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VEHICLE CONTROL
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e Vehicle control = use of algorithms for manipulating actuators in real time
based on sensor measurement feedback to ensure proper vehicle behavior

e Vehicle controls are fundamental for:

- efficiency (optimized operations, energy management) [cleaner environment!]
- passenger comfort and safety (advanced driver assistance systems)  [save lives!]
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VEHICLE CONTROL

e Examples of vehicle control systems:

Electronic Stability Control (ESC), Traction Control System (TCS), -
Adaptive Cruise Control (ACC), Lane Keeping Assist (LKA), o
Anti-lock Braking System (ABS), Engine Control Unit (ECU),
Transmission Control Unit (TCU), ..., Autonomous Driving (AD)

»

o Complexity of vehicle control problems:

- multiple actuators (e.g., 4 traction/braking forces,

Tire Forces

front/rear steering, electric motors, ...

Tire Slip

- nonlinearities and uncertainties (e.g., tire forces) (Borrelli, Bemporad, Tseng, Hrovat, 2006)

- highly coupled dynamics and interactions of many control systems (engine control,
transmission control, heat distribution, ...)

Control is a fundamental software component for proper vehicle operations
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CLASSICAL CONTROL

e Proportional Integrative Derivative (PID) controllers are the most used
controllers in industrial automation since the '30s

Ky [—>| Process

K Controller ; PID Controller

« Single-loops are very easy to tune, just 3 parameters to calibrate
« Few lines of C code, minimal memory and throughput requirements

« No process model required, just output measurements

PIDs widely used in vehicle control. So why consider new control methods?
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CONTROL REQUIREMENTS

e Increasing requirements (emissions, fuel efficiency, passenger comfort, ...)

o/ controller engine
e Better control performance only achieved s actuators
s esired —_ Loraue
by better coordination of actuators: torque j—

| Sensors |

- increasing number of actuators =% i
S e
(e.g., due to electrification) m/&,

1y

.

- takeinto account limited range of actuators

- resilience in case of some actuator failure

¢ Shorter development time for control solution ><
||

(market competition, changing legislation) S
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PID CONTROL: LIMITATIONS

process

¥ Multi-input/multi-output systems: dynamical coupling requires tuning
multiple PID loops together

® Surgically changing a PID loop tuning may have bad consequences on other loops,
due to dynamical interactions

® Lookup-table complexity increases exponentially

(e.g.: 5inputs, 10 values each — 10° entries)

1
2

3| 00318 00154 00202 00225 00067
4 00344 0043 00305 00326 0.0336
5| 00357 00497 00377 00424 00358
6 00462 00508 00855 00527 0068
7| 0054 0076 00987 00596 0.0688
5| 00750 00782 0.1068 00605 0.0908

® Hard to coordinate multiple actuators optimally

® The calibration might need to be completely redone for a new vehicle model
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PID CONTROL: LIMITATIONS

Uy Y
Tn + En u, |/ N
process
PID controller n

® Handling input constraints require additional anti-windup design

¥ Output constraints are much harder to handle

® Limited preview (derivative term =1st order extrapolation of future output)
% No explicit performance index optimized at runtime

% Resilience to actuator faults requires further design effort

Classical control can be inadequate (time-consuming & suboptimal design)
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MODEL PREDICTIVE CONTROL (MPC)
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e Key idea: At each sample step, use a (simplified) dynamical
(M)odel of the process to (P)redict its future evolution and
choose the “best” (C)ontrol action accordingly
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MODEL PREDICTIVE CONTROL

e MPC problem: find the best control sequence over a future horizon of N steps

N-1
. 2 2
min 3 yk — r(OI3 + plluk — ()13
Ugy -+, UN—-1 k=0
st zpp1 = f(ap, uk) Fradtc&iovx model
Yk = g(zk)
Umin < Uk < Umax  conskraints
Ymin < Yk < Ymax
xo = z(t) state feedback

numerical optimization problem

@ -estimate current state z(t)
9 optimize wrt {uo, ..., un—1}
9 only apply optimal ug as input u(¢)

Repeat at all time steps ¢
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LINEAR MPC

e Linear prediction model: real-time optimization = Quadratic Program (QP)

1 “o
min —ZHz+2' () F'2 uy
z 2 5=
s.t. Gz <W + Sz(t) :
UN-—1

e The MPC concept dates back to the 60’s

e MPCisused in the process industries since the 80’s

Today APC (advanced process control) = MPC
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RESEARCH ON MPC OF AUTOMOTIVE SYSTEMS

Powertrain Ford Motor Company
engine control, magnetic actuators, robotized gearbox, Jaguar
power MGT in HEVs, cabin heat control, electrical motors

DENSO Automotive

Vehicle dynamics Fiat
traction control, active steering, semiactive suspensions, General Motors
autonomous driving aDnyN's

Most automotive OEMs are looking into MPC solutions today
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MPC FOR AUTONOMOUS DRIVING / DRIVER-ASSISTANCE SYSTEMS

e Coordinate torque request and steering to achieve safe and comfortable
autonomous driving with no collisions

¢ MPC combines path planning, path tracking, and obstacle avoidance

e Stochastic prediction models used to account for uncertainty
(other vehicles/pedestrians, driver’s requests)
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MPC OF GASOLINE TURBOCHARGED ENGINES

e Control throttle, wastegate, intake & exhaust cams to make engine torque
track set-points, with max efficiency and satisfying constraints

MPC
Desired : Actuators
torque commands
—_—

Engine

Achieved
Torque

Measurements

numerical optimization problem
solved in real-time on ECU

(Bemporad, Bernardini, Long, Verdejo, 2018)

engine operating at low pressure (66 kPa)
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MPC IN AUTOMOTIVE PRODUCTION

o MPC of turbocharged gasoline engine
in GM production since 2018

e Supervisory MPC for powertrain control
also in GM production since 2018

First known mass production of MPC in the automotive industry

http://www.odys.it/odys-and-gm-bring-online-mpc-to-production

ODYS real-time optimization and embedded MPC software is currently
running on 3+ million vehicles worldwide
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MODEL PREDICTIVE CONTROL (MPC)

g
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N %

s.t.

N—-1

D> llyk = resrll + pllur — wrirrll
k=0

Ti+1 = f(Tk, ur)

yr = g(Tk)
Umin < Uk < Umax
Ymin < Yk < Ymax

« Naturally coordinates multiple inputs and outputs and over-actuated systems

(# inputs > # outputs)

« Naturally handles input and output constraints

« Very easily includes preview on references/measured disturbances

« Design easy to transfer to new models (no lookup tables)

« Controller easily reconfigurable online to handle faults (resilience)

ontrol for Autt
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MODEL PREDICTIVE CONTROL (MPC)

N

) T Yy N—1
e prediction - i . 2 2
. model . 1. min > |lyk = rerklls + pllus = wegklls

references + | « inputs g | - outouts k—0

r, i optimization . '

T algorithm e—) U, ,, A st xpy1 = f(zr, uk)

WIPC controller process Yk = g(zk)
Umin < Uk < Umax

Ymin S Yk S Ymax
Price to pay:
% Nontrivial C code, requires formulating and solving QP problems at runtime

% Requires a process model (physical modeling and/or system identification)
(similar to all model-based control-design methods)

% Multiple parameters to calibrate (models, weights, solver tolerances, ...)
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EMBEDDED QUADRATIC OPTIMIZATION



EMBEDDED SOLVERS IN PRODUCTION

e Many QP algorithms exist today, but not all are suitable for embedded control

Key requirements for deploying QP in production:

1. speed (throughput)
- worst-case execution time less than sampling interval P
- alsofast on average (to free the processor to execute other tasks) L

2. limited memory and CPU power (e.g., 150 MHz / 50 kB)
3. numerical robustness (single precision arithmetic)

4. certification of worst-case execution time

5. code simple enough to be validated/verified/certified
(library-free C code, easy to check by production engineers)
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0DYS QP SOLVER

e General purpose QP solver designed for industrial production

PE®@ 2

: 1/ /

min. 2@z 42 1t

st. be < Az <Dy iieiaces R Pltioms
(< & ¢
<z<u

3 « — BN

Ez=f

Implements a proprietary state-of-the-art method for QP

Completely written in ANSI-C and MISRA-C 2012 compliant

Fast, robust (also in single precision), low-memory requirements

Optimized version for MPC available (~ 50% faster)

Licensed to several automotive OEMs and Tier-1 suppliers

Certifiable execution time
odys.it/qp
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PREDICTION MODELS FOR MPC



PREDICTION MODELS FOR MPC

e Physical models might be already available dafe B HO ket gn ii
. e . = W:,v7WL+W,]+7:pg bo:
from digital twins AT " X

Black-box system identification is amature  gta g% % % % % % LL
technology (ARX, N4SYD, neural networks, ...) \ 55 =

Gray-box (or physics-informed) models: mix of the two, can be quite effective

e Should the model be perfect? "All models are wrong, but some are useful."
(George E. P. Box)

A model is a good model for MPC if

. . r
- captures the main dynamics of the process ¥ rocel process

T rrrrrrrrrrrrrrrrrrrr u § A
- theresulting MPC closed-loop performs well ~ — MPCeontroller | @
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NONLINEAR SYS-ID BASED ON NEURAL NETWORKS

o Neural networks proposed for nonlinear system identification since the '90s

o NNARX models: use a feedforward neural network to approximate the

nonlinear difference equation y; ~ N (y;_1, . .

e Neural state-space models:

. 7yt7na7ut717 ..

L) utfnb)

- w/state data: fit a neural network model ;41 ~ Ny (z¢,ut), yr = Ny(xt)

- 1/O dataonly: set x; = value of an inner layer of the network

such as an autoencoder

e Recurrent neural networks (RNNs): more
appropriate for open-loop prediction, but
more difficult to train than feedforward NNs

3emporad - Model Predictive Control for Automotive Production - All rights reserved
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RECURRENT NEURAL NETWORKS

vy

e Recurrent Neural Network (RNN) model: L ”
z S y
Tror = folTr, ug,0s) R
Y = fy(xka ey) '
for fy = feedforward neural network vj = Ajfi-1(vj-1) +b;

(e.g.: general RNNs, LSTMs, RESNETS, physics-informed NN, ...) 6= (At Az, br)

e Training problem: given a dataset {uo, 4o, ..., un—1,yn—1} SOlve
1 N
min 05,6y + —
Ow,ley (l’o, T N Z ykvfy Ikv ))
Loy X1y TN—1 N

s.t. Th+1 :fm(xlmukﬁel?)

e Mainissue: zj are hidden states, i.e., are unknowns of the problem
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OFFLINE AND ONLINE TRAINING RNNS BY EKF

¢ Estimate both hidden states =), and parameters ¢, 8,, by EKF based on model

Thtr = Jo(@k, uk, Oak) + Sk Ratio Var([ny]/ Var|[(x] related to
0, 0, learning-rate of training algorithm
[9(:+1)] _ [0: + g gdig
y(kt1) Y Inverse of initial matrix Py related to
Y = fy(mkaeyk) +Ck

£5-penalty on 6, 6,

e RNN and its hidden state x;, can be estimated on line from a streaming dataset
{uk, yx }, and/or offline by processing multiple epochs of a given dataset

e Can handle general smooth strongly convex loss fncs/regularization terms
e Canadd /;-penalty A H {Zj } H . to sparsify 6,, 0, by changing EKF update into
& (k|k) & (k|k—1) 0
[01(1@1@)} = [9z(kk1)]+M(k)e(k)—)\P(kk -1 {sign(em(k’kl))]
0y (k|k) 0y (klk—1) sign(6, (k|k—1))

©2023 A. Bemporad - Model Predictive Control for Automotive Production - All rights reserved 22/36



TRAINING RNNS BY SEQUENTIAL LEAST-SQUARES AND ADMM

e Use the alternating direction method of multipliers (ADMM) by splitting

min@a:yayal’(]ﬂ/zﬂ/y 7"(.’,[,'07 917 9?!) + chvziol E(ylm fy ("I:k” Gy)) + g(V‘T7 Vy)
s.t. Tht+1 = fm(xkauka ew)

= 0z
[ly’y } - |:0y }
o Each ADMM iteration requires solving a standard least-squares problem

e Either line-search (LS) or a trust-region method (Levenberg-Marquardt) (LM)
is used while optimizing:

- NAILS = Nonconvex ADMM lterations and Sequential LS with Line Search

- NAILM = Nonconvex ADMM lIterations and Sequential LS with Levenberg-Marquardt
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TRAINING RNNS BY SEQUENTIAL LS AND ADMM

e Example: magneto-rheological fluid damper
N=2000 data used for training, 1499 for testing the model

o RNN model: 4 states, shallow NNs w/ 4 neurons, |/O feedthrough

NAILS AMSGrad
NAILM
EKF'

10° AMSGrad

MSE loss on training data,
mean value and range over 20
runs from different random

initial weights
oo Lrtliningstimc (55} oo nza\inmg time (s) . L
Best Fit Rate training test
e NAILS 94.41(0.27) | 89.35(2.63)
NAILS = GNN method with line search NAILM 94.07 (0.38) | 89.64 (2.30)
NAILM = GNN method with LM steps EKF 91.41(0.70) | 87.17(3.06)
AMSGrad | 84.69(0.15) | 80.56(0.18)
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TRAINING RNNS BY SEQUENTIAL LS AND ADMM

o Fluid-damper example: Lasso regularization g(v,, vy) = 0.2||vg||1 + 0.2||vy |1

training BFR BFR sparsity CPU #

algorithm training test % time epochs ~ same fit than
NAILS 91.00 (1.66) | 87.71(2.67) | 65.1(65) | 114s 250 ~

NAILM 91.32(1.19) | 87.80(1.86) | 64.1(7.4) | 11.7s 250 SGD/EKF but sparser
EKF 89.27(1.48) | 86.67(2.71) | 47.9(9.1) | 13.2s 50

AMSGrad | 9104(047) | 88.32(080) | 168(71) | 640s | 2000  Modelsand faster
Adam 9047 (0.34) | 87.79(044) | 83(3.5) | 639s | 2000  (CPU:Apple M1 Pro)
DiffGrad | 90.05(0.64) | 87.34(1.14) | 7.4(45) | 639s | 2000

e Fluid-damper example: group-Lasso regularization g(v)) = 7, >, ||7]|2
to zero entire rows and columns and reduce state-dimension automatically

100 7 T T T

] ?
"°’\:”—}‘\ good choice: n, = 3

[ ——BFR (test data) : (best fit on test data)
—— BFR (training data) !

BFR (%)

70 [
final model order

. . .
104 107 102 10! 10° 10"
group-lasso regularization parameter 7,
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NONLINEAR MPC BASED ON NEURAL NETWORKS

e Approach: use a neural network model for prediction

neural

prediction i nonlinear
. model optimization |
o — i algorthm

model-based optimizer

process

inputs 4 G| outputs
u(t) y(t)

set-points

()

L

state estimator

measurements

e Nonlinear MPC: solve a sequence of QP problems at each sample step

current state
simulate
initial input
sequence | ......... 1
/ optimize sequence
linearize
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0DYS EMBEDDED MPC TOOLSET

e ODYS Embedded MPC is a software toolchain for design and D D\ /S
deployment of MPC solutions inindustrial production =~ Aeerees cenerae s omsimizacien

e Support for linear & nonlinear MPC and extended Kalman filtering

o Extremely flexible, all MPC parameters can be changed at runtime
(models, cost function, horizons, constraints, ...)

e Integrated with MPC-specific version of ODYS QP Solver
e Library-free C code, MISRA-C 2012 compliant
e Currently used worldwide by several automotive OEMs in R&D and production

e Support for neural networks as prediction models (ODYS Deep Learning)

odys.it/embedded-mpc
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CALIBRATION AND CRITICAL SCENARIO DETECTION



BEST MPC CALIBRATION

e The design depends on a vector z of control parameters

e 1 = (weights, covariance matrices, solver thresholds, ...)

o Define a performance index f over a closed-loop simulation or real experiment.
For example:

Z ly(t) —r(®)]*

(Erackmg qualx_&j)

e Auto-tuning = find the best combination of parameters by solving
the global optimization problem

min f(2)
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AUTO-TUNING: PROS AND CONS

e Pros:

« Selection of calibration parameters x to test is fully automatic
« Applicable to any calibration parameter (weights, horizons, solver tolerances, ...)

+ Rather arbitrary performance index f(z) (tracking performance, response time,
worst-case number of flops, ...)

e Cons:

X The calibrator must quantify an objective function f(z)
% No room for qualitative assessments of closed-loop performance

% Often have multiple objectives, not clear how to blend them in a single one
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ACTIVE PREFERENCE LEARNING

Objective function f(x) is not available (latent function)

We can only express a preference between two choices:

x1 “better” than x4 [f(z1) < f(x2)]
1 “as good as” x; [f(z1) = f(x2)]
xs “better” than z; [f(z1) > f(x2)]

We want to find a global optimum z* that is “better” than any other x

Active preference learning: iteratively propose a new sample to compare

Key idea: learn a surrogate of the (latent) objective function from preferences
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SEMI-AUTOMATIC CALIBRATION BY PREFERENCE-BASED LEARNING

e Use preference-based optimization (GLISp) algorithm for semi-automatic
tuning of MPC

e Latent function = calibrator’s (unconscious) control performance score

o GLISp proposes a new combination x 1 testing &
assessment

of control parameters to test

o The calibrator expresses a preference: x4 is

o e f
“better”, “similar”, or “worse” than current best ool
parameters preference-
. . . | based learning
o Preference learning algorithm iterates: " algorithm

(1) update the surrogate f(z) of the latent function,
(2) optimize the acquisition function, (3) ask preference

cse.lab.imtlucca.it/~bemporad/glis ‘\ ﬁ pip install glis

A. Bemporad - Model Predictive Control for Automotive Production - All rights reserved 31/36



cse.lab.imtlucca.it/~bemporad/glis

PREFERENCE-BASED TUNING: MPC EXAMPLE

e Example: calibration of a simple MPC for lane-keeping (2 inputs, 3 outputs)

vcos(f + 0) I —" e ]

vsin(6 + 0) /

6 = Lvsin(6) L

e Multiple control objectives:

» o« » o«

“optimal obstacle avoidance”, “pleasant drive”, “CPU time small enough’, ...

not easy to quantify in a single function

e 5MPC parameters to tune:

- sampling time
- prediction and control horizons

- weights on input increments Av, Ad
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PREFERENCE-BASED TUNING: MPC EXAMPLE

e Preference query window:

T,=0.3325,N, = 16,N_=17,log(q,,,) = 0.06, T,=0.2435,N, =12,N_ =17, log(q,,,) = 0.19,
10g(d5) = 2,021, : 0.0867 5 1og(q,,) = 0.70, 1., :0.0846
vehicle vehicle
obstacle obstacle
— 6 m— vehicle OA . 6 m— vehicle OA
£ m— obstacle OA £ mm— obstacle OA
S 3 S 3
[ 0
0 50 100 150 200 250 0 50 100 150 200 250
80 80 put
E 70 Reference E 70 Reference
§, 60 =_E‘. 60 (\
> 50 > 50 \V4
40 40
0 50 100 150 200 250 0 50 100 150 200 250
50 50
25 25 -
= = MPC closed-l.. ~ —
O\~ -0 ﬂvb\/\/\/\»——

w w -
25 25 U Which tuning do you prefer ?
-50 -50

0 50 100 150 200 250 0 50 100 150 200 250
x,[m] x,[m]
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PREFERENCE-BASED TUNING: MPC EXAMPLE

e Convergence after 50 GLISp iterations (=49 queries):

of — vohicie Optimal MPC parameters:
—_ — obstacle
E 2r s vehicle OA
=~ 1F s obstacle OA

0 |

i = 00 o o 0 - sample time =85 ms (CPU time = 80.8 ms)

s ] [ ] —Inpu - icti i =
s e prediction honzon 16
£ % | - control horizon =5

50 T | | T 4 . _

0 50 100 150 200 250 - W6|ght on A'U - 182

ol ‘ ‘ ‘ ‘ - weighton A§=8.28
S
TS

5‘0 1‘ 1‘ 260

-20
0 00 50 250
x,[m]

e Note: no need to define a closed-loop performance index explicitly!

A. Bemporad - Model Predictive Control for Automotive Production - All rights reserved 34/36



WORST-CASE SCENARIO DETECTION

Goal: detect undesired closed-loop scenarios (=corner-cases)

Let x = parameters defining the scenario (e.g., initial conditions, disturbances, ...)

Critical scenario = vector z* for which the closed-loop behavior is critical

wy

Critical scenario detection = find the worst combination 2* of scenario
parameters by solving the global optimization problem

min f(x)
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CONCLUSIONS

¢ Long history of success of MPC in the process
industries, now spreading to the automotive industry

e MPC technology completely ready for mass production:

1. modern ECUs can solve MPC problems in real-time

2. industry-grade MPC software is available for design, calibration, and deployment

o Key enabler for adopting MPC: production managers that are willing to adopt
such a new advanced control technology

¢ Insoftware-defined vehicles, control is an essential software component:
same hardware + different controls = drastically different performance!

Control innovation is essential for automotive market success
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