MODEL PREDICTIVE CONTROL FOR AUTOMOTIVE PRODUCTION

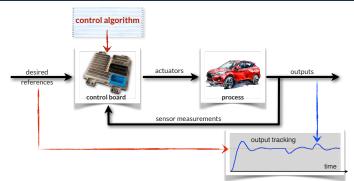
Alberto Bemporad

imt.lu/ab

www.odys.it

November 9, 2023

VEHICLE CONTROL



- Vehicle control = use of algorithms for manipulating actuators in real time based on sensor measurement feedback to ensure proper vehicle behavior
- Vehicle controls are fundamental for:
 - efficiency (optimized operations, energy management) [cleaner environment!]
 - passenger comfort and safety (advanced driver assistance systems) [save lives!]

VEHICLE CONTROL

• Examples of vehicle control systems:

Electronic Stability Control (ESC), Traction Control System (TCS), Adaptive Cruise Control (ACC), Lane Keeping Assist (LKA), Anti-lock Braking System (ABS), Engine Control Unit (ECU), Transmission Control Unit (TCU), ..., Autonomous Driving (AD)

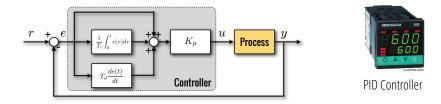
- Complexity of vehicle control problems:
 - multiple actuators (e.g., 4 traction/braking forces, front/rear steering, electric motors, ...)
 - nonlinearities and uncertainties (e.g., tire forces)
 - highly coupled dynamics and interactions of many control systems (engine control, transmission control, heat distribution, ...)

Control is a fundamental software component for proper vehicle operations

3/36

CLASSICAL CONTROL

• Proportional Integrative Derivative (PID) controllers are the most used controllers in industrial automation since the '30s



- ✓ Single-loops are very easy to tune, just 3 parameters to calibrate
- Few lines of C code, minimal memory and throughput requirements
- No process model required, just output measurements

PIDs widely used in vehicle control. So why consider new control methods?

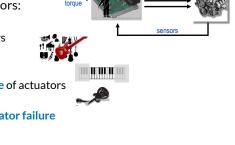
CONTROL REQUIREMENTS

Increasing requirements (emissions, fuel efficiency, passenger comfort, ...)

desire

- Better control performance only achieved by better coordination of actuators:
 - increasing number of actuators (e.g., due to electrification)
 - take into account limited range of actuators
 - resilience in case of some actuator failure

• Shorter development time for control solution (market competition, changing legislation)

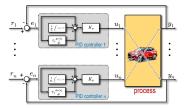


enaine

toraue

actuators

PID CONTROL: LIMITATIONS

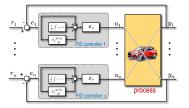


- Multi-input/multi-output systems: dynamical coupling requires tuning multiple PID loops together
 - Surgically changing a PID loop tuning may have bad consequences on other loops, due to dynamical interactions
 - ② Lookup-table complexity increases exponentially (e.g.: 5 inputs, 10 values each → 10^5 entries)
 - Hard to coordinate multiple actuators optimally

	A	в	C	D	E
1	Input 1	Input 2	Input 3	Input 4	Input 5
2	0.0119	0.0046	0.0287	0.0155	0.0012
3	0.0318	0.0154	0.0292	0.0225	0.0067
4	0.0344	0.043	0.0305	0.0326	0.0336
5	0.0357	0.0497	0.0377	0.0424	0.0358
6	0.0462	0.0598	0.0855	0.0527	0.068
7	0.054	0.076	0.0987	0.0596	0.0688
8	0.0759	0.0782	0.1068	0.0605	0.0908
9	0.0971	0.0811	0.1111	0.0714	0.0911
	0.0975	0.0838	0.1174	0.0835	0.0942

③ The calibration might need to be completely redone for a new vehicle model

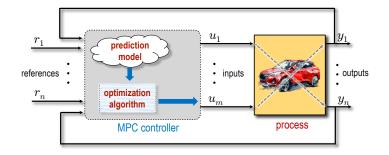
PID CONTROL: LIMITATIONS



- X Handling input constraints require additional anti-windup design
- X Output constraints are much harder to handle
- X Limited preview (derivative term =1st order extrapolation of future output)
- × No explicit performance index optimized at runtime
- X Resilience to actuator faults requires further design effort

Classical control can be inadequate (time-consuming & suboptimal design)

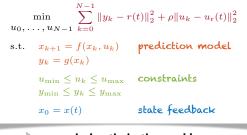
MODEL PREDICTIVE CONTROL (MPC)



• Key idea: At each sample step, use a (simplified) dynamical (M)odel of the process to (P)redict its future evolution and choose the "best" (C)ontrol action accordingly

MODEL PREDICTIVE CONTROL

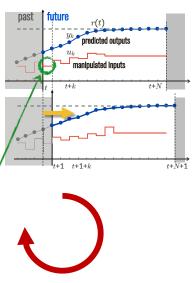
• MPC problem: find the best control sequence over a future horizon of N steps



numerical optimization problem

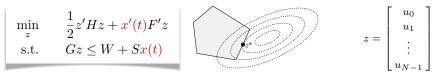
- **1** estimate current state x(t)
- **2** optimize wrt $\{u_0, \ldots, u_{N-1}\}$
- **3** only apply optimal u_0 as input u(t)

Repeat at all time steps t



LINEAR MPC

• Linear prediction model: real-time optimization = Quadratic Program (QP)



- The MPC concept dates back to the 60's (Rafal, Stevens, 1968) (Propoi, 1963)
- MPC is used in the process industries since the 80's (Qin, Badgewell, 2003)

RESEARCH ON MPC OF AUTOMOTIVE SYSTEMS

(Bemporad, Bernardini, Borrelli, Cimini, Di Cairano, Esen, Giorgetti, Graf-Plessen, Hrovat, Kolmanovsky Levijoki, Livshiz, Long, Pattipati, Ripaccioli, Trimboli, Tseng, Verdejo, Yanakiev, ..., 2001-present)

Powertrain

engine control, magnetic actuators, robotized gearbox, power MGT in HEVs, cabin heat control, electrical motors

Vehicle dynamics

traction control, active steering, semiactive suspensions, autonomous driving

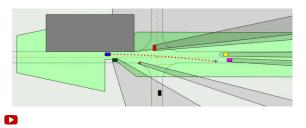
Most automotive OEMs are looking into MPC solutions today

©2023 A. Bemporad - Model Predictive Control for Automotive Production - All rights reserved

MPC FOR AUTONOMOUS DRIVING / DRIVER-ASSISTANCE SYSTEMS

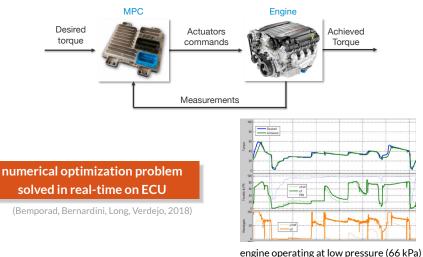
(Graf Plessen, Bernardini, Esen, Bemporad, 2018)

- Coordinate torque request and steering to achieve safe and comfortable autonomous driving with no collisions
- MPC combines path planning, path tracking, and obstacle avoidance
- Stochastic prediction models used to account for uncertainty (other vehicles/pedestrians, driver's requests)



MPC OF GASOLINE TURBOCHARGED ENGINES

• Control throttle, wastegate, intake & exhaust cams to make engine torque track set-points, with max efficiency and satisfying constraints



MPC IN AUTOMOTIVE PRODUCTION

• MPC of turbocharged gasoline engine in GM production since 2018

(Bemporad, Bernardini, Long, Verdejo, 2018)

• Supervisory MPC for powertrain control also in GM production since 2018

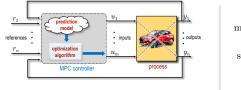
(Bemporad, Bernardini, Livshiz, Pattipati, 2018)

First known mass production of MPC in the automotive industry

http://www.odys.it/odys-and-gm-bring-online-mpc-to-production

ODYS real-time optimization and embedded MPC software is currently running on **3+ million vehicles** worldwide

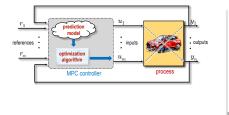
MODEL PREDICTIVE CONTROL (MPC)



$$\begin{array}{ll} \min & \sum_{k=0}^{N-1} \|y_k - r_{t+k}\|_2^2 + \rho \|u_k - u_{\mathrm{r},t+k}\|_2^2 \\ \text{s.t.} & x_{k+1} = f(x_k, u_k) \\ & y_k = g(x_k) \\ & u_{\min} \leq u_k \leq u_{\max} \\ & y_{\min} \leq y_k \leq y_{\max} \end{array}$$

- Naturally coordinates multiple inputs and outputs and over-actuated systems (# inputs > # outputs)
- ✓ Naturally handles input and output constraints
- Very easily includes preview on references/measured disturbances
- Design easy to transfer to new models (no lookup tables)
- Controller easily reconfigurable online to handle faults (resilience)

MODEL PREDICTIVE CONTROL (MPC)



$$\begin{array}{ll} \min & \sum_{k=0}^{N-1} \|y_k - r_{t+k}\|_2^2 + \rho \|u_k - u_{\mathrm{r},t+k}\|_2^2 \\ \text{s.t.} & x_{k+1} = f(x_k, u_k) \\ & y_k = g(x_k) \\ & u_{\min} \leq u_k \leq u_{\max} \\ & y_{\min} \leq y_k \leq y_{\max} \end{array}$$

Price to pay:

- X Nontrivial C code, requires formulating and solving QP problems at runtime
- Requires a process model (physical modeling and/or system identification) (similar to all model-based control-design methods)
- X Multiple parameters to calibrate (models, weights, solver tolerances, ...)

EMBEDDED QUADRATIC OPTIMIZATION

• Many QP algorithms exist today, but not all are suitable for embedded control

Key requirements for deploying QP in production:

- 1. speed (throughput)
 - worst-case execution time less than sampling interval
 - also fast on average (to free the processor to execute other tasks)
- 2. limited memory and CPU power (e.g., 150 MHz / 50 kB)
- 3. numerical robustness (single precision arithmetic)
- 4. certification of worst-case execution time
- code simple enough to be validated/verified/certified (library-free C code, easy to check by production engineers)

ODYS QP SOLVER

• General purpose QP solver designed for industrial production

$$\min_{z} \qquad \frac{1}{2}z'Qz + c'z$$

s.t.
$$b_{\ell} \le Az \le b_{u}$$
$$\ell \le z \le u$$
$$Ez = f$$

odys.it/qp

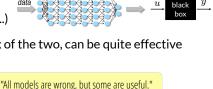
- Implements a proprietary state-of-the-art method for QP
- Completely written in ANSI-C and MISRA-C 2012 compliant
- Fast, robust (also in single precision), low-memory requirements
- Optimized version for MPC available (\approx 50% faster)
- Licensed to several automotive OEMs and Tier-1 suppliers
- Certifiable execution time

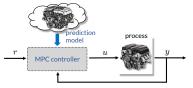
PREDICTION MODELS FOR MPC

PREDICTION MODELS FOR MPC

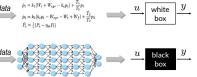
- **Physical models** might be already available from digital twins
- Black-box system identification is a mature technology (ARX, N4SYD, neural networks, ...)
- Gray-box (or physics-informed) models: mix of the two, can be quite effective
- Should the model be perfect?

- A model is a good model for MPC if
 - captures the main dynamics of the process
 - the resulting MPC closed-loop performs well





19/36



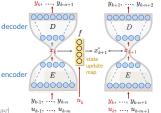
NONLINEAR SYS-ID BASED ON NEURAL NETWORKS

Neural networks proposed for nonlinear system identification since the '90s

(Narendra, Parthasarathy, 1990) (Hunt et al., 1992) (Suykens, Vandewalle, De Moor, 1996)

- NNARX models: use a feedforward neural network to approximate the nonlinear difference equation $y_t \approx \mathcal{N}(y_{t-1}, \dots, y_{t-n_a}, u_{t-1}, \dots, u_{t-n_b})$
- Neural state-space models:
 - w/ state data: fit a neural network model $x_{t+1}pprox\mathcal{N}_x(x_t,u_t), \;\; y_tpprox\mathcal{N}_y(x_t)$
 - I/O data only: set x_t = value of an inner layer of the network (Prasad, Bequette, 2003) such as an autoencoder (Masti, Bemporad, 2021)
- Recurrent neural networks (RNNs): more appropriate for open-loop prediction, but more difficult to train than feedforward NNs

©2023 A. Bemporad - Model Predictive Control for Automotive Production - All rights reserved

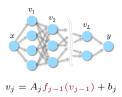


20/36

RECURRENT NEURAL NETWORKS

• Recurrent Neural Network (RNN) model:

$$egin{array}{rcl} x_{k+1} &=& f_x(x_k,u_k, heta_x) \ y_k &=& f_y(x_k, heta_y) \ f_x,f_y &=& {
m feed} {
m forward neural network} \end{array}$$



 $\theta = (A_1, b_1, \ldots, A_L, b_L)$

(e.g.: general RNNs, LSTMs, RESNETS, physics-informed NNs, ...)

• Training problem: given a dataset $\{u_0, y_0, \dots, u_{N-1}, y_{N-1}\}$ solve

$$\min_{\substack{\theta_x, \theta_y \\ x_0, x_1, \dots, x_{N-1}}} r(x_0, \theta_x, \theta_y) + \frac{1}{N} \sum_{k=0}^{N-1} \ell(y_k, f_y(x_k, \theta_y))$$

s.t. $x_{k+1} = f_x(x_k, u_k, \theta_x)$

• Main issue: x_k are hidden states, i.e., are unknowns of the problem

OFFLINE AND ONLINE TRAINING RNNS BY EKF

(Puskorius, Feldkamp, 1994) (Wang, Huang, 2011) (Bemporad, 2023)

- Estimate both hidden states x_k and parameters θ_x, θ_y by EKF based on model

$$\begin{cases} x_{k+1} &= f_x(x_k, u_k, \theta_{xk}) + \xi_k \\ \begin{bmatrix} \theta_{x(k+1)} \\ \theta_{y(k+1)} \end{bmatrix} &= \begin{bmatrix} \theta_{xk} \\ \theta_{yk} \end{bmatrix} + \eta_k \\ y_k &= f_y(x_k, \theta_{yk}) + \zeta_k \end{cases}$$

Ratio $\operatorname{Var}[\eta_k] / \operatorname{Var}[\zeta_k]$ related to **learning-rate** of training algorithm

Inverse of initial matrix P_0 related to ℓ_2 -**penalty** on θ_x, θ_y

- RNN and its hidden state x_k can be estimated on line from a streaming dataset $\{u_k, y_k\}$, and/or offline by processing multiple epochs of a given dataset
- Can handle general smooth strongly convex loss fncs/regularization terms
- Can add ℓ_1 -penalty $\lambda \left\| \begin{bmatrix} \theta_x \\ \theta_y \end{bmatrix} \right\|_1$ to sparsify θ_x, θ_y by changing EKF update into

$$\begin{bmatrix} \hat{x}(k|k)\\ \theta_x(k|k)\\ \theta_y(k|k) \end{bmatrix} = \begin{bmatrix} \hat{x}(k|k-1)\\ \theta_x(k|k-1)\\ \theta_y(k|k-1) \end{bmatrix} + M(k)e(k) - \lambda P(k|k-1) \begin{bmatrix} 0\\ \operatorname{sign}(\theta_x(k|k-1))\\ \operatorname{sign}(\theta_y(k|k-1)) \end{bmatrix}$$

TRAINING RNNS BY SEQUENTIAL LEAST-SQUARES AND ADMM

(Bemporad, 2023)

• Use the alternating direction method of multipliers (ADMM) by splitting

$$\min_{\theta_x, \theta_y, x_0, \nu_x, \nu_y} \quad r(x_0, \theta_x, \theta_y) + \sum_{k=0}^{N-1} \ell(y_k, f_y(x_k, \theta_y)) + g(\nu_x, \nu_y)$$
s.t.
$$x_{k+1} = f_x(x_k, u_k, \theta_x)$$

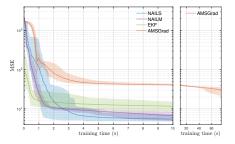
$$\begin{bmatrix} \nu_x \\ \nu_y \end{bmatrix} = \begin{bmatrix} \theta_x \\ \theta_y \end{bmatrix}$$

- Each ADMM iteration requires solving a standard least-squares problem
- Either line-search (LS) or a trust-region method (Levenberg-Marquardt) (LM) is used while optimizing:
 - NAILS = Nonconvex ADMM Iterations and Sequential LS with Line Search
 - **NAILM** = Nonconvex ADMM Iterations and Sequential LS with Levenberg-Marquardt

TRAINING RNNS BY SEQUENTIAL LS AND ADMM

• Example: magneto-rheological fluid damper N=2000 data used for training, 1499 for testing the model (Wang, Sano, Chen, Huang, 2009)

RNN model: 4 states, shallow NNs w/ 4 neurons, I/O feedthrough



NAILS = GNN method with line search **NAILM** = GNN method with LM steps

MSE loss on training data, mean value and range over 20 runs from different random initial weights

Best Fit Rate	training	test	
NAILS	94.41 (0.27)	89.35 (2.63)	
NAILM	94.07 (0.38)	89.64 (2.30)	
EKF	91.41 (0.70)	87.17 (3.06)	
AMSGrad	84.69 (0.15)	80.56 (0.18)	

(Bemporad, 2023)

TRAINING RNNS BY SEQUENTIAL LS AND ADMM

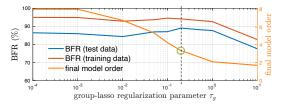
(Bemporad, 2023)

• Fluid-damper example: Lasso regularization $g(\nu_x, \nu_y) = 0.2 \|\nu_x\|_1 + 0.2 \|\nu_y\|_1$

training	BFR	BFR	sparsity	CPU	#
algorithm	training	test	%	time	epochs
NAILS	91.00 (1.66)	87.71 (2.67)	65.1 (6.5)	11.4 s	250
NAILM	91.32 (1.19)	87.80 (1.86)	64.1 (7.4)	11.7 s	250
EKF	89.27 (1.48)	86.67 (2.71)	47.9 (9.1)	13.2 s	50
AMSGrad	91.04 (0.47)	88.32 (0.80)	16.8 (7.1)	64.0 s	2000
Adam	90.47 (0.34)	87.79 (0.44)	8.3 (3.5)	63.9 s	2000
DiffGrad	90.05 (0.64)	87.34 (1.14)	7.4 (4.5)	63.9 s	2000

 \approx same fit than SGD/EKF but sparser models and faster (CPU: Apple M1 Pro)

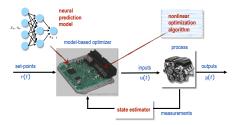
• Fluid-damper example: group-Lasso regularization $g(\nu_i^g) = \tau_g \sum_{i=1}^{n_x} \|\nu_i^g\|_2$ to zero entire rows and columns and reduce state-dimension automatically



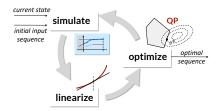
good choice: $n_x = 3$ (best fit on test data)

NONLINEAR MPC BASED ON NEURAL NETWORKS

• Approach: use a neural network model for prediction



• Nonlinear MPC: solve a sequence of QP problems at each sample step



©2023 A. Bemporad - Model Predictive Control for Automotive Production - All rights reserved

ODYS EMBEDDED MPC TOOLSET

• **ODYS Embedded MPC** is a software toolchain for design and deployment of MPC solutions in industrial production

- Support for linear & nonlinear MPC and extended Kalman filtering
- Extremely flexible, all MPC parameters can be changed at runtime (models, cost function, horizons, constraints, ...)
- Integrated with MPC-specific version of ODYS QP Solver
- Library-free C code, MISRA-C 2012 compliant
- Currently used worldwide by several automotive OEMs in R&D and production
- Support for neural networks as prediction models (ODYS Deep Learning)

odys.it/embedded-mpc

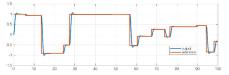
CALIBRATION AND CRITICAL SCENARIO DETECTION

BEST MPC CALIBRATION

- The design depends on a vector x of control parameters
- x = (weights, covariance matrices, solver thresholds, ...)

Define a performance index f over a closed-loop simulation or real experiment.
 For example:

$$f(x) = \sum_{t=0}^{T} \|y(t) - r(t)\|^2$$
 (tracking quality)



• Auto-tuning = find the best combination of parameters by solving the global optimization problem

$$\min_{x} f(x)$$

AUTO-TUNING: PROS AND CONS

- Pros:
 - \checkmark Selection of calibration parameters x to test is fully automatic
 - Applicable to any calibration parameter (weights, horizons, solver tolerances, ...)
 - ✓ Rather arbitrary performance index f(x) (tracking performance, response time, worst-case number of flops, ...)
- Cons:
 - **X** The calibrator must **quantify** an objective function f(x)
 - X No room for qualitative assessments of closed-loop performance
 - X Often have multiple objectives, not clear how to blend them in a single one

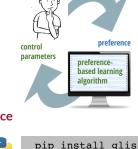
ACTIVE PREFERENCE LEARNING

- Objective function f(x) is not available (latent function)
- We can only express a preference between two choices:
 - $\begin{array}{ll} x_1 \text{ ``better'' than } x_2 & [f(x_1) < f(x_2)] \\ x_1 \text{ ``as good as'' } x_2 & [f(x_1) = f(x_2)] \\ x_2 \text{ ``better'' than } x_1 & [f(x_1) > f(x_2)] \end{array}$
- We want to find a global optimum x^{\star} that is "better" than any other x
- Active preference learning: iteratively propose a new sample to compare
- Key idea: learn a surrogate of the (latent) objective function from preferences

SEMI-AUTOMATIC CALIBRATION BY PREFERENCE-BASED LEARNING

- Use preference-based optimization (GLISp) algorithm for semi-automatic tuning of MPC (Zhu, Bemporad, Piga, 2021) (Bemporad, Piga, 2021)
- Latent function = calibrator's (unconscious) control performance score
- GLISp proposes a new combination x_{N+1} of control parameters to test
- The calibrator expresses a **preference**: x_{N+1} is "**better**", "**similar**", or "**worse**" than current best
- Preference learning algorithm iterates:
 (1) update the surrogate f(x) of the latent function,
 (2) optimize the acquisition function, (3) ask preference

cse.lab.imtlucca.it/~bemporad/glis

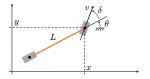


testing & assessment

PREFERENCE-BASED TUNING: MPC EXAMPLE

• Example: calibration of a simple MPC for lane-keeping (2 inputs, 3 outputs)

$$\begin{cases} \dot{x} = v\cos(\theta + \delta) \\ \dot{y} = v\sin(\theta + \delta) \\ \dot{\theta} = \frac{1}{L}v\sin(\delta) \end{cases}$$



• Multiple control objectives:

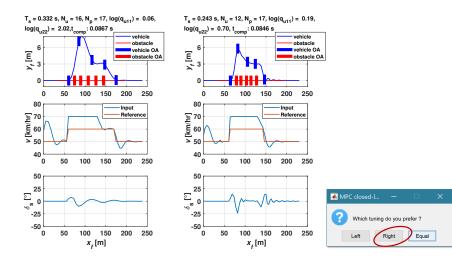
"optimal obstacle avoidance", "pleasant drive", "CPU time small enough", ...

not easy to quantify in a single function

- 5 MPC parameters to tune:
 - sampling time
 - prediction and control horizons
 - weights on input increments $\Delta v, \Delta \delta$

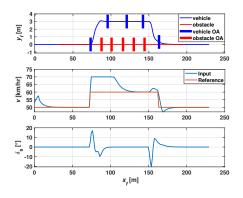
PREFERENCE-BASED TUNING: MPC EXAMPLE

• Preference query window:



PREFERENCE-BASED TUNING: MPC EXAMPLE

• Convergence after 50 GLISp iterations (=49 queries):



Optimal MPC parameters:

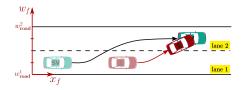
- sample time = 85 ms (CPU time = 80.8 ms)
- prediction horizon = 16
- control horizon = 5
- weight on Δv = 1.82
- weight on $\Delta\delta$ = 8.28

• Note: no need to define a closed-loop performance index explicitly!

WORST-CASE SCENARIO DETECTION

(Zhu, Bemporad, Kneissl, Esen, 2023)

- Goal: detect undesired closed-loop scenarios (=corner-cases)
- Let x = parameters defining the scenario (e.g., initial conditions, disturbances, ...)
- Critical scenario = vector x^* for which the closed-loop behavior is critical



• Critical scenario detection = find the worst combination x^* of scenario parameters by solving the global optimization problem

$$\min_{x} f(x)$$

CONCLUSIONS

 Long history of success of MPC in the process industries, now spreading to the automotive industry

- MPC technology completely ready for mass production:
 - 1. modern ECUs can solve MPC problems in real-time
 - 2. industry-grade MPC software is available for design, calibration, and deployment
- Key enabler for adopting MPC: production managers that are willing to adopt such a new advanced control technology
- In software-defined vehicles, control is an essential software component: same hardware + different controls = drastically different performance!

Control innovation is essential for automotive market success