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• Vehicle control = use of algorithms for manipulating actuators in real time

based on sensormeasurement feedback to ensure proper vehicle behavior

• Vehicle controls are fundamental for:

– efficiency (optimized operations, energymanagement) [cleaner environment!]

– passenger comfort and safety (advanced driver assistance systems) [save lives!]
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(Borrelli, Bemporad, Tseng, Hrovat, 2006)

Vehicle control

• Examples of vehicle control systems:

Electronic Stability Control (ESC), Traction Control System (TCS),

Adaptive Cruise Control (ACC), Lane Keeping Assist (LKA),

Anti-lock Braking System (ABS), Engine Control Unit (ECU),

Transmission Control Unit (TCU), ...,Autonomous Driving (AD)

• Complexity of vehicle control problems:

– multiple actuators (e.g., 4 traction/braking forces,

front/rear steering, electric motors, ...)

– nonlinearities and uncertainties (e.g., tire forces)

– highly coupled dynamics and interactions ofmany control systems (engine control,

transmission control, heat distribution, ...)

Control is a fundamental software component for proper vehicle operations
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Classical control

• Proportional Integrative Derivative (PID) controllers are themost used

controllers in industrial automation since the ’30s
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PID Controller

 Single-loops are very easy to tune, just 3 parameters to calibrate

 Few lines of C code, minimal memory and throughput requirements

 No processmodel required, just output measurements

PIDswidely used in vehicle control. So why consider new control methods?
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Control requirements

• Increasing requirements (emissions, fuel efficiency, passenger comfort, …)

• Better control performance only achieved
by better coordination of actuators:

– increasing number of actuators

(e.g., due to electrification)

– take into account limited range of actuators

– resilience in case of some actuator failure

• Shorter development time for control solution

(market competition, changing legislation)
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PID control: limitations
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 Multi-input/multi-output systems: dynamical coupling requires tuning
multiple PID loops together

⌢ Surgically changing a PID loop tuningmay have bad consequences on other loops,

due to dynamical interactions

⌢ Lookup-table complexity increases exponentially

(e.g.: 5 inputs, 10 values each→ 105 entries)

⌢ Hard to coordinatemultiple actuators optimally

⌢ The calibrationmight need to be completely redone for a new vehicle model
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PID control: limitations
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 Handling input constraints require additional anti-windup design

 Output constraints aremuch harder to handle

 Limited preview (derivative term =1st order extrapolation of future output)

 No explicit performance index optimized at runtime

 Resilience to actuator faults requires further design effort

Classical control can be inadequate (time-consuming & suboptimal design)
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Model Predictive Control (MPC)
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• Key idea: At each sample step, use a (simplified) dynamical

(M)odel of the process to (P)redict its future evolution and

choose the “best” (C)ontrol action accordingly
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Model Predictive Control
• MPC problem: find the best control sequence over a future horizon ofN steps

min
u0, . . . , uN−1

N−1∑

k=0

∥yk − r(t)∥
2

2 + ρ∥uk − ur(t)∥
2

2

s.t. xk+1 = f(xk, uk) prediction model
yk = g(xk)

umin ≤ uk ≤ umax constraints
ymin ≤ yk ≤ ymax

x0 = x(t) state feedback

numerical optimization problem

1 estimate current state x(t)

2 optimizewrt {u0, . . . , uN−1}

3 only apply optimal u0 as input u(t)

Repeat at all time steps t
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Linear MPC

• Linear predictionmodel: real-time optimization =Quadratic Program (QP)

min
z

1

2
z′Hz + x′(t)F ′z

s.t. Gz ≤ W + Sx(t) z*
z =


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
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



• TheMPC concept dates back to the 60’s (Rafal, Stevens, 1968) (Propoi, 1963)

• MPC is used in the process industries since the 80’s (Qin, Badgewell, 2003)

Today APC (advanced process control) =MPC

©SimulateLive.com
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Research on MPC of automotive systems
(Bemporad, Bernardini, Borrelli, Cimini, Di Cairano, Esen, Giorgetti, Graf-Plessen, Hrovat, Kolmanovsky
Levijoki, Livshiz, Long, Pattipati, Ripaccioli, Trimboli, Tseng, Verdejo, Yanakiev, ..., 2001-present)

Powertrain
engine control, magnetic actuators, robotized gearbox,

powerMGT in HEVs, cabin heat control, electrical motors

Vehicle dynamics
traction control, active steering, semiactive suspensions,

autonomous driving

FordMotor Company

Jaguar

DENSOAutomotive
Fiat

GeneralMotors

4

tire deflection

suspension deflection


4

tire deflection

suspension deflection

Most automotiveOEMs are looking intoMPC solutions today
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MPC for autonomous driving / driver-assistance systems
(Graf Plessen, Bernardini, Esen, Bemporad, 2018)

• Coordinate torque request and steering to achieve safe and comfortable

autonomous driving with no collisions

• MPC combines path planning, path tracking, and obstacle avoidance

• Stochastic predictionmodels used to account for uncertainty

(other vehicles/pedestrians, driver’s requests)


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MPC of gasoline turbocharged engines
• Control throttle, wastegate, intake & exhaust cams tomake engine torque

track set-points, withmax efficiency and satisfying constraints

Measurements

Desired 

torque
Actuators

commands

Achieved

Torque

EngineMPC

numerical optimization problem

solved in real-time on ECU

(Bemporad, Bernardini, Long, Verdejo, 2018)

engine operating at low pressure (66 kPa)
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MPC in automotive production
• MPCof turbocharged gasoline engine

in GMproduction since 2018

(Bemporad, Bernardini, Long, Verdejo, 2018)

• SupervisoryMPC for powertrain control

also in GMproduction since 2018

(Bemporad, Bernardini, Livshiz, Pattipati, 2018)

First knownmass production ofMPC in the automotive industry

http://www.odys.it/odys-and-gm-bring-online-mpc-to-production

ODYS real-time optimization and embedded MPC software is currently

running on 3+million vehiclesworldwide
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Model Predictive Control (MPC)
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min

N−1∑

k=0

∥yk − rt+k∥
2

2 + ρ∥uk − ur,t+k∥
2

2

s.t. xk+1 = f(xk, uk)
yk = g(xk)

umin ≤ uk ≤ umax

ymin ≤ yk ≤ ymax

 Naturally coordinatesmultiple inputs and outputs and over-actuated systems

(# inputs> # outputs)

 Naturally handles input and output constraints

 Very easily includes preview on references/measured disturbances

 Design easy to transfer to newmodels (no lookup tables)

 Controller easily reconfigurable online to handle faults (resilience)
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Model Predictive Control (MPC)
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min

N−1∑

k=0

∥yk − rt+k∥
2

2 + ρ∥uk − ur,t+k∥
2

2

s.t. xk+1 = f(xk, uk)
yk = g(xk)

umin ≤ uk ≤ umax

ymin ≤ yk ≤ ymax

Price to pay:

 Nontrivial C code, requires formulating and solving QP problems at runtime

 Requires a processmodel (physical modeling and/or system identification)

(similar to allmodel-based control-designmethods)

 Multiple parameters to calibrate (models, weights, solver tolerances, ...)
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Embedded Quadratic Optimization



Embedded solvers in production
• ManyQP algorithms exist today, but not all are suitable for embedded control

Key requirements for deployingQP in production:
m
in

1

2
x
0 Qx

+
c
0 x

s.t
.

Ax
≤
b

1. speed (throughput)

– worst-case execution time less than sampling interval

– also fast on average (to free the processor to execute other tasks)

2. limitedmemory and CPU power (e.g., 150MHz / 50 kB)

3. numerical robustness (single precision arithmetic)

4. certification of worst-case execution time

5. code simple enough to be validated/verified/certified

(library-free C code, easy to check by production engineers)

for (i=0;i<nx;i++) {

v[i]=x[i];

}

h=v[0];
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ODYS QP solver
• General purposeQP solver designed for industrial production

min
z

1

2
z′Qz + c′z

s.t. bℓ ≤ Az ≤ bu

ℓ ≤ z ≤ u

Ez = f

• Implements a proprietary state-of-the-art method for QP

• Completely written inANSI-C andMISRA-C 2012 compliant

• Fast, robust (also in single precision), low-memory requirements

• Optimized version forMPC available (≈ 50% faster)

• Licensed to several automotiveOEMs and Tier-1 suppliers

• Certifiable execution time
odys.it/qp
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Prediction models for MPC
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Prediction models for MPC

• Physical modelsmight be already available

from digital twins

• Black-box system identification is a mature

technology (ARX, N4SYD, neural networks, ...)

• Gray-box (or physics-informed) models: mix of the two, can be quite effective

• Should themodel be perfect? "All models are wrong, but some are useful."

(George E. P. Box)

• Amodel is a goodmodel forMPC if

– captures themain dynamics of the process

– the resultingMPC closed-loop performswell MPC controller
r

process

u y

prediction 

model
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Nonlinear SYS-ID based on Neural Networks

• Neural networks proposed for nonlinear system identification since the ’90s

(Narendra, Parthasarathy, 1990) (Hunt et al., 1992) (Suykens, Vandewalle, DeMoor, 1996)

• NNARXmodels: use a feedforward neural network to approximate the

nonlinear difference equation yt ≈ N (yt−1, . . . , yt−na
, ut−1, . . . , ut−nb

)

• Neural state-spacemodels:

– w/ state data: fit a neural networkmodel xt+1 ≈ Nx(xt, ut), yt ≈ Ny(xt)

– I/O data only: set xt = value of an inner layer of the network (Prasad, Bequette, 2003)

such as an autoencoder (Masti, Bemporad, 2021)

• Recurrent neural networks (RNNs): more

appropriate for open-loop prediction, but

more difficult to train than feedforward NNs
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Recurrent neural networks
• Recurrent Neural Network (RNN)model:

xk+1 = fx(xk, uk, θx)

yk = fy(xk, θy)

fx, fy = feedforward neural network

(e.g.: general RNNs, LSTMs, RESNETS, physics-informed NNs, …)

x

v
1

v
2

vL
y

vj = Ajfj−1(vj−1) + bj

θ = (A1, b1, . . . , AL, bL)

• Training problem: given a dataset {u0, y0, . . . , uN−1, yN−1} solve

min
θx, θy

x0, x1, . . . , xN−1

r(x0, θx, θy) +
1

N

N−1
∑

k=0

ℓ(yk, fy(xk, θy))

s.t. xk+1 = fx(xk, uk, θx)

• Main issue: xk are hidden states, i.e., are unknowns of the problem

©2023 A. Bemporad - Model Predictive Control for Automotive Production - All rights reserved 21/36



Offline and online training RNNs by EKF
(Puskorius, Feldkamp, 1994) (Wang, Huang, 2011) (Bemporad, 2023)

• Estimate both hidden states xk and parameters θx, θy by EKF based onmodel



















xk+1 = fx(xk, uk, θxk) + ξk
[

θx(k+1)

θy(k+1)

]

=

[

θxk

θyk

]

+ ηk

yk = fy(xk, θyk) + ζk

RatioVar[ηk]/Var[ζk] related to
learning-rate of training algorithm

Inverse of initial matrixP0 related to
ℓ2-penalty on θx, θy

• RNN and its hidden state xk can be estimated on line from a streaming dataset

{uk, yk}, and/or offline by processingmultiple epochs of a given dataset

• Can handle general smooth strongly convex loss fncs/regularization terms

• Can add ℓ1-penalty λ
∥

∥

∥

[

θx
θy

]∥

∥

∥

1
to sparsify θx, θy by changing EKF update into

[

x̂(k|k)
θx(k|k)
θy(k|k)

]

=

[

x̂(k|k−1)
θx(k|k−1)
θy(k|k−1)

]

+M(k)e(k)−λP (k|k − 1)

[

0
sign(θx(k|k−1))
sign(θy(k|k−1))

]
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Training RNNs by Sequential Least-Squares and ADMM
(Bemporad, 2023)

• Use the alternating directionmethod ofmultipliers (ADMM) by splitting

minθx,θy,x0,νx,νy
r(x0, θx, θy) +

∑N−1
k=0 ℓ(yk, fy(xk, θy)) + g(νx, νy)

s.t. xk+1 = fx(xk, uk, θx)

[ νx
νy ] =

[

θx
θy

]

• Each ADMM iteration requires solving a standard least-squares problem

• Either line-search (LS) or a trust-regionmethod (Levenberg-Marquardt) (LM)
is usedwhile optimizing:

– NAILS = Nonconvex ADMM Iterations and Sequential LS with Line Search

– NAILM = Nonconvex ADMM Iterations and Sequential LS with Levenberg-Marquardt
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Training RNNs by Sequential LS and ADMM
(Bemporad, 2023)

• Example: magneto-rheological fluid damper

N=2000 data used for training, 1499 for testing themodel

(Wang, Sano, Chen, Huang, 2009)

• RNNmodel: 4 states, shallowNNsw/ 4 neurons, I/O feedthrough

0 1 2 3 4 5 6 7 8 9 10

training time (s)

10
1

10
2

10
3

M
S
E

NAILS

NAILM

EKF

AMSGrad

20 40 60

training time (s)

AMSGrad

MSE loss on training data,
mean value and range over 20
runs from different random
initial weights

NAILS = GNN method with line search
NAILM = GNN method with LM steps

Best Fit Rate training test
NAILS 94.41 (0.27) 89.35 (2.63)
NAILM 94.07 (0.38) 89.64 (2.30)
EKF 91.41 (0.70) 87.17 (3.06)
AMSGrad 84.69 (0.15) 80.56 (0.18)
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Training RNNs by Sequential LS and ADMM
(Bemporad, 2023)

• Fluid-damper example: Lasso regularization g(νx, νy) = 0.2∥νx∥1 + 0.2∥νy∥1

training BFR BFR sparsity CPU #
algorithm training test % time epochs
NAILS 91.00 (1.66) 87.71 (2.67) 65.1 (6.5) 11.4 s 250
NAILM 91.32 (1.19) 87.80 (1.86) 64.1 (7.4) 11.7 s 250
EKF 89.27 (1.48) 86.67 (2.71) 47.9 (9.1) 13.2 s 50
AMSGrad 91.04 (0.47) 88.32 (0.80) 16.8 (7.1) 64.0 s 2000
Adam 90.47 (0.34) 87.79 (0.44) 8.3 (3.5) 63.9 s 2000
DiffGrad 90.05 (0.64) 87.34 (1.14) 7.4 (4.5) 63.9 s 2000

≈ same fit than
SGD/EKF but sparser
models and faster
(CPU: Apple M1 Pro)

• Fluid-damper example: group-Lasso regularization g(νgi ) = τg
∑nx

i=1 ∥ν
g
i ∥2

to zero entire rows and columns and reduce state-dimension automatically
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Nonlinear MPC based on Neural Networks
• Approach: use a neural networkmodel for prediction

model-based optimizer

set-points outputsinputs

measurements

r(t) u(t) y(t)

nonlinear

optimization 

algorithm

process

state estimator

neural 

prediction 

model

(aecdiagnostics.com)

• NonlinearMPC: solve a sequence of QP problems at each sample step

z*

optimal

sequence

initial input 

sequence

QP

current state

linearize

optimize

simulate
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odys.it/embedded-mpc

ODYS Embedded MPC Toolset

• ODYS EmbeddedMPC is a software toolchain for design and

deployment ofMPC solutions in industrial production

• Support for linear & nonlinearMPC and extended Kalman filtering

• Extremely flexible, all MPC parameters can be changed at runtime

(models, cost function, horizons, constraints, ...)

• Integrated withMPC-specific version ofODYSQP Solver

• Library-free C code,MISRA-C 2012 compliant

• Currently usedworldwide by several automotiveOEMs in R&D and production

• Support for neural networks as predictionmodels (ODYSDeep Learning)
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Calibration and critical scenario detection
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Best MPC calibration

• The design depends on a vector x of control parameters

• x = (weights, covariancematrices, solver thresholds, ...)

• Define a performance index f over a closed-loop simulation or real experiment.

For example:

f(x) =

T
∑

t=0

∥y(t)− r(t)∥2

(tracking quality)

• Auto-tuning = find the best combination of parameters by solving

the global optimization problem

min
x

f(x)
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Auto-tuning: Pros and Cons

• Pros:

 Selection of calibration parameters x to test is fully automatic

 Applicable to any calibration parameter (weights, horizons, solver tolerances, ...)

 Rather arbitrary performance index f(x) (tracking performance, response time,

worst-case number of flops, ...)

• Cons:

 The calibrator must quantify an objective function f(x)

 No room for qualitative assessments of closed-loop performance

 Often havemultiple objectives, not clear how to blend them in a single one
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Active preference learning

(Bemporad, Piga,Machine Learning, 2021)

• Objective function f(x) is not available (latent function)

• We can only express a preference between two choices:

x1 “better” than x2 [f(x1) < f(x2)]

x1 “as good as” x2 [f(x1) = f(x2)]

x2 “better” than x1 [f(x1) > f(x2)]

• Wewant to find a global optimum x⋆ that is “better” than any other x

• Active preference learning: iteratively propose a new sample to compare

• Key idea: learn a surrogate of the (latent) objective function from preferences
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Semi-automatic calibration by preference-based learning
• Use preference-based optimization (GLISp) algorithm for semi-automatic

tuning ofMPC (Zhu, Bemporad, Piga, 2021) (Bemporad, Piga, 2021)

• Latent function = calibrator’s (unconscious) control performance score

• GLISp proposes a new combination xN+1

of control parameters to test

• The calibrator expresses a preference: xN+1 is

“better”, “similar”, or “worse” than current best

• Preference learning algorithm iterates:

(1) update the surrogate f̂(x) of the latent function,

(2) optimize the acquisition function, (3) ask preference

cse.lab.imtlucca.it/~bemporad/glis pip install glis
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Preference-based tuning: MPC example
(Zhu, Bemporad, Piga, 2021)

• Example: calibration of a simpleMPC for lane-keeping (2 inputs, 3 outputs)











ẋ = v cos(θ + δ)

ẏ = v sin(θ + δ)

θ̇ = 1
L
v sin(δ)

±

µ

L

v

x

y

• Multiple control objectives:

“optimal obstacle avoidance”, “pleasant drive”, “CPU time small enough”, …
not easy to quantify in a single function

• 5MPC parameters to tune:

– sampling time

– prediction and control horizons

– weights on input increments∆v,∆δ
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Preference-based tuning: MPC example

• Preference query window:
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T
s
 = 0.243 s, N

u
 = 12, N

p
 = 17, log(q

u11
) =  0.19, 

log(q
u22

) =  0.70, t
comp

: 0.0846 s

T
s
 = 0.332 s, N

u
 = 16, N

p
 = 17, log(q

u11
) =  0.06, 

log(q
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) =  2.02,t
comp

: 0.0867 s
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Preference-based tuning: MPC example

• Convergence after 50 GLISp iterations (=49 queries):
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Optimal MPC parameters:

– sample time = 85 ms (CPU time = 80.8 ms)

– prediction horizon = 16

– control horizon = 5

– weight on∆v = 1.82

– weight on∆δ = 8.28

• Note: no need to define a closed-loop performance index explicitly!
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Worst-case scenario detection
(Zhu, Bemporad, Kneissl, Esen, 2023)

• Goal: detect undesired closed-loop scenarios (=corner-cases)

• Let x = parameters defining the scenario (e.g., initial conditions, disturbances, ...)

• Critical scenario = vector x∗ for which the closed-loop behavior is critical

SV

SV

1

1

• Critical scenario detection = find theworst combination x∗ of scenario

parameters by solving the global optimization problem

min
x

f(x)
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Conclusions

• Long history of success ofMPC in the process

industries, now spreading to the automotive industry
(energytransition.org) (pixabay.com, aecdiagnostics.com) 

• MPC technology completely ready for mass production:

1. modern ECUs can solveMPC problems in real-time

2. industry-gradeMPC software is available for design, calibration, and deployment

• Key enabler for adoptingMPC: productionmanagers that are willing to adopt

such a new advanced control technology

• In software-defined vehicles, control is an essential software component:

same hardware + different controls = drastically different performance!

Control innovation is essential for automotivemarket success
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