alessio, Baotic, Bemporad, Borrelli, Christophersen, De Doná, Dua, Filippi, Goodwin, Grancharova, Grieder, Johansen, Jones, Kerrigan, Kvasnica, Mayne, Maciejowski, Morari, Munoz de la Pena, Patrinos, Petersen, Pistikopulos, Rakovic, Sarimveis, Seron, Slupphaug, Spjøtvold, Tøndel, Zeilinger, ...

✓ Control law is piecewise affine (and also continuous for linear MPC)

✓ Code very simple, fast, and certifiable

- Limited to small problems (number of regions can grow exponentially with number of constraints)
- X Not applicable to **time-varying** models

while ((num <expcon_reg) &&="" check)="" th="" {<=""></expcon_reg)>						
isinside=1;						
while ((i1<=i2) && isinside) {						
aux=0;						
for (j=0;j <ekpcon_nth;j++)< td=""></ekpcon_nth;j++)<>						
aux+=(double)EXPCON_H[i1+j*EXPCON_NH]*th[j];						
if (aux>(double)EXPCON K[i1])						
isinside=0; /* get out of the loop, th violates						
else						
il**;						
}						
if (isinside) (
check=0; /* region found ! */						
infeasible=0;						
}						
else (
num++;						
il=i2+1; /* get next delimiter il */						
i2+=EXPCON_len[num]; /* get next delimiter i2 */						
)						

On-line QP solution methods

- active set methods (best for small/medium size problems)
- interior point methods (best for large-scale problems)
- gradient projection methods

(Goldstein, 1964) (Levitin & Poljak, 1965) (Nesterov, 1983)

conjugate gradient methods

augmented Lagrangian methods

 (and alternating direction method of multipliers)

Accelerated Dual Gradient Projection (GPAD)

Results based on

(Patrinos, Bemporad, CDC 2012) (Patrinos, Bemporad, journal version, submitted 2012)

Linear MPC - QP problem setup

• MPC problem (possibly LTV, Linear Time Varying):

• QP problem:

$$V^{*}(p) = \min_{z} \ell_{N}(x_{N}) + \sum_{k=0}^{N-1} \ell_{k}(x_{k}, u_{k}) \leftarrow guadratic \ costs$$
s.t. $x_{0} = p$

$$x_{k+1} = A_{k}x_{k} + B_{k}u_{k} + f_{k}$$

$$F_{k}x_{k} + G_{k}u_{k} \le c_{k}$$

$$k = 0, \dots, N-1$$

$$F_{N}x_{N} \le c_{N}$$

$$linear \ inequality$$

$$constraints$$
• QP problem:

$$V^{*}(p) \triangleq \min_{z} \frac{1}{2}z'Mz + (Cp + g)'z + \frac{1}{2}p'Yp$$
s.t. $Gz \le Ep + b$

$$z = optimization \ vector$$

$$p = x(t) \ parameter \ vector$$

Dual QP problem

$$V^{\star}(p) \triangleq \min_{z} \quad \frac{1}{2}z'Mz + (Cp+g)'z + \frac{1}{2}p'Yp$$

s.t. $Gz \le Ep+b$ original (primal) QP

 $H = GM^{-1}G'$ $D = GM^{-1}C + E$ $d = GM^{-1}g + b$

dual QP

 $\Phi^{\star}(p) \triangleq \min_{y} \quad \frac{1}{2}y'Hy + (Dp+d)'y + d_p$ s.t. $y \ge 0$

Dual QP has simpler constraint set (=orthant) to project onto !

 $\operatorname{proj}_{\{y \ge 0\}} y = \max\{y, 0\}$

• Key idea: apply standard fast gradient projection algorithm to solve dual QP problem (Nesterov, 1983)

Fast gradient projection algorithm

• Off-line operations: = linear algebra computations on QP matrices

 $M_{G} \triangleq M^{-1}G' \qquad G_{L} \triangleq \frac{1}{L}G \qquad \qquad L = \max \text{ eigenvalue of } H$ $M_{C} \triangleq M^{-1}C \qquad E_{L} \triangleq \frac{1}{L}E \qquad \qquad \text{or} \qquad \qquad M_{L} = \sqrt{\sum_{i,j=1}^{m} |H_{i,j}|^{2}} \qquad \text{Frobenius}$ $m_{g} \triangleq M^{-1}g \qquad b_{L} \triangleq \frac{1}{L}b \qquad \qquad L = \sqrt{\sum_{i,j=1}^{m} |H_{i,j}|^{2}} \qquad \text{Frobenius}$

• On-line operations: initialization given current p=x(t)

$$g_P \triangleq M_{P} + m_g, \ p_D \triangleq -E_{I} - b_L$$

 $y_0 = y_{-1} = 0, \ z_{-1} = 0, \ \theta_0 = \theta_{-1} = 1$

On-line operations: iterations

$$\theta_{\nu+1} = \frac{\sqrt{\theta_{\nu}^4 + 4\theta_{\nu}^2} - \theta_{\nu}^2}{2}$$
$$\beta_{\nu} = \theta_{\nu}(\theta_{\nu-1}^{-1} - 1)$$

 $\theta, \beta \in \mathbb{R}, \nu = \text{iteration counter}$

$$w_{\nu} = y_{\nu} + \beta_{\nu}(y_{\nu} - y_{\nu-1})$$

$$\hat{z}_{\nu} = -M_{G}w_{\nu} - g_{P}$$

$$z_{\nu} = (1 - \theta_{\nu})z_{\nu-1} + \theta_{\nu}\hat{z}_{\nu}$$

$$y_{\nu+1} = \max\{w_{\nu} + G_{L}\hat{z}_{\nu} + p_{D}, 0\}$$

Complexity (code, operations)

Main on-line operations involve only simple linear algebra

$$\begin{cases} w_{\nu} = y_{\nu} + \beta_{\nu}(y_{\nu} - y_{\nu-1}) & \text{matrix-vector} \\ \hat{z}_{\nu} = (M_{G}w_{\nu}) - g_{P} & \text{products} \\ z_{\nu} = (1 - \theta_{\nu})z_{\nu-1} + \theta_{\nu}\hat{z}_{\nu} \\ y_{\nu+1} = \max\{w_{\nu} + G_{L}\hat{z}_{\nu}) + p_{D}, 0\} \\ & \text{projection operation} \\ = \text{simple comparison} \end{cases}$$

- Few lines of (Embedded) MATLAB or Python/Numpy code !
- Operations can be easily parallelized (for example on GPU)

Complexity (code, operations)

$$\begin{cases} w_{\nu} = y_{\nu} + \beta_{\nu}(y_{\nu} - y_{\nu-1}) \\ \hat{z}_{\nu} = -M_{G}w_{\nu} - g_{P} \\ z_{\nu} = (1 - \theta_{\nu})z_{\nu-1} + \theta_{\nu}\hat{z}_{\nu} \\ y_{\nu+1} = \max\{w_{\nu} + G_{L}\hat{z}_{\nu} + p_{D}, 0\} \end{cases}$$

• Each iteration has complexity $O(N^2)$ [N = prediction horizon] (matrix-vector product)

- Using Riccati-like iterations, complexity gets down to O(N) (Patrinos, Bemporad, CDC 2012)
- For LTV problems, all matrices must be computed on-line

Termination criteria

We are interested in quality of primal solution

$$V(z,p) - V^{\star}(p) \leq \varepsilon_{V}$$
$$\max_{i \in \mathbb{N}_{[1,m]}} G_{i}z - E_{i}p - b_{i} \leq \varepsilon_{g}$$

 $\varepsilon_V \geq 0$ optimality tolerance $\varepsilon_g \geq 0$ feasibility tolerance

 $V(z,p) = \frac{1}{2}z'Mz + (Cp+g)'z + \frac{1}{2}p'Yp \quad \text{primal cost function}$

• V* is unknown, so we use the duality gap as a stopping criterion:

$$V(z_{\nu}, p) - \Phi(y_{\nu+1}, p) \leq \varepsilon_V$$
$$\max_{i \in \mathbb{N}_{[1,m]}} G_i z_{\nu} - E_i p - b_i \leq \varepsilon_g$$

 $\Phi(y,p) = \frac{1}{2}y'Hy + (Dp+d)'y + d_p$

dual cost function

Bounds on the number of iterations

• Feasibility:

$$Gz_{\nu} - Ep - b \le \varepsilon_g \begin{bmatrix} 1\\ \vdots\\ 1 \end{bmatrix}$$

$$\forall \nu \ge \left[\sqrt{\frac{8L(y^*(p))}{\varepsilon_g}} \right] - 2$$

(Patrinos, Bemporad, 2012)

• Optimality:

 $\forall y^*(p)$ solving dual problem

$$\forall \nu \geq \left\lceil \sqrt{\frac{2L}{\varepsilon_V}} (y^*(p)) \right\rceil - 2$$

(and also $V(z_{\nu}, p) - V^{\star}(p) \geq -\varepsilon_V$, see proof)

• A bound on $||z_{\nu} - z^*(p)||$ exists too

The bounds depend on optimal dual solution $y^*(p)$...

Bounds on the number of iterations

- A global bound on ||y*(p)|| for a given set P of parameters can be computed off-line by solving a MILP or a LPCC (Linear Program with linear Complementarity Constraints) (Patrinos, Bemporad, 2012)
- When no constraints are active, solution is found in **one step**: $y_0 = y^* = 0, \ z^* = -M^{-1}(Cp + g)$ is the optimal solution
- More generally: QP optimality conditions can be stated as

$$y^* = \max\{y^* - \frac{1}{L}(Hy^* + Dp + d), 0\}$$
$$z^* = -M^{-1}(G'y^* + Cp + g)$$

Solving QP = finding a solution of the system of PWA equations

GPAD vs other fast gradient projection methods

- Nesterov's method applied to primal problem, only input-constrained MPC with simple input constraints (Richter, Jones, Morari, CDC 2009)
- Relax state equations, solve the dual. Only simple constraints and terminal sets. (Richter, Morari, Jones, CDC 2011, IEEE TAC 2012)
- Richter's algorithms must be run for a constant number of iterations (= theoretical bound), no termination criteria based on primal solution

GPAD relaxes linear inequality constraints, not state equations.
 Can handle arbitrary polyhedral constraints on inputs/states (and polyhedral terminal sets). Practical termination criteria based on primal solution are provided. Different theoretical bounds are proved.

GPAD vs Interior Point (IP) methods

 GPAD iterations only require a matrix-vector product, IP requires solving a linear system

 GPAD can reach a solution of moderate accuracy quite fast, faster than a simple gradient method (both in practice and in theory). This is often enough for MPC purposes

GPAD has much tighter theoretical complexity bounds than IP

• GPAD is much simpler to code !

Numerical results: speed

Embedded MATLAB code

2

<pre>while keepgoing && (nu<maxiter),< pre=""></maxiter),<></pre>	
<pre>beta=th*(inv(th0)-1);</pre>	
w=y+beta*(y-y0);	
zhat=-(MG*w+gP);	
<pre>z=(1-th)*z+th*zhat;</pre>	
th0=th; % Update th0	
th2=th^2;	
$th=(sqrt(th2^2+4*th2)-th2)/2;$	
y0=y;	
<pre>y=max(w+GL*zhat+pD,0);</pre>	
<pre>gaphat=.5*(y'*H*y+zhat'*M*zhat) dp+c'*zhat+Dpd'*y;</pre>	+
<pre>violhat=max(G*zhat-b);</pre>	
<pre>if gaphat<=epsV && violhat<=eps keepgoing=0;</pre>	sG,
end	
nu=nu+1;	
end	

Average CPU time on random QP problems with n variables and 2n constraints

[standard algorithm with complexity $O(n^2)$]

Numerical results: bounds

Ball & plate example, 2 states, 1 input, bound constraints on states and inputs

(Richter, Jones, Morari, 2011)

⁽Waldvogel,2010)

Numerical results: more complex example

Linear system:

 $\bullet 2M$ states, M-1 inputs

(Wang, Boyd, 2008)

- state and input constraints
- terminal set

 $\gamma = \text{shrinking of parameter set}, \ \mathcal{P}_{\gamma} \triangleq \text{dom}\{z \in \mathcal{Z}(p) | g(z) + \gamma \leq 0\}$

Numerical results: more complex example

CPU time [ms]

М	Ν	GPAD		Gurobi	5.0
		avg	max	avg	max
2	10	0.40	1.09	4.48	
2	30	0.76	3.22	5.64	9.77
4	10	1.41	2.63	5.61	7.49
6	30	8.35	15.52	15.22	23.57
8	20	8.65	14.95	16.42	18.36
15	10	11.00	16.62	21.52	22.95
20	20	39.01	82.32	82.71	134.05
30	30	128.1	218.13	202.35	465.80

number of iterations

Μ	Ν	GPAD		Gurobi	5.0
		avg	max	avg	max
2	10	19.90	60	5.42	7
2	30	20.40	100	5.50	7
4	10	41.80	80	6.05	8
6	30	52.20	100	6.57	8
8	20	52.20	90	6.51	8
15	10	54.00	80	6.56	7
20	20	61.60	140	6.85	8
30	30	62.00	100	6.94	8

QP interior point solver of Gurobi 5.0 tolerances: $\epsilon_V = \epsilon_g = 10^{-3}$ results averaged on 100 random states p

Conclusions

- GPAD solver for QP tailored to embedded MPC applications
 - Very simple to code
 - Tight bounds on estimated real-time execution
 - Quality control of solution (primal optimality & feasibility criteria)
 - Although not conceived for speed, still reasonably fast

- Current ongoing work
 - Robustness to computation errors (=fixed-point implementation)
 - Closed-loop stability of MPC under lower-quality solutions
 - Combined GPAD and Newton's method (for faster convergence)
 - Applications to aero industry (with ESA / Astrium / A3R)

Conclusions

Research on QP started ~60 years ago ...

ON MINIMIZING A CONVEX FUNCTION SUBJECT TO LINEAR INEQUALITIES

By E. M. L. BEALE

Admiralty Research Laboratory, Teddington, Middlesex

SUMMARY

THE minimization of a convex function of variables subject to linear inequalities is discussed briefly in general terms. Dantzig's Simplex Method is extended to yield finite algorithms for minimizing either a convex quadratic function or the sum of the t largest of a set of linear functions, and the solution of a generalization of the latter problem is indicated. In the last two sections a form of linear programming with random variables as coefficients is described, and shown to involve the minimization of a convex function.

(Beale, 1955)

... still research on new QP solvers for MPC can have most impact !

