MODEL PREDICTIVE CONTROL

FROM BASICS TO LEARNING-BASED DESIGN

Alberto Bemporad

imt.lu/ab

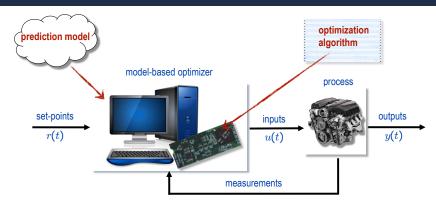
CONTENTS OF MY LECTURE

- Model predictive control (MPC): basic concepts
- Linear MPC and extensions to nonlinear MPC
- Embedded quadratic optimization
- Learning-based nonlinear MPC (feedforward and recurrent neural networks)
- Learning-based hybrid MPC (piecewise affine models)
- Active preference learning for MPC calibration

MODEL PREDICTIVE CONTROL: BASIC CONCEPTS

(extended slide set: http://cse.lab.imtlucca.it/~bemporad/mpc_course.html)

MODEL PREDICTIVE CONTROL (MPC)



Use a dynamical model of the process to predict its future evolution and choose the "best" control action

MODEL PREDICTIVE CONTROL

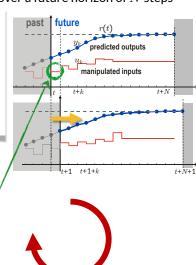
 $\bullet\,$ MPC problem: find the best control sequence over a future horizon of N steps

$$\begin{aligned} & \min_{\boldsymbol{u}_0, \dots, \boldsymbol{u}_{N-1}} \sum_{k=0}^{N-1} \|y_k - r(t)\|_2^2 + \rho \|u_k - u_r(t)\|_2^2 \\ \text{s.t.} & & x_{k+1} = f(x_k, u_k) & \text{prediction model} \\ & & y_k = g(x_k) & \\ & & u_{\min} \leq u_k \leq u_{\max} & \text{constraints} \\ & & y_{\min} \leq y_k \leq y_{\max} \\ & & x_0 = x(t) & \text{state feedback} \end{aligned}$$

numerical optimization problem

- 1 estimate current state x(t)
- 2 optimize wrt $\{u_0,\ldots,u_{N-1}\}$
- 3 only apply optimal u_0 as input u(t)

Repeat at all time steps t



DAILY-LIFE EXAMPLES OF MPC

• MPC is like playing chess!

• You use MPC too when you drive!

MPC IN INDUSTRY

• Conceived in the 60's (Rafal, Stevens, 1968) (Propoi, 1963)

- Used in the process industries since the 80's (Qin, Badgewell, 2003)
- Nowadays spreading to the automotive industry and other sectors
- MPC by General Motors and ODYS in high-volume production since 2018 (Bemporad, Bernardini, Long, Verdejo, 2018)

First known mass production of MPC in the automotive industry

www.odys.it

MPC IN INDUSTRY

Table 2

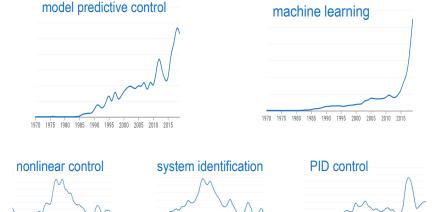
The percentage of survey respondents indicating whether a control technology had demonstrated ("Current Impact") or was likely to demonstrate over the next five years ("Future Impact") high impact in practice.

	Current Impact Future Impact		
Control Technology	%High	%High	
PID control	91%	78%	
System Identification	65%	72%	
Estimation and filtering	64%	63%	
Model-predictive control	62%	85%	
Process data analytics	51%	70%	
Fault detection and identification	48%	78%	
Decentralized and/or coordinated control	29%	54%	
Robust control	26%	42%	
Intelligent control	24%	59%	
Discrete-event systems	24%	39%	
Nonlinear control	21%	42%	
Adaptive control	18%	44%	
Repetitive control	12%	17%	
Hybrid dynamical systems	11%	33%	
Other advanced control technology	11%	25%	
Game theory	5%	17%	

(Samad et al., 2020)

"As can be observed, MPC is clearly considered more impactful, and likely to be more impactful, vis-à-vis other control technologies, especially those that can be considered the "crown jewels" of control theory - robust control, adaptive control, and nonlinear control."

WORD TRENDS



(source: https://books.google.com/ngrams)

LINEAR MPC

• Linear prediction model:
$$\begin{cases} x_{k+1} &= Ax_k + Bu_k \\ y_k &= Cx_k \end{cases}$$

$$\begin{aligned} x &\in \mathbb{R}^n \\ u &\in \mathbb{R}^m \\ y &\in \mathbb{R}^p \end{aligned}$$

Constrained optimal control problem (quadratic performance index):

$$\min_{z} \quad x'_{N}Px_{N} + \sum_{k=0}^{N-1} x'_{k}Qx_{k} + u'_{k}Ru_{k}$$

$$\text{s.t.} \quad u_{\min} \leq u_{k} \leq u_{\max}, \ k = 0, \dots, N-1$$

$$y_{\min} \leq y_{k} \leq y_{\max}, \ k = 1, \dots, N$$

$$\begin{bmatrix} R & = & R' \succ 0 \\ Q & = & Q' \succeq 0 \\ P & = & P' \succeq 0 \end{bmatrix} z = \begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ u_{N-1} \end{bmatrix}$$

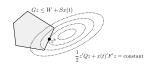
LINEAR MPC

• Optimization problem (condensed form): $x_k = A^k x_0 + \sum_{i=0}^{k-1} A^i B u_{k-1-i}$

$$V(x_0) = \frac{1}{2}x_0'Yx_0 + \min_z \quad \frac{1}{2}z'Hz + x_0'F'z$$
 (quadratic objective) $H = H' \succ 0$ s.t. $Gz \leq W + Sx_0$ (linear constraints)

convex Quadratic Program (QP)

$$ullet z = egin{bmatrix} u_0 \\ \vdots \\ u_{N-1} \end{bmatrix} \in \mathbb{R}^{Nm} ext{ is the optimization vector}$$

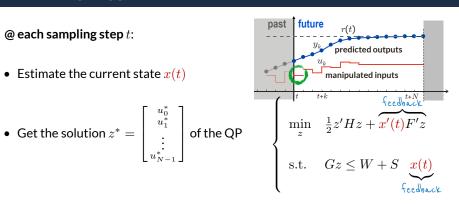


- QP matrices depend on chosen weights, model, and constraints
- Alternative: keep also x_1, \ldots, x_N as optimization variables and the equality constraints $x_{k+1} = Ax_k + Bu_k$ (non-condensed form, which is sparse)

LINEAR MPC ALGORITHM

@ each sampling step t:

- Estimate the current state x(t)



• Apply only $u(t) = u_0^*$, discarding the remaining optimal inputs u_1^*, \dots, u_{N-1}^*

• Unconstrained MPC: $\overbrace{Hz+Fx(t)}^{\text{gradient}}=0$ $u(t)=-[I\ 0\ \dots\ 0]H^{-1}Fx(t)$ linear state feedback!

BASIC CONVERGENCE PROPERTIES

(Keerthi, Gilbert, 1988) (Bemporad, Chisci, Mosca, 1994)

• Theorem: Let the MPC law be based on

$$V^*(x(t)) = \min$$

$$\sum_{k=0}^{N-1} x_k' Q x_k + u_k' R u_k$$
 s.t.
$$x_{k+1} = A x_k + B u_k$$

$$u_{\min} \le u_k \le u_{\max}$$

$$y_{\min} \le C x_k \le y_{\max}$$

$$x_N = 0 \qquad \leftarrow \text{"terminal constraint"}$$

with $R,Q \succ 0, u_{\min} < 0 < u_{\max}, y_{\min} < 0 < y_{\max}$. If the optimization problem is feasible at time t=0 then

$$\lim_{t \to \infty} x(t) = 0, \quad \lim_{t \to \infty} u(t) = 0$$

and the constraints are satisfied at all time $t \geq 0$, for all $R, Q \succ 0$.

• Many more convergence and stability results exist (Mayne, 2014)

LINEAR MPC - TRACKING

- $\bullet \;$ Objective: make the output y(t) track a reference signal r(t)
- Let us parameterize the problem using the input increments

$$\Delta u(t) = u(t) - u(t-1)$$

- As $u(t)=u(t-1)+\Delta u(t)$ we need to extend the system with a new state $x_u(t)=u(t-1)$

$$\begin{cases} x(t+1) &= Ax(t) + Bu(t-1) + B\Delta u(t) \\ x_u(t+1) &= x_u(t) + \Delta u(t) \end{cases}$$

$$\begin{cases}
\begin{bmatrix} x(t+1) \\ x_u(t+1) \end{bmatrix} &= \begin{bmatrix} A & B \\ 0 & I \end{bmatrix} \begin{bmatrix} x(t) \\ x_u(t) \end{bmatrix} + \begin{bmatrix} B \\ I \end{bmatrix} \Delta u(t) \\
y(t) &= \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ x_u(t) \end{bmatrix}
\end{cases}$$

• Again a linear system with states $x(t), x_u(t)$ and input $\Delta u(t)$

LINEAR MPC - TRACKING

Optimal control problem (quadratic performance index):

$$\min_{z} \sum_{k=0}^{N-1} \|W^{y}(y_{k+1} - r(t))\|_{2}^{2} + \|W^{\Delta u}\Delta u_{k}\|_{2}^{2}
[\Delta u_{k} \triangleq u_{k} - u_{k-1}], u_{-1} = u(t-1)$$
s.t.
$$u_{\min} \leq u_{k} \leq u_{\max}, k = 0, \dots, N-1
y_{\min} \leq y_{k} \leq y_{\max}, k = 1, \dots, N
\Delta u_{\min} \leq \Delta u_{k} \leq \Delta u_{\max}, k = 0, \dots, N-1$$

$$z = \begin{bmatrix} \Delta u_0 \\ \Delta u_1 \\ \vdots \\ \Delta u_{N-1} \end{bmatrix} \text{ or } z = \begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ u_{N-1} \end{bmatrix}$$

weight $W^{(\cdot)}$ = diagonal matrix

s.t.
$$Gz \le W + S \begin{bmatrix} x(t) \\ r(t) \\ u(t-1) \end{bmatrix}$$

convex Quadratic **Program**

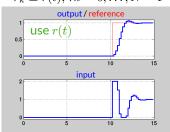
- Add the extra penalty $||W^u(u_k u_{ref}(t))||_2^2$ to track input references
- Constraints may depend on r(t), such as $e_{\min} \leq y_k r(t) \leq e_{\max}$

ANTICIPATIVE ACTION (A.K.A. "PREVIEW")

$$\min_{\Delta U} \sum_{k=0}^{N-1} \|W^{y}(y_{k+1} - r(t+k))\|_{2}^{2} + \|W^{\Delta u}\Delta u(k)\|_{2}^{2}$$

 Reference not known in advance (causal):

$$r_k \equiv r(t), \forall k = 0, \dots, N-1$$



 Future refs (partially) known in advance (anticipative action):

$$r_k = r(t+k), \forall k = 0, \dots, N-1$$

• Same for previewing measured disturbances $x_{k+1} = Ax_k + Bu_k + B_v v(t+k)$

OUTPUT INTEGRATORS AND OFFSET-FREE TRACKING

• Add constant unknown disturbances on measured outputs:

$$\begin{cases} x_{k+1} = Ax_k + Bu_k \\ d_{k+1} = d_k \\ y_k = Cx_k + d_k \end{cases}$$

- Use the extended model to design a **state observer** (e.g., Kalman filter) that estimates both the state $\hat{x}(t)$ and disturbance $\hat{d}(t)$ from y(t)
- Why we get offset-free tracking in steady-state (intuitively):
 - the observer makes $C\hat{x}(t) + \hat{d}(t) \rightarrow y(t)$

(estimation error)

- the MPC controller makes $C\hat{x}(t)+\hat{d}(t) \rightarrow r(t)$ (predicted tracking error)

(actual tracking error)

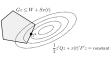
- the combination of the two makes $y(t) \rightarrow r(t)$
- In steady state, the term $\hat{d}(t)$ compensates for model mismatch
- See more on survey paper (Pannocchia, Gabiccini, Artoni, 2015)

EMBEDDED LINEAR MPC AND QUADRATIC PROGRAMMING

MPC based on linear models requires solving a Quadratic Program (QP)

$$\begin{aligned} \min_{z} & \quad \frac{1}{2}z'Qz + x'(t)F'z + \frac{1}{2}x'(t)Yx(t) \\ \text{s.t.} & \quad Gz \leq W + Sx(t) \end{aligned}$$

$$z = \begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ u_{N-1} \end{bmatrix}$$



On Minimizing A Convex Function Subject to Linear Inequalities

By E. M. L. BEALE

Admiralty Research Laboratory, Teddington, Middlesex

SUMMARY

The minimization of a convex function of variables subject to linear inequalities is discussed briefly in general terms. Dantzig's Simplex Method is extended to yield finite algorithms for minimizing either a convex quadratic function or the sum of the largest of a set of linear functions, and the solution of a generalization of the latter problem is indicated. In the last two sections a form of linear programming the latter problem is indicated. In the last two sections a form of linear programming the latter problem is indicated. In the last two sections a form of linear programming the latter problem is indicated. In the last two sections a form of linear programming the latter problem is indicated. In the last two sections a form of linear programming the latter problem is indicated. In the last two sections a form of linear programming the latter problem is indicated. In the last two sections a form of linear programming the latter problem is indicated. In the last two sections a form of linear programming the latter problem is indicated. In the last two sections a form of linear programming the latter problem is indicated. In the last two sections a form of linear programming the latter problem is indicated. In the last two sections a form of linear programming the latter problem is indicated. In the last two sections a form of linear programming the latter problem is indicated. In the last two sections a form of linear programming the latter problem is indicated. In the last two sections a form of linear programming the latter problem is indicated. In the last two sections a form of linear programming the latter problem is indicated. In the last two sections are problem in the

(Beale, 1955)

A rich set of good QP algorithms is available today

Not all QP algorithms are suitable for industrial embedded control

MPC IN A PRODUCTION ENVIRONMENT

Key requirements for deploying MPC in production:

- 1. speed (throughput)
 - worst-case execution time less than sampling interval
 - also fast on average (to free the processor to execute other tasks)

2. limited memory and CPU power (e.g., 150 MHz / 50 kB)

- 3. numerical robustness (single precision arithmetic)
- 4. certification of worst-case execution time
- code simple enough to be validated/verified/certified (library-free C code, easy to check by production engineers)

EMBEDDED SOLVERS IN INDUSTRIAL PRODUCTION

- Multivariable MPC controller
- Sampling frequency = 40 Hz (= 1 QP solved every 25 ms)
- Vehicle operating \approx 1 hr/day for \approx 360 days/year on average
- Controller running on 10 million vehicles

~520,000,000,000,000 QP/yr and none of them should fail.



DUAL GRADIENT PROJECTION FOR QP

(Goldstein, 1964) (Levitin, Poljak, 1965) (Combettes, Waijs, 2005)

• Consider the strictly convex QP and its dual

$$\min_{s.t.} \frac{\frac{1}{2}z'Qz + x'F'z}{s.t.} \quad \min_{s.t.} \frac{\frac{1}{2}y'Hy + (Dx + W)'y}{s.t.} \quad y \ge 0$$

with
$$H=GQ^{-1}G'$$
, $D=S+GQ^{-1}F$. Take $L\geq \lambda_{\max}(H)$

Apply proximal gradient method to dual QP:

$$y^{k+1} = \max\{y^k - \frac{1}{L}(Hy^k + Dx + W), 0\} \qquad y_0 = 0$$

• The primal solution is related to the dual solution by

$$z^k = -Q^{-1}(Fx + G'y^k)$$

 $\bullet\,$ Convergence is slow: the initial error $f(z^0)-f(z^*)$ reduces as 1/k

FAST GRADIENT PROJECTION FOR (DUAL) QP

(Nesterov, 1983) (Beck, Teboulle, 2008) (Patrinos, Bemporad, 2014)

The fast gradient method is applied to solve the dual QP problem

$$\min_{z} \frac{1}{2}z'Qz + x'F'z$$
s.t.
$$Gz \le W + Sx$$

$$K = Q^{-1}G'$$

$$J = Q^{-1}F$$

$$L \ge \lambda_{\max}(GQ^{-1}G')$$

$$\beta_k = \max\{\frac{k-1}{k+2}, 0\}$$

$$w^{k} = y^{k} + \beta_{k}(y^{k} - y^{k-1})$$

$$z^{k} = -Kw^{k} - Jx$$

$$s^{k} = \frac{1}{L}Gz^{k} - \frac{1}{L}(W + Sx)$$

$$y^{k+1} = \max\{w^{k} + s^{k}, 0\}$$

```
while kcmaxiter
beta-max(k-1)/(k+2),0);
w=y+beta*(y-y0);
z=-(1k0*w+1k0;);
s=GL*z-bL;
y0=y;

* Termination
if all(s<-epsGL)
gapl-=="""s;;
if gapl<-epsYL
return
end
end
y=w+5;
k=k+1;
```

end

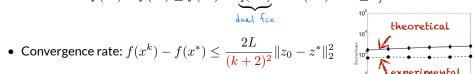
• Very simple to code

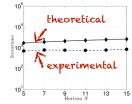
FAST GRADIENT PROJECTION FOR (DUAL) OP

• Termination criteria: when the following two conditions are met

the solution $z^k = -Kw^k - Jx$ satisfies $G_i z^k - W_i - S_i x < \epsilon_G$ and, if $w^k > 0$,

$$f(z^k) - f(z^*) \le f(z^k) - \underbrace{q(w^k)}_{\text{dual for}} = -(w^k)' s^k L \le \epsilon_f$$





- Tight bounds on maximum number of iterations
- Can be useful to warm-start active-set methods (Bemporad, Paggi, 2015)
- Extended to mixed-integer quadratic programming (MIQP) (Naik, Bemporad, 2017)

(Gabay, Mercier, 1976) (Glowinski, Marrocco, 1975) (Douglas, Rachford, 1956) (Boyd et al., 2010)

 $\bullet \ \ \text{Alternating Directions Method of Multipliers for QP}$

$$\begin{array}{lcl} z^{k+1} & = & -(Q+\rho A'A)^{-1}(\rho A'(v^k-s^k)+c) \\ s^{k+1} & = & \min\{\max\{Az^{k+1}+v^k,\ell\},u\} \\ v^{k+1} & = & v^k+Az^{k+1}-s^{k+1} \end{array}$$

(7 lines EML code) (≈40 lines of C code)

 ρv = dual vector

- Matrix $(Q + \rho A'A)$ must be nonsingular
- The factorization of matrix $(Q+\rho A'A)$ can be done at start and cached
- Very simple to code. Sensitive to matrix scaling (as gradient projection)
- Used in many applications (control, signal processing, machine learning)

REGULARIZED ADMM FOR QUADRATIC PROGRAMMING

(Stellato, Banjac, Goulart, Bemporad, Boyd, 2020)

• Robust "regularized" ADMM iterations:

$$\begin{array}{lcl} z^{k+1} & = & -(Q + \rho A^T A + \epsilon \mathbf{I})^{-1} (c - \epsilon z_k + \rho A^T (v^k - z^k)) \\ s^{k+1} & = & \min \{ \max \{ A z^{k+1} + v^k, \ell \}, u \} \\ v^{k+1} & = & v^k + A z^{k+1} - s^{k+1} \end{array}$$

- Works for any $Q \succeq 0$, A, and choice of $\epsilon > 0$
- Simple to code, fast, and robust
- Only needs to factorize $\begin{bmatrix} Q + \epsilon I & A' \\ A & -\frac{1}{\rho}I \end{bmatrix}$ once
- Implemented in free osQP solver
 (Python interface: ≈ 1,700,000 downloads)

http://osqp.org

• Extended to solve mixed-integer quadratic programming problems

(Stellato, Naik, Bemporad, Goulart, Boyd, 2018)

ODYS QP SOLVER

General purpose QP solver designed for industrial production

$$\min_{z} \frac{1}{2}z'Qz + c'z$$
s.t.
$$b_{\ell} \le Az \le b_{u}$$

$$\ell \le z \le u$$

$$Ez = f$$

- Implements a proprietary state-of-the-art method for QP
- Completely written in ANSI-C and MISRA-C 2012 compliant
- Fast, robust (also in single precision), low-memory requirements
- optimized version for MPC available ($\approx 50\%$ faster)
- Licensed to several automotive OEMs and Tier-1 suppliers
- Certifiable execution time

odys.it/qp

PRIMAL-DUAL INTERIOR-POINT METHOD FOR QP

(Nocedal, Wright, 2006) (Gondzio, Terlaki, 1994)

The Karush-Kuhn-Tucker(KKT) optimality conditions for the convex QP

$$\min_{x} \quad \frac{1}{2}x'Qx + c'x$$
s.t. $Ax \le b$ $Q = Q' \succeq 0$

$$Ex = f$$

are

$$r_Q = Qx + c + E'y + A'z = 0$$
 $x = primal vars$
 $r_E = Ex - f$ $= 0$ $y = dual vars (eq. constr.)$
 $r_A = Ax + s - b$ $= 0$ $s = slacks (ineq. constr.)$
 $r_S = [z_1s_1 \dots z_ms_m]' = 0$ $z = dual vars (ineq. constr.)$
 $z,s > 0$

- In a nutshell, **interior-point** methods use Newton's method with line search to solve the above nonlinear system of equations
- The complementary slackness constraint is replaced by $z_i s_i = \mu$ and $\mu \to 0$

PRIMAL-DUAL INTERIOR-POINT METHOD FOR QP

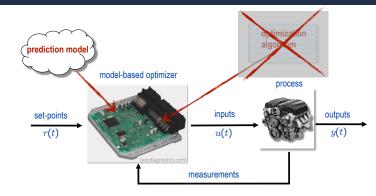
(Nocedal, Wright, 2006) (Gondzio, Terlaki, 1994)

• Each interior-point iteration requires solving a linear system of the form

$$\begin{bmatrix} Q & E' & A' & 0 \\ E & 0 & 0 & 0 \\ A & 0 & 0 & I \\ 0 & 0 & S & Z \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \\ \Delta s \end{bmatrix} = \begin{bmatrix} -r_Q \\ -r_E \\ -r_A \\ -r_S \end{bmatrix}$$
 $Z = \operatorname{diag} z$ $S = \operatorname{diag} s$

- In MPC the structure $x_{k+1} = Ax_k + Bu_k$ can be heavily exploited to factorize/solve the linear systems efficiently (Rao, Wright, Rawlings, 1998) (Wright, 2018)
- IP provides good solutions within 10-15 IP iterations (usually ...).
- Linear systems tends to become ill-conditioned at convergence
- IP usually faster for sparse and large QPs (say >500 vars & constraints)

MPC WITHOUT ON-LINE QP



 Can we implement constrained linear MPC without an on-line QP solver?

EXPLICIT MODEL PREDICTIVE CONTROL

Continuous & piecewise affine solution of strictly convex multiparametric QP

$$z^*(x) = \arg\min_z \quad \frac{1}{2}z'Qz + x'F'z$$

s.t. $Gz \le W + Sx$

(Bemporad, Morari, Dua, Pistikopoulos, 2002)

Corollary: linear MPC is continuous & piecewise affine!

$$z^* = \begin{bmatrix} \mathbf{u_0} \\ u_1 \\ \vdots \\ u_{N-1}^* \end{bmatrix}$$

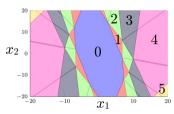
$$z^* = \begin{bmatrix} \mathbf{u_0} \\ u_1 \\ \vdots \\ u_{N-1}^* \end{bmatrix} \qquad \qquad \begin{bmatrix} u_0^*(x) = \begin{cases} F_1x + g_1 & \text{if} & H_1x \leq K_1 \\ \vdots & \vdots \\ F_Mx + g_M & \text{if} & H_Mx \leq K_M \end{cases}$$

• New mpQP solver based on NNLS available (Bemporad, 2015) and included in MPC Toolbox since R2014b (Bemporad, Morari, Ricker, 1998-today)

Is explicit MPC better than on-line QP (=implicit MPC)?

COMPLEXITY CERTIFICATION FOR ACTIVE-SET QP SOLVERS

• Result: The number of iterations to solve the QP via a dual active-set method is a piecewise constant function of the parameter x



(Cimini, Bemporad, 2017)

We can **exactly** quantify how many iterations (flops) the QP solver takes in the worst-case!

• Examples (from MPC Toolbox):

	inverted pendulum	DC motor	nonlinear demo	AFTI F16
Explicit MPC				
max flops	3382	1689	9184	16434
max memory (kB)	55	30	297	430
Implicit MPC				
max flops	3809	2082	7747	7807
sqrt	27	9	37	33
max memory (kB)	15	13	20	16

QP certification algorithm currently used in industrial production projects

LINEAR TIME-VARYING MODELS

Linear Time-Varying (LTV) model

$$\begin{cases} x_{k+1} = A_k(t)x_k + B_k(t)u_k \\ y_k = C_k(t)x_k \end{cases}$$

- ullet At each time t the model can also change over the prediction horizon k
- Possible measured disturbances are embedded in the model
- On-line optimization is still a QP

$$\min_{z} \frac{1}{2}z'H(t)z + \begin{bmatrix} \frac{x(t)}{r(t)} \\ \frac{x(t)}{u(t-1)} \end{bmatrix}' F(t)'z$$
s.t.
$$G(t)z \le W(t) + S(t) \begin{bmatrix} \frac{x(t)}{r(t)} \\ \frac{x(t)}{u(t-1)} \end{bmatrix}$$

The QP matrices cannot be constructed offline

LINEARIZING A NONLINEAR MODEL

LTV models can be obtained by linearizing a nonlinear model

$$\begin{cases} \frac{dx_c(t)}{dt} &= f(x_c(t), u_c(t)) \\ y_c(t) &= g(x_c(t)) \end{cases}$$

• At time t, consider the **nominal trajectory**

$$U = \{\bar{u}_c(t), \bar{u}_c(t+T_s), \dots, \bar{u}_c(t+(N-1)T_s)\}\$$

For example U = shifted previous sequence optimized by MPC @t-1

• Integrate the model from $\bar{x}_c(t)$ and get nominal state/output trajectories

$$X = \{\bar{x}_c(t), \bar{x}_c(t+T_s), \dots, \bar{x}_c(t+(N-1)T_s)\}$$

$$Y = \{\bar{y}_c(t), \bar{y}_c(t+T_s), \dots, \bar{y}_c(t+(N-1)T_s)\}$$

For example $\bar{x}_c(t) = \text{current state}$

LINEARIZING A NONLINEAR MODEL

Linearize the nonlinear model around the nominal states and inputs:

$$\frac{dx_c}{dt} = f(x_c, u_c) \approx \underbrace{f(\bar{x}_c, \bar{u}_c)}_{\substack{d\bar{x}_c \\ \bar{d}t}} + \underbrace{\frac{\partial f}{\partial x_c}\Big|_{\bar{x}_c, \bar{u}_c}}_{\substack{\bar{x}_c, \bar{u}_c \\ \bar{u}_c}} (x_c - \bar{x}_c) + \underbrace{\frac{\partial f}{\partial u_c}\Big|_{\bar{x}_c, \bar{u}_c}}_{\substack{\bar{x}_c, \bar{u}_c \\ \bar{u}_c}} (u_c - \bar{u}_c)$$

$$y = g(x_c) \approx \underbrace{g(\bar{x}_c)}_{\bar{y}_c} + \underbrace{\frac{\partial g}{\partial x_c}\Big|_{\bar{x}_c}}_{\substack{\bar{x}_c \\ \bar{x}_c \\ \bar{x}_c}} (x_c - \bar{x}_c)$$

• Define $x\triangleq x_c-\bar{x}_c, u\triangleq u_c-\bar{u}_c, y\triangleq y_c-\bar{y}_c$ and get the linear system

$$\frac{dx}{dt} = A_c x + B_c u \qquad \qquad y = Cx$$

- Convert linear model to discrete-time and get matrices (A_k, B_k, C_k)
- Alternative: compute (A_k,B_k,C_k) (a.k.a. sensitivities) during integration

FROM LTV-MPC TO NONLINEAR MPC

- How to use the LTV-MPC machinery to handle nonlinear MPC?
- Key idea: Solve a sequence of LTV-MPC problems at each time t

For
$$h = 0$$
 to $h_{\text{max}} - 1$ do:

- 1. Simulate from $\boldsymbol{x}(t)$ with inputs \boldsymbol{U}_h and get state trajectory \boldsymbol{X}_h
- 2. Linearize around (X_h, U_h) and discretize in time
- 3. Get U_{h+1}^{*} = **QP solution** of corresponding LTV-MPC problem
- 4. Line search: find optimal step size $\alpha_h \in (0, 1]$;
- 5. Set $U_{h+1} = (1 \alpha_h)U_h + \alpha_h U_{h+1}^*$;

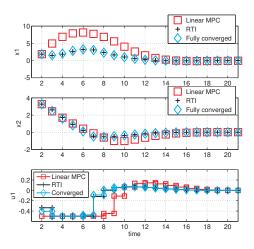
Return solution $U_{h_{\max}}$

• Special case: just solve one iteration with $\alpha=1$ (a.k.a. Real-Time Iteration) (Diehl, Bock, Schloder, Findeisen, Nagy, Allgower, 2002) = LTV-MPC

NONLINEAR MPC

(Gros, Zanon, Quirynen, Bemporad, Diehl, 2020)

• Example



OUTPUT FEEDBACK - EXTENDED KALMAN FILTER

 For state estimation, an Extended Kalman Filter (EKF) can be used based on the same nonlinear model (with additional noise)

$$x(k+1) = f(x(k), u(k), \xi(k))$$

$$y(k) = g(x(k)) + \zeta(k)$$

measurement update:

$$\begin{array}{rcl} C(k) & = & \frac{\partial g}{\partial x}(\hat{x}_{k|k-1}) \\ M(k) & = & P(k|k-1)C(k)'[C(k)P(k|k-1)C(k)'+R(k)]^{-1} \\ \text{consumed by MPC} & \to \hat{x}(k|k) & = & \hat{x}(k|k-1)+M(k)\left(y(k)-g(\hat{x}(k|k-1))\right) \\ P(k|k) & = & (I-M(k)C(k))P(k|k-1) \end{array}$$

time update:

$$\begin{split} \hat{x}(k+1|k) &= f(\hat{x}(k|k), u(k)) \\ A(k) &= \frac{\partial f}{\partial x}(\hat{x}_{k|k}, u(k), E[\xi(k)]), \ G(k) = \frac{\partial f}{\partial \xi}(\hat{x}_{k|k}, u(k), E[\xi(k)]) \\ P(k+1|k) &= A(k)P(k|k)A(k)' + G(k)Q(k)G(k)' \end{split}$$

ODYS EMBEDDED MPC TOOLSET

 ODYS Embedded MPC is a software toolchain for design and deployment of MPC solutions in industrial production

- Support for linear & nonlinear MPC and extended Kalman filtering
- Extremely flexible, all MPC parameters can be changed at runtime
- Integrated with MPC-optimized version of ODYS QP Solver
- Library-free C code, MISRA-C 2012 compliant, supports also single precision
- Currently used worldwide by several automotive OEMs in R&D and production
- MPC Toolbox Plugin to easily import NL-MPC projects from MPC Toolbox
- ODYS Deep Learning supports neural networks as prediction models

MACHINE LEARNING (ML)

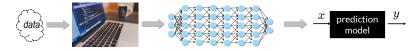
Good mathematical foundations from artificial intelligence, statistics, optimization

 Works very well in practice (despite training is most often a nonconvex optimization problem ...)

- Used in myriads of very diverse application domains
- Availability of excellent open-source software tools also explains success scikit-learn, TensorFlow/Keras, PyTorch, JAX, Flux.jl,... python julia

CONTROL-ORIENTED NONLINEAR MODELS

Black-box modeling: purely data-driven. Use training data to fit a prediction model that can explain them



 Physics-based modeling: use physical principles to create a prediction model (e.g.: weather forecast, chemical reaction, mechanical laws, ...)

• Gray-box modeling is a mix of the two. It can be quite effective

"All models are wrong, but some are useful."

(George E. P. Box)

NONLINEAR SYS-ID BASED ON NEURAL NETWORKS

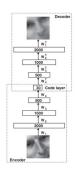
- Neural networks proposed for nonlinear system identification since the '90s (Hunt et al., 1992) (Suykens, Vandewalle, De Moor, 1996)
- NNARX models: use a feedforward neural network to approximate the nonlinear difference equation $y_t \approx \mathcal{N}(y_{t-1}, \dots, y_{t-n_a}, u_{t-1}, \dots, u_{t-n_b})$
- Neural state-space models:
 - **w/ state data**: fit a neural network model $x_{t+1} \approx \mathcal{N}_x(x_t, u_t), \;\; y_t \approx \mathcal{N}_y(x_t)$
 - I/O data only: set x_t = value of an inner layer of the network (Prasad, Bequette, 2003)
- Alternative for MPC: learn entire prediction (Masti, Smarra, D'Innocenzo, Bemporad, 2020)

$$y_{t+k} = h_k(x_t, \mathbf{u_t}, \dots, \mathbf{u_{t+k-1}}), k = 1, \dots, N$$

 Recurrent neural networks are more appropriate for accurate open-loop predictions, but more difficult to train (see later ...)

NONLINEAR STATE-SPACE MODELS VIA AUTOENCODERS

Idea: use autoencoders and artificial neural networks to learn a nonlinear state-space model of desired order from input/output data

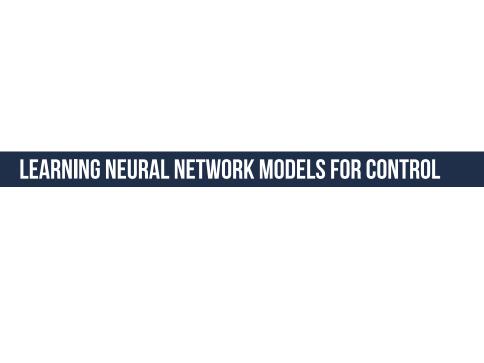


ANN with hourglass structure (Hinton, Salakhutdinov, 2006)

$$O_k = [y_k' \dots y_{k-m}']'$$
 (Masti, Bemporad, 2021)
$$I_k = [y_k' \dots y_{k-n_a+1}' u_k' \dots u_{k-n_b+1}']'$$

• Quasi-LPV structure for MPC: set $(A_{ij}, B_{ij}, C_{ij} = \text{feedforward NNs})$

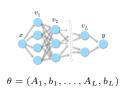
$$\begin{array}{rcl} x_{k+1} & = & A(x_k, u_k) \left[\begin{smallmatrix} x_k \\ 1 \end{smallmatrix} \right] + B(x_k, u_k) u_k \\ y_k & = & C(x_k, u_k) \left[\begin{smallmatrix} x_k \\ 1 \end{smallmatrix} \right] \end{array}$$



TRAINING FEEDFORWARD NEURAL NETWORKS

• Feedforward neural network model:

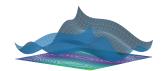
$$y_k = f_y(x_k, \theta) = \begin{cases} v_{1k} &= A_1 x_k + b_1 \\ v_{2k} &= A_2 f_1(v_{1k}) + b_2 \\ \vdots && \vdots \\ v_{Lk} &= A_{Ly} f_{L-1}(v_{(L-1)k}) + b_L \\ \hat{y}_k &= f_L(v_{Lk}) \end{cases}$$



Examples: x_k = measured state, or $x_k = (y_{k-1}, \dots, y_{k-n_a}, u_{k-1}, \dots, u_{k-n_b})$

• Training problem: given a dataset $\{x_0, y_0, \dots, x_{N-1}, y_{N-1}\}$ solve

$$\min_{\theta} r(\theta) + \sum_{k=0}^{N-1} \ell(y_k, f(x_k, \theta))$$



 It is a nonconvex, unconstrained, nonlinear programming problem that can be solved by stochastic gradient descent, quasi-Newton methods, ... and EKF!

TRAINING FEEDFORWARD NEURAL NETWORKS BY EKF

(Singhal, Wu, 1989) (Puskorius, Feldkamp, 1994)

• **Key idea**: treat parameter vector θ of the feedforward neural network as a constant state

$$\begin{cases} \theta_{k+1} &= \theta_k + \eta_k \\ y_k &= f(x_k, \theta_k) + \zeta_k \end{cases}$$

and use EKF to estimate θ_k on line from a streaming dataset $\{x_k, y_k\}$

- Ratio $\operatorname{Var}[\eta_k]/\operatorname{Var}[\zeta_k]$ is related to the **learning-rate**
- $\bullet \ \ \mbox{Initial matrix} \ (P_{0|-1})^{-1}$ is related to $\mbox{\bf quadratic regularization}$ on θ
- Implemented in ODYS Deep Learning library
- Extended to rather arbitrary convex loss functions/regularization terms

RECURRENT NEURAL NETWORKS

Recurrent Neural Network (RNN) model:

$$x_{k+1} = f_x(x_k, u_k, \theta_x)$$
 f_x, f_y = feedforward neural network $y_k = f_y(x_k, \theta_y)$

• Training problem: given a dataset $\{u_0, y_0, \dots, u_{N-1}, y_{N-1}\}$ solve

$$\begin{aligned} \min_{\substack{\theta_x,\,\theta_y\\x_0,\,x_1,\,\ldots,\,x_{N-1}\\\text{s.t.}}} & r(x_0,\theta_x,\theta_y) + \sum_{k=0}^{N-1} \ell(y_k,f_y(x_k,\theta_y)) \end{aligned}$$

• Main issue: x_k are hidden states, i.e., are unknowns of the problem

• Estimate both hidden states x_k and parameters θ_x, θ_y by EKF based on

$$\begin{cases} x_{k+1} &= f_x(x_k, u_k, \theta_{xk}) + \xi_k \\ \begin{bmatrix} \theta_{x(k+1)} \\ \theta_{y(k+1)} \end{bmatrix} &= \begin{bmatrix} \theta_{xk} \\ \theta_{yk} \end{bmatrix} + \eta_k \\ y_k &= f_y(x_k, \theta_{yk}) + \zeta_k \end{cases}$$

- RNN and its hidden state x_k can be estimated on line from a streaming dataset $\{u_k,y_k\}$, and/or offline by processing multiple epochs of a given dataset
- Can handle general smooth strictly convex loss functions/regularization terms
- Can add ℓ_1 -penalty $\lambda \left\| \left[\frac{\theta_x}{\theta_y} \right] \right\|_1$ to sparsify θ_x, θ_y by changing EKF update into

$$\begin{bmatrix} \hat{x}(k|k) \\ \theta_x(k|k) \\ \theta_y(k|k) \end{bmatrix} = \begin{bmatrix} \hat{x}(k|k-1) \\ \theta_x(k|k-1) \\ \theta_y(k|k-1) \end{bmatrix} + M(k)e(k) - \lambda P(k|k-1) \begin{bmatrix} 0 \\ \operatorname{sign}(\theta_x(k|k-1)) \\ \operatorname{sign}(\theta_y(k|k-1)) \end{bmatrix}$$

TRAINING RNNS BY EKF - EXAMPLES

- Dataset: 3499 I/O data of magneto-rheological fluid damper (Wang et al., 2009)
- N=2000 data used for training, 1499 for testing the model
- Same data used in NNARX modeling demo of SYS-ID Toolbox for MATLAB

MSE

- RNN model: 4 hidden states shallow state-update and output functions 6 neurons each, leaky-ReLU activation
- 50 100 epochs 200

 EKF
 AMSGr

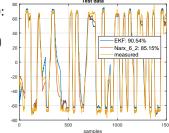
training time (s)

- Compare with gradient descent (AMSGrad)
- Training time measured on MATLAB+CasADi implementation of EKF/AMSGrad

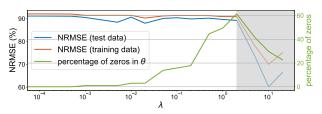
TRAINING RNNS BY EKF - EXAMPLES

Compare NRMSE¹ wrt NNARX model (SYS-ID TBX):

EKF = **91.97**, AMSGrad = **85.58**, NNARX(6,2) = **88.18** (**training**) EKF = **90.54**, AMSGrad = **80.95**, NNARX(6,2) = **85.15** (**test**)



• Repeat training with ℓ_1 -penalty $\lambda \left\| \begin{bmatrix} \theta_x \\ \theta_y \end{bmatrix} \right\|_1$



¹normalized root-mean-square error

TRAINING RNNS BY EKF - EXAMPLES

Dataset: 2000 I/O data of linear system with binary outputs

$$\begin{array}{rcl} x(k+1) & = & \left[\begin{smallmatrix} .8 & .2 & -.1 \\ 0 & .9 & .1 \\ .1 & -.1 & .7 \end{smallmatrix} \right] x(k) + \left[\begin{smallmatrix} -1 \\ .5 \\ 1 \end{smallmatrix} \right] u(k) + \xi(k) & \operatorname{Var}[\xi_i(k)] = \sigma^2 \\ y(k) & = & \left\{ \begin{smallmatrix} \mathbf{1} & \text{if } \left[-2 \ 1.5 \ 0.5 \right] x(k) - 2 + \zeta(k) \geq 0 \\ \mathbf{0} & \text{otherwise} \end{smallmatrix} \right. & \operatorname{Var}[\zeta(k)] = \sigma^2 \end{array}$$

- N=1000 data used for training, 1000 for testing the model
- Train linear state-space model with 3 states and sigmoidal output function

$$f_1^y(y) = 1/(1 + e^{-A_1^y[x'(k)\;u(k)]' - b_1^y})$$

Training loss: (modified) cross-entropy loss

Fraining loss: (modified) cross-entropy loss
$$\ell_{\text{CE}\epsilon}(y(k), \hat{y}) = \sum_{i=1}^{n_y} -y_i(k) \log(\epsilon + \hat{y}_i) - (1 - y_i(k)) \log(1 + \epsilon - \hat{y}_i)$$

TRAINING RNNS BY SEQUENTIAL LEAST-SQUARES

(Bemporad, 2021 - http://arxiv.org/abs/2112.15348)

• RNN training problem = **optimal control** problem:

$$\min_{\theta_{x}, \theta_{y}, x_{0}, x_{1}, \dots, x_{N-1}} r(x_{0}, \theta_{x}, \theta_{y}) + \sum_{k=0}^{N-1} \ell(y_{k}, \hat{y}_{k})$$
s.t.
$$x_{k+1} = f_{x}(x_{k}, u_{k}, \theta_{x})$$

$$\hat{y}_{k} = f_{y}(x_{k}, \theta_{y})$$

- θ_x, θ_y, x_0 = manipulated variables, \hat{y}_k = output, y_k = reference signal
- $r(x_0, \theta_x, \theta_y)$ = input penalty, $\ell(y_k, \hat{y}_k)$ = output penalty
- N = prediction horizon, control horizon = 1
- Linearized model:

$$\Delta x_{k+1} = (\nabla_x f_x)' \Delta x_k + (\nabla_{\theta_x} f_x)' \Delta \theta_x$$

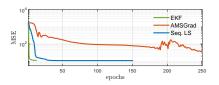
$$\Delta y_k = (\nabla_{x_k} f_y)' \Delta x_k + (\nabla_{\theta_y} f_y)' \Delta \theta_y$$

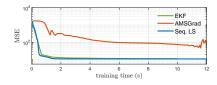
• Idea: take 2^{nd} -order expansions of the loss ℓ and regularization term r and use sequential least-squares + line search to minimize wrt x_0, θ_x, θ_y

TRAINING RNNS BY SEQUENTIAL LS AND ADMM

(Bemporad, 2021 - http://arxiv.org/abs/2112.15348)

• Fluid-damper example:





We want to also handle non-smooth (and non-convex) regularization terms

$$\min_{\theta_x, \theta_y, x_0} r(x_0, \theta_x, \theta_y) + \sum_{k=0}^{N-1} \ell(y_k, f_y(x_k, \theta_y)) + g(\theta_x, \theta_y)$$

s.t. $x_{k+1} = f_x(x_k, u_k, \theta_x)$

Idea: use alternating direction method of multipliers (ADMM) by splitting

$$\min_{\theta_x, \theta_y, x_0, \nu_x, \nu_y} r(x_0, \theta_x, \theta_y) + \sum_{k=0}^{N-1} \ell(y_k, f_y(x_k, \theta_y)) + g(\nu_x, \nu_y)$$
s.t.
$$x_{k+1} = f_x(x_k, u_k, \theta_x)$$

$$\begin{bmatrix} \nu_x \\ \nu_y \end{bmatrix} = \begin{bmatrix} \theta_x \\ \theta_y \end{bmatrix}$$

TRAINING RNNS BY SEQUENTIAL LS AND ADMM

(Bemporad, 2021 - http://arxiv.org/abs/2112.15348)

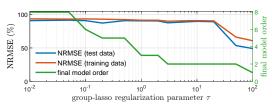
• ADMM + Seq. LS = NAILS algorithm (Nonconvex ADMM Iterations and Sequential LS)

$$\begin{bmatrix} x_0^{t+1} \\ \theta_{x+1}^{t+1} \\ \theta_{y}^{t+1} \end{bmatrix} &= \arg\min_{x_0,\theta_x,\theta_y} V(x_0,\theta_x,\theta_y) + \frac{\rho}{2} \left\| \begin{bmatrix} \theta_x - \nu_x^t + w_x^t \\ \theta_y - \nu_y^t + w_y^t \end{bmatrix} \right\|_2^2 \quad \text{(sequential) LS}$$

$$\begin{bmatrix} \nu_x^{t+1} \\ \nu_y^{t+1} \\ \nu_y^{t+1} \end{bmatrix} &= \max_{\frac{\rho}{\rho}} (\theta_x^{t+1} + w_x^t, \theta_y^{t+1} + w_y^t) \quad \text{proximal step}$$

$$\begin{bmatrix} w_x^{t+1} \\ w_y^{t+1} \end{bmatrix} &= \begin{bmatrix} w_x^h + \theta_x^{t+1} - \nu_x^{t+1} \\ w_y^{t+1} - \nu_y^{t+1} \end{bmatrix} \quad \text{update dual vars}$$

• Fluid-damper example: group-Lasso regularization $g(\nu_i^g) = \tau \sum_{i=1}^{n_x} \|\nu_i^g\|_2$ to zero entire rows and columns and reduce state-dimension automatically



TRAINING RNNS BY SEQUENTIAL LS AND ADMM

(Bemporad, 2021 - http://arxiv.org/abs/2112.15348)

Fluid-damper example: quantization of θ_x , θ_y for simplifying model arithmetic +ReLU activation function

$$g(\theta_i) = \left\{ \begin{array}{cc} 0 & \text{if } \theta_i \in \mathcal{Q} \\ +\infty & \text{otherwise} \end{array} \right. \quad \mathcal{Q} \text{ = multiples of 0.1 between -0.5 and 0.5}$$

- NRMSE = 83.10 (training), 80.51 (test)
- NRMSE = 8.83 (training), 2.69 (test) ← no ADMM, just quantize after training
- Training time: $\approx 5 \, \text{s}$

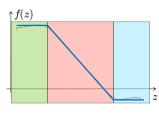
- Note: no convergence to a global minimum is guaranteed
- NAILS = very flexible & efficient learning algorithm for control-oriented RNNs

LEARNING HYBRID MODELS

 Switching dynamics are better captured by piecewise affine (PWA) models and handled by hybrid MPC techniques

$$v(k) = \begin{cases} F_1 z(k) + g_1 & \text{if } H_1 z(k) \leq K_1 \\ \vdots \\ F_s z(k) + g_s & \text{if } H_s z(k) \leq K_s \end{cases}$$

$$v(k) = \begin{bmatrix} x(k+1) \\ y(k) \end{bmatrix}, \quad z(k) = \begin{bmatrix} x(k) \\ u(k) \end{bmatrix}$$



- PWA regression: learn both the $\{F_i, g_i\}$ and the partition $\{H_i, K_i\}$ (Ferrari-Trecate, Muselli, Liberati, Morari, 2003) (Roll, Bemporad, Ljung, 2004) (Juloski, Wieland, Heemels, 2004) (Bemporad, Garulli, Paoletti, Vicino, 2005) (Pillonetto, 2016) (Breschi, Piga, Bemporad, 2016) (...)
- Any ML technique can be applied that leads to PWA models, such as (leaky)ReLU-NNs, decision trees, softmax regression, KNN, ...

PARC - PIECEWISE AFFINE REGRESSION AND CLASSIFICATION

(Bemporad, 2021, arXiv)

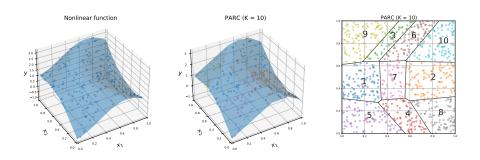
- New Piecewise Affine Regression and Classification (PARC) algorithm
- Training dataset:
 - feature vector $z \in \mathbb{R}^n$ (categorical features one-hot encoded in $\{0,1\}$)
 - target vector $v_c \in \mathbb{R}^{m_c}$ (numeric), $v_{di} \in \{w^1_{di}, \dots, w^{m_i}_{di}\}$ (categorical)
- PARC iteratively clusters training data in K sets and fit linear predictors
 - 1. fit $v_c = a_j z + b_j$ by ridge regression (= ℓ_2 -regularized least squares)
 - 2. fit $v_{di} = w_{di}^{h_*}$, $h_* = \arg\max\{a_{dih}^h z + b_{di}^h\}$ by softmax regression
 - 3. fit a convex PWL separation function by softmax regression

$$\Phi(z) = \omega^{j(z)} z + \gamma^{j(z)}, \qquad j(z) = \min \left\{ \arg \max_{j=1,\dots,K} \{ \omega^j z + \gamma^j \} \right\}$$

- Data reassigned to clusters based on weighted fit/PWL separation criterion
- PARC is a block-coordinate descent algorithm ⇒ (local) convergence ensured

PARC - PIECEWISE AFFINE REGRESSION AND CLASSIFICATION

- Simple PWA regression example:
 - 1000 samples of $y = \sin(4x_1 5(x_2 0.5)^2) + 2x_2$ (use 80% for training)
 - Look for PWA approximation over K=10 polyhedral regions



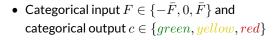
Code download:

http://cse.lab.imtlucca.it/~bemporad/parc/

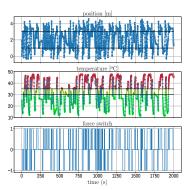
DATA-DRIVEN HYBRID-MPC EXAMPLE

 Example: moving cart and bumpers + heat transfer during bumps.

Spring and viscous forces are nonlinear.

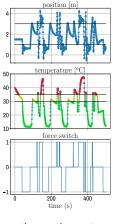


- Continuous-time system simulated for 2,000 s, sample time = 0.5 s (=4000 training samples)
- Feature vector $z_k = [y_k, \dot{y}_k, T_k, F_k]$
- Target vector $v_k = [y_{k+1}, \dot{y}_{k+1}, T_{k+1}, c_k]$
- Hybrid model learned by PARC (K=5 regions)

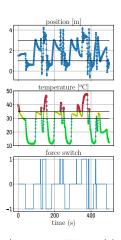


DATA-DRIVEN HYBRID-MPC EXAMPLE

Open-loop simulation on 500 s test data:



continuous-time system



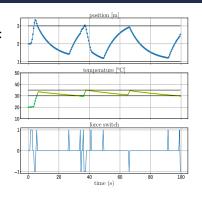
discrete-time PWA model

Model fit is good enough for MPC design purposes

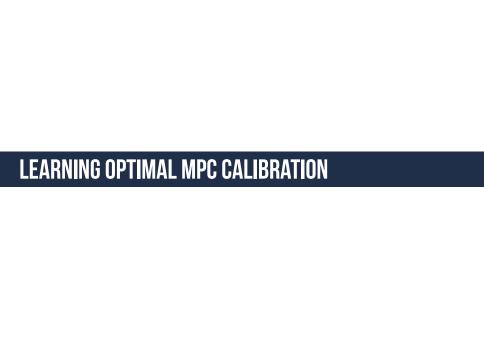
DATA-DRIVEN HYBRID-MPC EXAMPLE

• MPC problem with prediction horizon ${\cal N}=9$:

$$\begin{aligned} \min_{F_0,\dots,F_{N-1}} & & \sum_{k=0}^{N-1} |c_k - \mathbf{1}| + 0.25 |F_k| \\ \text{s.t.} & & F_k \in \{-\bar{F},0,\bar{F}\} \\ & & \text{PWA model equations} \end{aligned}$$



- Problem can be cast to MILP.
 Solution time: 0.15-0.29 s (CPLEX)
- Data-driven hybrid MPC controller can keep temperature in yellow zone
- Approximate explicit MPC: fit a decision tree on 10,000 samples (accuracy: 99.9%). CPU time = $52 \div 67 \,\mu$ s. Closed-loop trajectories very similar.

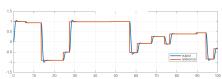


MPC CALIBRATION PROBLEM

- The design depends on a vector x of MPC parameters
- MPC parameters are intuitive to set (e.g., weights)
- Still, can we auto-calibrate them?

Define a performance index f over a closed-loop simulation or real experiment.
 For example:

$$f(x) = \sum_{t=0}^{T} \|y(t) - r(t)\|^2$$
 (tracking quality)



 Auto-tuning = find the best combination of parameters by solving the global optimization problem

$$\min_{x} f(x)$$

AUTO-TUNING - GLOBAL OPTIMIZATION ALGORITHMS

- Several derivative-free global optimization algorithms exist: (Rios, Sahidinis, 2013)
 - Lipschitzian-based partitioning techniques:
 - DIRECT (DIvide in RECTangles) (Jones, 2001)
 - Multilevel Coordinate Search (MCS) (Huyer, Neumaier, 1999)
 - Response surface methods
 - Kriging (Matheron, 1967), DACE (Sacks et al., 1989)
 - Efficient global optimization (EGO) (Jones, Schonlau, Welch, 1998)
 - Bayesian optimization (Brochu, Cora, De Freitas, 2010)
 - Genetic algorithms (GA) (Holland, 1975)
 - Particle swarm optimization (PSO) (Kennedy, 2010)
 - ..
- New method: radial basis function surrogates + inverse distance weighting

(GLIS) (Bemporad, 2020)

cse.lab.imtlucca.it/~bemporad/glis

AUTO-TUNING: PROS AND CONS

- Pros:
 - \bullet Selection of calibration parameters x to test is fully automatic
 - Applicable to any calibration parameter (weights, horizons, solver tolerances, ...)
 - A Rather arbitrary performance index f(x) (tracking performance, response time, worst-case number of flops, ...)
- Cons:
 - \P Need to quantify an objective function f(x)
 - No room for qualitative assessments of closed-loop performance
 - Often have multiple objectives, not clear how to blend them in a single one

ACTIVE PREFERENCE LEARNING

(Bemporad, Piga, Machine Learning, 2021)

- Objective function f(x) is not available (latent function)
- We can only express a **preference** between two choices:

$$\pi(x_1, x_2) = \begin{cases} -1 & \text{if } x_1 \text{ "better" than } x_2 \\ 0 & \text{if } x_1 \text{ "as good as" } x_2 \\ 1 & \text{if } x_2 \text{ "better" than } x_1 \end{cases} \qquad \begin{bmatrix} f(x_1) < f(x_2) \\ [f(x_1) = f(x_2) \\ [f(x_1) > f(x_2)] \end{bmatrix}$$

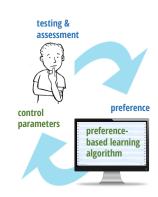
• We want to find a global optimum x^* (="better" than any other x)

find
$$x^*$$
 such that $\pi(x^*, x) \leq 0, \ \forall x \in \mathcal{X}, \ \ell \leq x \leq u$

- Active preference learning: iteratively propose a new sample to compare
- Key idea: learn a surrogate of the (latent) objective function from preferences

SEMI-AUTOMATIC TUNING BY PREFERENCE-BASED LEARNING

- Use preference-based optimization (GLISp) algorithm for semi-automatic tuning of MPC (Zhu, Bemporad, Piga, 2021)
- Latent function = calibrator's (unconscious) score of closed-loop MPC performance
- GLISp proposes a new combination x_{N+1} of MPC parameters to test
- By observing test results, the calibrator expresses a preference, telling if x_{N+1} is "better", "similar", or "worse" than current best combination
- Preference learning algorithm: update the surrogate $\hat{f}(x)$ of the latent function, optimize the acquisition function, ask preference, and iterate

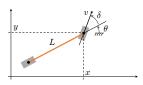


PREFERENCE-BASED TUNING: MPC EXAMPLE

(Zhu, Bemporad, Piga, 2021)

• Example: calibration of a simple MPC for lane-keeping (2 inputs, 3 outputs)

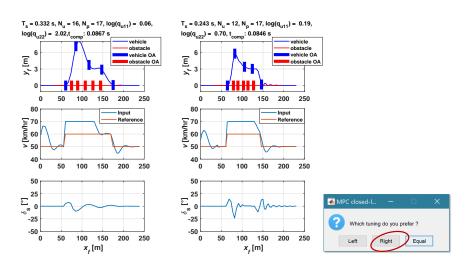
$$\left\{ \begin{array}{lcl} \dot{x} & = & v\cos(\theta+\delta) \\ \dot{y} & = & v\sin(\theta+\delta) \\ \dot{\theta} & = & \frac{1}{L}v\sin(\delta) \end{array} \right.$$



- Multiple control objectives:
 - "optimal obstacle avoidance", "pleasant drive", "keep CPU time small", ...
 - not easy to quantify in a single function
- 5 MPC parameters to tune:
 - sampling time
 - prediction and control horizons
 - weights on input increments Δv , $\Delta \delta$

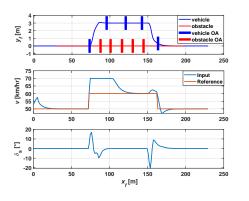
PREFERENCE-BASED TUNING: MPC EXAMPLE

• Preference query window:



PREFERENCE-BASED TUNING: MPC EXAMPLE

• Convergence after 50 GLISp iterations (=49 queries):



Optimal MPC parameters:

- sample time = 85 ms (CPU time = 80.8 ms)
 - prediction horizon = 16
- control horizon = 5
- weight on Δv = 1.82
- weight on $\Delta \delta$ = 8.28

- Note: no need to define a closed-loop performance index explicitly!
- Extended to handle also unknown constraints (Zhu, Piga, Bemporad, 2021)

CONCLUSIONS

- Learning-based MPC is a formidable combination for advanced control:
 - MPC / on-line optimization is an extremely powerful control methodology
 - ML extremely useful to get control-oriented models and control laws from data
- Ignoring ML tools would be a mistake (a lot to "learn" from machine learning)
- ML cannot replace control engineering:
 - Black-box modeling can be a failure. Better use gray-box models when possible
 - Approximating the control law can be a failure. Don't abandon on-line optimization
 - Pure AI-based reinforcement learning methods can be also a failure

 A wide spectrum of research opportunities and new practices is open!

