MACHINE LEARNING: A NEW ICE AGE ?
(IDENTIFICATION, CONTROL, ESTIMATION)

Alberto Bemporad

imt.lu/ab
SCHOOL

|MT FORADVANCED
STUDIES
LUCCA

FAC 2020 Workshop “Machine Learning meets Model-based Control”

A TIMELINE OF CONTROL ENGINEERING

mechanical design

Lyapunov methods w LMI-based methods

1970 nonlinear control 1980 stability analysis
A '| feedback synthesis
functional e semidefinite
analysis programming robust control
complex
analysis
v . e .
R frequency domain o system identification
§ e statistics T—T—
Bode, Nyquist g 4t ']
. i |rootlocus ¢ " ?
1930-1950 | robust control "W) ° &
| - |
machine — i
> N g
: 1990 learning = =
linear ML)
algebra |
: e e >2020
pole-placement — utput
LQR [,,,, "11] e || ”
an an — y
1960-1970 Kalman filtering numerical
optimization ot
state-space 1990 model predictive control (MPC)
>

e MPC and ML = main trends in control R&D in industry !

2/40

MODEL PREDICTIVE CONTROL (MPC)

e Long history of success of MPC in the process industries,
now spreading in the automotive industry (and many others):

- multivariable, linear/nonlinear/stochastic systems w/ constraints

- intuitive to design and calibrate, easy to reconfigure

¢ An MPC for engine control developed by General Motors and ODYS is in
high-volume production since 2018

First known mass production of MPC
in the automotive industry

https://www.odys.it/odys-and-gm-bring-online-mpc-to-production

3/40

MACHINE LEARNING (ML)

e Massive set of techniques to extract mathematical models from data
for classification, prediction, decision-making

e Good mathematical foundations from artificial intelligence,
statistics, optimization

e Works very well in practice (despite training is most often
a nonconvex optimization problem...)

output

input

e Used in myriads of most diverse application domains

o Availability of excellent open-source software tools exist like
scikit-learn,Keras/TensorFlow also explains success

4/40

ML FOR MPC

e How can ML be useful in MPC:

- ldentification = learn the prediction model from data
- Control = learn the MPC control law from data

- Estimation = learn how to reconstruct unmeasured signals from data

optimization

prediction model algorithm

process

\ model-based optimizer

set-points

—_—
r(t)

state
measurements

5/40

OUTLINE OF MY TALK

¢ |dentification
- Black-box identification of state-space models using autoencoders

- Learning the entire MPC prediction from data

e Control
- Reinforcement learning (direct policy search)

- Automatic and semi-automatic calibration of MPC

e Estimation

- Learning virtual sensors / state observers from data

6/40

LEARNING PREDICTION MODELS FOR MPC

PREDICTION MODELS FOR MPC

. . by = by (W 4 Wiy ..|»f1
Physics-based nonlinear models are often too complex sl e

T
B2 = halkepn = Wer —We + Wyl + 2a

Use black-box system identification algorithms to fit linear

or nonlinear models to data U, btl)iik ﬂ»

A mix of the above (gray-box models) is often the best % %

Jacobians of prediction models are required

Computation complexity depends on chosen model, g §
need to trade off descriptiveness vs simplicity of the model

7/40

LEARNING NONLINEAR STATE-SPAGE MODELS FOR MPC

e |dea: use autoencoders and artificial neural networks to learn a nonlinear
state-space model of desired order from input/output data

.......................... s {) 0*‘+|
" ! —
3 0000000 elo/oelelelt
A ; d : : d
@ f o
QOAC QOO0
t o !
fl!#.' e 8 — L] — -L’L:H
I
fvuk_ O O°FE™P 500Q
; £ - £
0000000 CO00000
I]
% Ui I
ANN with hourglass structure Or = Wk Yheml
I = [Yk o Yhongt1 Uk - Ukonyt]

8/40

LEARNING NONLINEAR STATE-SPAGE MODELS FOR MPC

e Training problem: choose n,, ny, n, and solve

N-1
miré Z «a (él(()k, Ok) + 51(Ok+17 Ok+1)>
k=ko
+Bla(z5 5 Tht1) +7V€3(Ok11, Of 1)

st. xxp =e(lx—1), k=ko,...,N
Th = [(@k,uk), k=Fko,..., N =1 :
O, = d(z), Of = d(x}), k= ko,..., N

¢ Model complexity reduction: add group-LASSO penalties on subsets of weights

e Quasi-LPV structure for MPC:set f(ak,ur) = A(xg,ur)["F]+ Bk, uk)uk
(Aij7 Bij7 Cij = feedforward NNS) Ye = (xk7 Uk [Ilk]

o Different options for the state-observer:

- use encoder e to map past I/0O into x;, (deadbeat observer)
- design extended Kalman filter based on obtained model f, d
- simultaneously fit state observer Zx11 = s(xk, uk, yx) With loss £y (£x+1, Tk41)
9/40

LEARNING NONLINEAR NEURAL STATE-SPACE MODELS FOR MPC

e Example: nonlinear two-tank benchmark problem

=) 21 (t+1) = 21(t) — ki\/21(t) + kau(t)
1t Ta(t + 1) = 22(t) + ksy/21(t) — kar/z2(t)

y(t) = @2(t) + u(t)

o= ’c"-’_{:u Model is totally unknown to learning algorithm

www.mathworks.com
e Artificial neural network (ANN): 3 hidden layers
60 exponential linear unit (ELU) neurons / / \

e For given number of model parameters,
autoencoder approach is superior to NNARX N

T A ... PR

e Jacobians directly obtained from ANN structure . - T

ime sepe

for Kalman filtering & MPC problem construction LTV-MPC results

10/40

LEARNING AFFINE NEURAL PREDICTORS FOR MPC

o Alternative: learn the entire prediction R

yk:hk<x07u0a---auk71)7 kzl?aN

To up w UN_1

¢ LTV-MPC formulation: linearize hj around nominal inputs u;

k—1
_ _ Ohy _ _ _
Y = hk(l‘o, Uugy - - - ,uk_l) + Z %(Jﬁo,UQ, e ,Uk_l)(Uj — Uj)
j=0 "

Example: u; = MPC sequence optimized @k — 1

e Avoid computing Jacobians by fitting h;, in the affine form

uo—uUog
yr = fr(xo, To, - .., Uk—1) + gr(zo0, Uo, - - -, Uk—1) [:]

Uk—1—Uk—1

cf.
11/40

LEARNING AFFINE NEURAL PREDICTORS FOR MPC

o Example: apply affine neural predictor to nonlinear Predictionstep eprr

two-tank benchmark problem 1 0.959
- . 2 0.958
10000 training samples, ANN with 2 layers of 20 ReLU neurons
4 0.948
N 7 0.915
l9 — yll2
eprT = max<0,1— = “12 10 0.858
lly — gll2
e Closed-loop LTV-MPC results:
15
1.0
o Model complexity reduction:
add group-LASSO term with penalty A 00
=05
A er1T (average # nonzero o
o —— controlled system
on all prediction steps) weights eforonce ek
~15 —— control action
01 0.853 328 0 50 100 150 200 250 300 350
0.005 0.868 363
0.001 0.901 556
0.0005 0911 888
0 0917 9000

12/40

LEARNING APPROXIMATE MPC LAWS

MPC WITHOUT ON-LINE QP

prediction model

model-based optimizer

inputs &
u(t) -

set-points
r(t)

T measurements

e Canweimplement MPC without on-line
optimization?

¢ If model / constraints are linear, and model /
constraints / quadratic cost are time-invariant:

YES !

13/40

EXPLICIT MODEL PREDICTIVE CONTROL

e Explicit MPC: continuous and piecewise affine control law

Fiz+g1 if Hiz <K,
uj(z) = : :

-

e Only limited to small MPC problems with time-invariant linear/hybrid models,
linear/quadratic costs, linear constraints

e Approximate explicit MPC solutions are possible to simplify the control law

14/40

APPROXIMATE MPC LAWS

e Use any function regression technique to approximate MPC laws
- Collect M samples (x;, u;) by solving MPC optimization problem for each z;
- Fit approximate mapping @.(x) on the samples

- Check performance / feasibility/ prove closed-loop stability (if possible)

e Possible function regression approaches:
- Lookup tables (linear interpolation, inverse distance weighting, ...)
- Neural networks

- Hybrid system identification / PWA regression

e Semi-explicit MPC: use binary classification methods to learn the optimal
- binary variables solving parametric MIQP/LP, 6* = §(z), then solve QP/LP online

- active set of parametric QP for warm start

15/40

LEARNING THE CONTROL LAW DIRECTLY FROM DATA

DATA-DRIVEN OPTIMAL POLICY SEARCH

e Plant + environment dynamics (unknown):

- s¢ states of plant & environment
se41 = h(st, pe, ut, dy) .
- p: exogenous signal (e.g., reference)

- wuy control input

- d; unmeasured disturbances

e Control policy: 7 : R*sT7» — R™« deterministic control policy

uy = (8¢, t)
o Closed-loop performance of an execution is defined as
oo
joo (71', S0, {pb d@}é:o) = Z p(sfap& 77(557])@))
£=0
p(se,pe,m(se,pe)) = stage cost

16/40

OPTIMAL POLICY SEARCH PROBLEM

e Optimal policy:
7 = argmin, J(7)

j(ﬂ') = ESO,{peydz} [joo(ﬂ', S0, {pg, dz})] expec&ed Perfcrmahce

e Simplifications:

- Finite parameterization: m = 7x (s¢, p¢) with K = parameters to optimize
L—1

L—-1
- Finite horizon: 7z (m, so, {pe, de}o—0) = Z p(se, pe, m(s¢,pe))
=0

e Optimal policy search: use stochastic gradient descent (SGD)

K+ Ky — O[tD(thl)

with D(K;_1) = descent direction

17/40

DESCENT DIRECTION

e The descent direction D(K;_1) is computed by generating:

- N, perturbations s((]i> around the current state s;
- N, random reference signals r(J) of length L,

- Ny random disturbance signals déh) of length L,

N, N, N

D Kt 1 ZZZVKJL ﬂ-Kt 1750 7{7‘§J) d(k)})

i=1j=1k=1

Q

SGD step = mini-batch of size M = N - N,. - Ny
e Computing V g J7, requires predicting the effect of m over L future steps

e We use alocal linear model just for computing V i J1,, obtained by running
recursive linear system identification

18/40

OPTIMAL POLICY SEARCH ALGORITHM

e Ateachstept:
1. Acquire current s,
2. Recursively update the local linear model
3. Estimate the direction of descent D(K;—1)

4. Update policy: K¢ < K¢t—1 — v D(K¢—1)

e If policy is learned online and needs to be applied to the process:

- Compute the nearest policy K to K that stabilizes the local model

K{ = argmin|| K — K73

s.t. K stabilizes local linear model Linear matrix inequality

e When policy is learned online, exploration is guaranteed by the reference r;

19/40

SPECIAL CASE: OUTPUT TRACKING

® Iy = [yta Yt—15 « -y Yt—n,» Ut—1, Ut—2, ~~~,Ut7n,_»]

Au; = up —ug—1 controlinput increment

o Stagecost: || Y1 — 7 5, + [Aue % + [a1 113,

e Integral action dynamics ¢;+1 = ¢ + (Ye41 — 7t)

Tt
St:l]7 Pt = T¢.
qt

e Linear policy parametrization:

KS
T (s, 1) = —K° -5y = K" -1y, K= [Krl

20/40

EXAMPLE: RETRIEVE LR FROM DATA

—0.669 0.378 0.233 —0.295
{ Tiy1 = |:—0.288 —0.147 —0.638] e + [—0.325] Ut

—0.337 0.589 0.043 —0.258
model is unkinown

ye = [-1.139 0.319 —0.571] 2

Online tracking performance (no disturbance, d; = 0):

4 T T
Qy =1
2 i i . - R=0.1
ol i Qq=1
i bl it
I ! | I i
0 s i ' i
I 1 | | | |
| ‘ 1 ny ne L
—2 - [! v 3 3 20
It No Nr _ Ng
_4 ‘ ‘ --- Y 50 1 10
0 10000 20000 30000

Time t

21/40

EXAMPLE: RETRIEVE LR FROM DATA

Evolution of the error || K; — K,pt|2:

4r — [IKi = Kopt [[;
2
0 |
0 10000 20000 30000

Time t

Ksap = [—1.255,0.218,0.652, 0.895, 0.050, 1.115, —2.186]

Kopt = [—1.257,0.219,0.653,0.898,0.050, 1.141, —2.196]

22/40

NONLINEAR EXAMPLE

ni ne L Feed —t W puts
i I States
Online learning 2 3 10

concentration C' 4 and reference ¢ No Ny Ng Cooling Jacket

50 20 20 R 3

eanticn
| ol = A—B
—— "— ~ Product
= Validation phase -
Costof Kggp = 4.3 - 103 Continuously Stirred Tank Reactor (CSTR)
10 T

(courtesy: apmonitor.com)

temperature T
330 T

il

290

SGD beats SYS-ID + LQR

coolant temperature To
320

I 10
300 - F‘(f a 8
=m0l s 0
4
260 | 1
v 2
0 5000 10000 [|
Time t 0 10000 20000

Time t
e Approach currently extended to switching-linear and nonlinear policies

23/40

LEARNING OPTIMAL MPC TUNING

MPC CALIBRATION PROBLEM

e Controller depends on a vector x of parameters

e Parameters can be many things:
- MPC weights, prediction model coefficients, horizons
- Entries of covariance matrices in Kalman filter
- Tolerances used in numerical solvers

o Define a performance index f over a closed-loop simulation or real experiment.
For example:

Z I(®) = r(o) :FU

(brm:kmg qualu&j)

y a w 5 = e 1

e Auto-tuning = find the best combination of parameters that solves the
global optimization problem
min f(x)
xT

24/40

GLOBAL OPTIMIZATION ALGORITHMS FOR AUTO-TUNING

What is a good optimization algorithm to solve min f(z)?

e The algorithm should not require the gradient V f of f(z)
(derivative-free or black-box optimization)

e The algorithm should not get stuck on local minima (global optimization)

o The algorithm should make the fewest evaluations of the cost function f
(which is expensive to evaluate)

25/40

AUTO-TUNING - GLOBAL OPTIMIZATION ALGORITHMS

o Several derivative-free global optimization algorithms exist:

Lipschitzian-based partitioning techniques:
e DIRECT (Dlvide in RECTangles)
e Multilevel Coordinate Search (MCS)

- Response surface methods
o Kriging ,DACE
o Efficient global optimization (EGO)
e Bayesian optimization

Genetic algorithms (GA)

Particle swarm optimization (PSO)

o New method: radial basis function surrogates + inverse distance weighting

(GLIS) cse.lab.imtlucca.it/~bemporad/glis

26/40

MPC AUTOTUNING EXAMPLE

e Linear MPC applied to cart-pole system: 14 parameters to tune

- sample time
- weights on outputs and input increments

- prediction and control horizons

- covariance matrices of Kalman filter

- absolute and relative tol of QP solver

T
e Closed-loop performance score: J = / [p(t) — pret(t)| + 30]|(2)|dt
0

o MPC parameters tuned using 500 iterations of GLIS

e Performance tested with simulated cart on two hardware platforms
(PC, Raspberry PI)

27/40

MPC AUTOTUNING EXAMPLE

MPC optimized for desktop PC MPC optimized for Raspberry PI

1
1
ion (m)
1
1

Angle (deg)
% |
Angle (deg)
g

Force (N)
Force (N)

optimal sample time = 6 ms optimal sample time = 22 ms
e Auto-calibration can squeeze max performance out of the available hardware
e Bayesian Optimization gives similar results, but with larger computation effort

28/40

AUTO-TUNING: PROS AND CONS

e Pros:

sy Selection of calibration parameters x to test is fully automatic
sy Applicable to any calibration parameter (weights, horizons, solver tolerances, ...)

sl Rather arbitrary performance index f(x) (tracking performance, response time,
worst-case number of flops, ...)

e Cons:

i@ Need to quantify an objective function f(z)
i® No room for qualitative assessments of closed-loop performance
i@ Often objectives are multiple, not clear how to blend them in a single one

e Current research: preference-based optimization (GLISp), having human
assessments in the loop (semi-automatic tuning)

cse.lab.imtlucca.it/~bemporad/glis

29/40

ESTIMATION: LEARNING VIRTUAL SENSORS

LEARNING VIRTUAL SENSORS

¢ unknown model of a dynamical system

z € R"% state vector

Terr = fl@n uk, pr) w € R™ command input
e = g(Tk, pr) y € R™ output vector
Pk+1 = h(ﬂka k, Uk) pE RS signal to estimate

® p;. can model equipment wear/component drift, faults, ...
or unmeasured states of the system

e Special cases:

- linear parameter-varying (LPV) systems

Tr+1 = Apr)zi + B(pr)uk
yr = C(pr)zr + D(pr)ur

=
- switched affine systems p;, € {1,..., s} (aacarom)

30/40

LEARNING VIRTUAL SENSORS

Assumption #1: p; cannot be measured at runtime Trr1 = f(ow, uk, pr)
Yk = g(xk, pr)
pr+1 = h(pr, kb, uk)

Assumption #2: p,. is available in training data

Assumption #3: we do not know model f, g, h

Goal: estimate p;, from input/output data at runtime

Applications:

- onboard diagnosis, anomaly/fault detection and isolation, predictive maintenance
- gain scheduling control

Existing approaches to estimate pj, are mostly model-based:

extended Kalman-filtering, moving horizon estimation, interacting multiple

model (IMM) estimator, ...
31/40

LEARNING VIRTUAL SENSORS - DESIGN

o D= {uk,yr, pr}, k=1,..., K,=training dataset (acquired off line)

o For each k estimate a local linear model using recursive SYS-ID, ;. = vector of
model parameters. Example:

Nag ny
Y = —Zaiyk_i—i—z:biuk_i, y=lay ... an, by ... by,]
i=1 i=1
e Use unsupervised learning to partition the set {74, , ..., vk } in N clusters

(more generally: partition the set of pairs (px, v«))

¢ Identify N linear time-invariant models 3J;
foreachcluster(j = 1,...,N)

¢ Design alinear observer for each model ¥;

to summarize all past input/outputs into state estimates y-space

b 22, ..., z" (one per model)

32/40

LEARNING VIRTUAL SENSORS - DATA COMPRESSION AND PREDICTOR

e Compress past input/outputs into sum of output prediction errors

k
vi= Y (yi-i)?
r=k—¢

e Two-layer structure

I, =
o = go(Ix)

1
(uk,ykal/k;v .

¢ =window of past estimates (hyperparameter)

.,l/,iv)

Uy,
Yr

linear

i)

[observer #1 ‘

,,,,,,,,,,,,,, predictor
i feature |
i extraction 1, prediction m
—> map —=— function =
e() 95()

o gy =feedforward artificial neural network (ANN) w/ rectified linear unit (ReLU)
activation function, or decision tree (DT), or random forest (RF) regression

¢ Training objective: minz 1ok — pill3

k

33/40

EXAMPLE: NONLINEAR PARAMETER-VARYING SYSTEM

e True (unknown) underlying nonlinear system (o = 1)

Tp1 = Az + §atan(wg) + log(py + 1) Buy, A € R5%5
e = —(1+eﬂk){o 000 1}% B € R5*2

e vy ~ N (0, 1), the scheduling signal py, is generated by setting

pe = 0.999p; + 0.03ws, wr ~ N(0,1)
_ pr if pr € [—0.95,0.95]
Phit = B otherwise

e Input, output, and p measurements are affected by noise in A/(0, 0.03%)
e Training dataset = up to 25,000 samples, testing data set = 5,000 samples

34/40

EXAMPLE: NONLINEAR PARAMETER-VARYING SYSTEM

o Local models identified by recursive ARX estimator based on Kalman filtering
(3 past outputs, 3 past inputs = 7, € R%)

e N clusters created by running K -means in vy-space

¢ Deadbeat observer for each centroidal model (%;),j =1,..., N
(equivalent to §, = [Jr—1 Jr—2 Jk—3 Uk—1 Uk—2 Uk—3)'7Y;)

k
o Inputto ANNis I, = (up, Y, Vi, - -, Vi), vk = Z (8 —98)% (£ =4)
=k—

T 4

e ANN with 2 ReLU layers, 64 neurons + linear output function

e Alternative: DT or RF, both with max depth = 10 nodes

35/40

EXAMPLE: NONLINEAR PARAMETER-VARYING SYSTEM

e Quality of reconstruction p of p is measured by

~

e Experiments are repeated 10 times
with different p and noise realizations

models ‘

N = 7models (normallzed 5|gna|s)

mean (std) | 0.686(0.033) | 0.766(0.027) | 0.779(0.026)

training
samples

25000
15000
5000

EXAMPLE: MODE RECONSTRUCTION

e ‘
e True (unknown) switching linear system “I N = 4 models
(cv = 0) with 4 modes o3 P ‘ ‘
pr € {0,0.5,1,1.5} (discrete) by
e Experiments are repeated 10 times e ‘ (normalized signals)
with different p and noise realizations B T TR TR Tam——
#models | 2 \ 3 \ 4 \ 5

mean (std) | 0.773(0.018) | 0.876(0.012) | 0.931(0.009) | 0.931(0.009)

Note: no penalty on p; switching used.
Cf. Hidden Markov Models and Jump Models

Note: a classifier rather than a function regressor may improve fit quality

37/40

EXAMPLE: NONLINEAR STATE ESTIMATION (BATTERY SOC)

e Lithium-ion battery model (unknown)

1(t) = _é(:)
b - i(t)
Rys (xl)cts ($1) Ct.sgwl)
a(t) = —z3(t) i(t
Ry(z1)Cu(z1) Cis(z1)
y(t) = Eo(z1) —z2(t) —x3(t) —i(t)Rs(z1)

eeeeee bleenergyworld.com

¢ Only voltage y(t) and current i(¢) are measurable

¢ Goal: estimate the state of charge (SoC) x1 ()

38/40

EXAMPLE: NONLINEAR STATE ESTIMATION (BATTERY SOC)

—— Predicted

—— True
—— EKF (Q=0.03/,R =0.03)
—— EKF(Q=0.03?,R=1)

—— EKF (Q=100/,R =0.03?)
—— EKF (Q=0.03%,R =100)

¢ Virtual sensor architecture:

- 5linear observers

- predictor: ANN, DT, or RF 10
- 25,000 training samples s
- 5,000 validation samples

e Requirements:

Memory | CPU time
(single ﬂoats) (},LS) 0 1000 2000 3000 4000 5000
ANN ~ 1,350 6 , ,
DT ~ 3,000 01 Comparison with model-based extended Kalman
RF ~ 30,000 1 filter (EKF) with different covariance matrices

(Intel Core i5 6200U)

39/40

CONCLUSIONS

e MPC + ML together can have a tremendous impact in the design and
implementation of nonlinear control systems:

- MPC and on-line optimization is an extremely powerful control methodology

- ML extremely useful to get control-oriented models (system identification) and
control laws (reinforcement learning) from data

e |gnoring ML tools would be a mistake (a lot to “learn” from machine learning)

e ML alone is not enough to replace control:

- Black-box modeling can be a failure.
Better use gray-box models when possible. _ II + I ll - b
- Approximating the control law can be a failure. MPC ML

Don’t abandon on-line optimization.

40/40

