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continuous dynamical system

discrete inputs

Embedded Systems

symbolssymbols 

continuous 
states

continuous inputs

automaton / logic

interface

• Consumer electronics

• Home appliances

• Oce automation

• Automobiles

• Industrial plants

• ...
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Motivation: “Intrinsically Hybrid”

• Transmission

 Discrete command

 (R,N,1,2,3,4,5)

• Four-stroke engines

Automaton,

dependent on

power train motion

Continuous 

dynamical variables

(velocities, torques)
+



Key Requirements for Hybrid Models

• Descriptive enough to capture the behavior of the system

– continuous dynamics (physical laws)

– logic components (switches, automata, software code)

– interconnection between logic and dynamics

• Simple enough for solving analysis  and synthesis problems

“Make everything as simple as possible, but not simpler.”
! — Albert Einstein

linear hybrid systems
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Piecewise Ane Systems

Can approximate nonlinear and/or discontinuous dynamics 
arbitrarily well

(Sontag 1981)

 state+input space
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Discrete Hybrid Automaton
(Torrisi, Bemporad, 2004)

Event 
Generator

Finite State 
Machine

Mode Selector
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Switched Ane System

The ane dynamics depend on the current mode i(k):

continuous

discrete
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Event Generator

Event variables are generated by linear threshold conditions over 
continuous states, continuous inputs, and time:

Example: ["(k)=1] ! [xc(k)"0]

continuous

discrete
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Finite State Machine

The binary state of the nite state machine evolves 
according to a Boolean state update function:

Example:

continuous

discrete
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The active mode i(k) is selected by a Boolean function of the 
current binary states, binary inputs, and event variables:

Mode Selector

Example: 
0

1

0 1

the system has 3 modes

continuous

discrete

The mode selector can 
be seen as the output 
function of the discrete 
dynamics
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(Glover 1975, 
Williams 1977,
Hooker 2000)

Logic and Inequalities

Finite State 
Machine

Mode Selector

Switched 
Ane System

1

2

s

Event 
Generator
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Mixed Logical Dynamical Systems

(Bemporad, Morari 1999)Mixed Logical Dynamical (MLD) Systems

HYSDEL
(Torrisi, Bemporad, 2004)

Discrete Hybrid Automaton

• Computationally oriented (mixed-integer programming)

• Suitable for controller synthesis, verication, ...

Continuous and 
binary variables
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Hybrid Toolbox for Matlab
Features:

• Hybrid model (MLD and PWA) design, simulation, verication

• Control design for linear systems w/ constraints 
  and hybrid systems (on-line optimization via QP/MILP/MIQP)

• Explicit control (via multiparametric programming)

• C-code generation

• Simulink

(Bemporad, 2003-2006)

Support:

http://www.dii.unisi.it/hybrid/toolbox
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Mixed-Integer Models in OR

Translation of logical relations into linear inequalities is heavily
used in operations research (OR) for solving complex decision 
problems by using mixed-integer (linear) programming (MIP)

Example: Timetable generation (for demanding professors …)

CPU time: 0.2 s

Example: Optimal multi-period investments for
maintenance and upgrade of electrical 
energy distribution networks

(Bemporad, Muñoz, Piazzesi, 2006)



18

Major Advantages of Linear Hybrid Models

Many problems of analysis:

– Stability

– Safety / Reachability

– Observability

– Passivity

Many problems of synthesis:

– Controller design

– Robust control design

– Filter design (state estimation/fault detection)

(However, all these problems are NP-hard !)

(Johansson, Rantzer, 1998)

(Torrisi, Bemporad, 2001)

(Bemporad, Ferrari-Trecate, Morari, 2000)

(Bemporad, Bianchini, Brogi, 2006)

(Pina, Botto, 2006)

(Bemporad, Mignone, Morari, 1999)

(Bemporad, Morari, 1999)

(Ferrari-Trecate, Mignone, Morari, 2002)

can be solved through mathematical programming

(Silva, Bemporad, Botto, Sá da Costa, 2003)
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Hybrid Control Problem

binary 
inputs

continuous 
inputs

binary 
states

continuous 
states

on-line decision maker

desired behavior

constraints

hybrid process
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• Apply only u(t)=u*(t) (discard the remaining optimal inputs)

• At time t  solve with respect to
   the nite-horizon open-loop, optimal control problem:

MPC for Hybrid Systems

Predicted
outputs

Manipulated

y(t+k|t)

Inputs

t t+1 t+T

futurepast

u(t+k)

• Repeat the whole optimization at time t+1

Model
Predictive (MPC)
Control
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Closed-Loop Convergence

Proof: Easily follows from standard Lyapunov arguments

(Bemporad, Morari 1999)

More stability results: see (Lazar, Heemels, Weiland, Bemporad, 2006)



23

Open loop behavior

PWA system:

Hybrid MPC - Example

 Constraint:

/demos/hybrid/bm99sim.m
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Hybrid MPC - Example

Closed loop:

 Performance index:
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Hybrid MPC - Extensions

1

2

3

e, 
p12e

e, p13e
¬e(Bemporad, Di Cairano, HSCC’05)

Stochastic Finite State Machine (sFSM)

Discrete-time Hybrid Stochastic Automaton (DHSA)

Event-based Continuous-time Hybrid Automaton (icHA)

Switched integral dynamics

(Bemporad, Di Cairano, Julvez, CDC05 &HSCC-06)

k = event counter
Asynchronous FSM

k = discrete-time counter

All MPC techniques described earlier can be applied !
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Optimal Control of Hybrid Systems: 
Computational Aspects
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MPC for Linear Systems

This is a (convex) Quadratic Program (QP)

Quadratic 
performance index

Constraints 

 Linear model
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Mixed Integer 
Quadratic 
Program 
(MIQP)

MIQP Formulation of MPC
(Bemporad, Morari, 1999)

• Optimization vector:
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MILP Formulation of MPC
(Bemporad, Borrelli, Morari, 2000)

Mixed Integer 
Linear Program (MILP)

• Optimization vector:

• Basic trick: introduce 
  slack variables:

• Generalization:
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BUT

• Mixed-Integer Programming is NP-hard

Mixed-Integer Program Solvers

• Extremely rich literature in Operations Research (still very active)

• No need to reach the global optimum for stability of MPC 

  (see proof of the theorem), although performance deteriorates

MILP/MIQP is nowadays a technology (CPLEX, Xpress-MP, BARON, 

GLPK, see e.g. http://plato.la.asu.edu/bench.html for a comparison)

• Possibility of combining symbolic + numerical solvers
  Example: SAT + linear programming

(Bemporad, Giorgetti, IEEE TAC 2006)

#nodes=11 #nodes=6227

SAT-based B&B Pure B&B
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On-Line vs O-Line Optimization

• On-line optimization: given x(t) solve the problem at each time 
  step t.

multi-parametric programming

Mixed-Integer Linear/Quadratic Program (MILP/MIQP)

• O-line optimization: solve the MILP/MIQP for all x(t)

" Good for large sampling times (e.g., 1 h) / expensive hardware …

 … but not for fast sampling (e.g. 10 ms) / cheap hardware !
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MPC for Linear Systems

Quadratic 
performance index

Constraints 

 Linear model

 Objective: solve the QP for all                     (o-line)
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;;

Properties of multiparametric-QP

continuous,
piecewise ane 

convex
continuous, 
piecewise quadratic, 
C1 (if no degeneracy)

Corollary: The linear MPC controller is a continuous 
piecewise ane function of the state

Optimizer 

Value
function

Feasible
state set convex polyhedral

(Bemporad et al., 2002)
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Polyhedral Invariant Sets for Closed-loop 
Linear MPC Systems

• Convexity of value function implies convexity of the piecewise 

  ellipsoidal sets                    and

• Any polyhedron P contained in between is a positively 

  invariant set for the closed-loop MPC system

(Note: explicit form of MPC not required)

• By changing # invariant polyhedra of arbitrary size can be 

  constructed for the closed-loop MPC system

(Alessio, Bemporad, Lazar, Heemels, CDC’06)
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Explicit Hybrid MPC (PWA)

• The MPC controller is piecewise ane in x,r

Note: in the 2-norm case the partition 
        may not be fully polyhedral

(x,r)-space

1

2

3

M
4

5 6

(Borrelli, Baotic, Bemporad, Morari, Automatica, 2005)

(Mayne, ECC 2001) (Alessio, Bemporad, ADHS 2006)
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Open loop
behavior:

PWA system:

Hybrid Control - Example

 Constraints:

Closed loop:

HybTbx:  /demos/hybrid/bm99sim.m

 Objective:
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Explicit PWA Controller

PWA law      MPC law

(CPU time: 1.51 s, Pentium M 1.4GHz)

HybTbx:  /demos/hybrid/bm99sim.m
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Hybrid MPC - Example
Closed loop:
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Explicit PWA Regulator

Prediction Horizon N=1

HybTbx:  /demos/hybrid/bm99benchmark.m

 Objective:

Prediction Horizon N=2 Prediction Horizon N=3
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Comments on Explicit Solutions

• Alternatives: either (1) solve an MIP on-line
                  or (2) evaluate a PWA function

• For problems with many variables and/or long 
  horizons: MIP may be preferable

• For simple problems (short horizon/few constraints): 

- time to evaluate the control law is shorter than MIP

- control code is simpler (no complex solver must be 
  included in the control software !)

- more insight in controller’s behavior
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Hybrid Control of a DISC Engine

(joint work with N. Giorgetti, G. Ripaccioli, I. Kolmanovsky, and D. Hrovat)

(Photo: Courtesy Mitsubishi)
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DISC Engine
Two distinct regimes:

Regime fuel 
injection

air-to-
fuel ratio

Homogeneou
s
combustion

intake 
stroke

$=14.64

Stratied
combustion

compression 
stroke

$ > 

14.64

Objective: Design a controller for the engine that

• Automatically choose operating mode (homogeneous/stratied)

• Can cope with nonlinear dynamics

• Handles constraints (on A/F ratio, air-ow, spark)

• Achieves optimal performance
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Hybridization of DISC Dynamics

DYNAMICS (intake pressure, air-to-fuel ratio, torque):

CONSTRAINTS on:

• Denition of two operating points;

• Numerical linearization of nonlinear dynamics;

• Time discretization of the linear models.

• Air-to-Fuel Ratio: $min(%)#$(t)#$max(%);

• Mass of air through the throttle: 0 # Wth # K;

• Spark timing: 0#"(t)# "mbt($, %)

%-dependent dynamic 

equations

%&dependent 
constraints

Hybrid system with 2 modes (switched ane system)

• Proprietary nonlinear model of the DISC engine developed 
  and validated at Ford Research Labs (Dearborn)(Kolmanovsky, Sun, …)

• Model good for simulation, not good for control design!

MODEL HYBRIDIZATION
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Integral Action

Integrators on torque error and air-to-fuel ratio error added 
to obtain zero osets in steady-state:

Simulation based on nonlinear model 
conrms zero osets in steady-state

(despite the model mismatch)

brake torque and air-to-fuel references

= sampling time

Reference values are automatically generated from 'ref and $ref 

by numerical computation based on the nonlinear model 
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DISC Engine - HYSDEL List

SYSTEM hysdisc{

   INTERFACE{

   STATE{

     REAL pm      [1, 101.325];

     REAL xtau    [-1e3, 1e3];

     REAL xlam    [-1e3, 1e3];

     REAL taud    [0,    100];

     REAL lamd    [10,    60];

      }

   OUTPUT{

     REAL lambda, tau, ddelta;

          }

   INPUT{

     REAL Wth     [0,38.5218];

     REAL Wf      [0,      2];

     REAL delta   [0,     40];

     BOOL rho;

      }

   PARAMETER{

     REAL Ts, pm1, pm2;

     …

      }

   }

   

   IMPLEMENTATION{

   AUX{

     REAL lam,taul,dmbtl,lmin,lmax;

      }

   DA{

   lam={IF rho THEN l11*pm+l12*Wth...

               +l13*Wf+l14*delta+l1c

        ELSE   l01*pm+l02*Wth+l03*Wf...

               +l04*delta+l0c      };

   taul={IF rho THEN tau11*pm+...

     tau12*Wth+tau13*Wf+tau14*delta+tau1c

         ELSE   tau01*pm+tau02*Wth...

          +tau03*Wf+tau04*delta+tau0c };

   dmbtl ={IF rho THEN dmbt11*pm+dmbt12*Wth...

           +dmbt13*Wf+dmbt14*delta+dmbt1c+7

           ELSE dmbt01*pm+dmbt02*Wth...

           +dmbt03*Wf+dmbt04*delta+dmbt0c-1};

   lmin ={IF rho THEN 13 ELSE 19};

   lmax ={IF rho THEN 21 ELSE 38};

        }

   CONTINUOUS{

       pm=pm1*pm+pm2*Wth;

       xtau=xtau+Ts*(taud-taul);

       xlam=xlam+Ts*(lamd-lam);

       taud=taud; lamd=lamd;

            }

   OUTPUT{

      lambda=lam-lamd;

      tau=taul-taud;

      ddelta=dmbtl-delta;

      }

   MUST{

      lmin-lam     <=0;

      lam-lmax     <=0;

      delta-dmbtl  <=0;

      }

   }

}
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MPC of DISC Engine

pm

'

$

Wth

Wf "

%

MPC

Weights:

Solve 
MIQP problem 
(mixed-integer
quadratic 
program)
to compute u(t)

q' q$

r%

s(' s($

(prevents 
unneeded 
chattering)

main emphasis 
on torque
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Simulation Results (nominal engine speed)
[N

m
]

Time (s)

Air-to-Fuel Ratio

Time (s)

Engine Brake Torque

Time (s)

Combustion mode

• Control horizon N=1;

• Sampling time Ts=10 ms;

• PC Xeon 2.8 GHz + Cplex 9.1

$ 3 ms per time step

14

(Purge
Lean 
NOx Trap)

homogeneous

stratied

) = 2000 rpm
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Simulation Results (varying engine speed)
[N

m
]

Time (s)

Air-to-Fuel Ratio

Time (s)

Engine Brake Torque

Time (s)

Engine speed

Hybrid MPC design is quite 
robust with respect to engine 
speed variations

20 s segment of the European
drive cycle (NEDC)

Control code too complex 
(MILP) % not implementable !
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Explicit MPC Controller

N=1 (control horizon)

75 partitions

Cross-section by the 'ref-$ref plane

• Time to compute the 
  explicit MPC: 3.4750 s;

• Sampling time Ts=10 ms;

• PC Xeon 2.8 GHz + Cplex 9.1

$ 8 *s per time step

Explicit control law:

where:

%=0

%=1
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Microcontroller Implementation

Implementable !

• C-code automatically generated 
  by the Hybrid Toolbox

• Microcontroller Motorola MPC 555 
  (custom made for Ford)

• 43 Kb memory available
 

• Floating point arithmetic

• Further reduction of number of partitions possible

• C-code can be further optimized

& 3ms execution time

sampling period = 10ms

(Alessio, Bemporad, 2005)

(Tøndel, Johansen, Bemporad, 2003)
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Conclusions
• Hybrid systems as a framework for new applications, where
  both logic and continuous dynamics are relevant

y(t)u(t)

Plant

OutputInput

Measurements

• Piecewise Linear MPC Controllers can be synthesized
  o-line via multiparametric programming for fast-sampling  
  applications

• Supervisory MPC controllers schemes can be synthesized via 
  on-line mixed-integer programming (MILP/MIQP)

Hybrid modeling
and MPC design

Multiparametric
programming

C-code download
& testing
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Hybrid MPC & Wireless Sensor Networks

• Measurements acquired and sent to base station (MPC) by 
  wireless sensors

• MPC computes the optimal plan when new measurements arrive

• Optimal plan implemented by local controller if received in time, 
  otherwise previous plan still kept

Packet loss possible along both network links, 
delayed packets must be discarded (out-of-date data) 

network links
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Challenges in Wireless MPC 

• Synchronization schemes must 
  ensure correct prediction in spite of 
  packet loss

• MPC algorithm must be robust w.r.t. packet loss
  % stochastic hybrid MPC, robust hybrid MPC

• Wireless sensors must be interfaced to optimization 
tools 

Network

measurements

optimal 
plan

network link

Stabilized plant

plant

local 
control
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Demo Application in Wireless Automation

• Telos motes provide wireless 
  temperature feedback in Matlab

• Hybrid MPC algorithm adjust belt speed 
  and coordinate linear motors
  (via Simulink/xPC-Target link)

(Automatic Control Lab, Univ. Siena)

Telos motes

(Bemporad, Di Cairano, Henriksson)
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The End

MPC controller - SIMO
DC-Servomotor
Hybrid Toolbox

http://www.dii.unisi.it/hybrid/toolbox


