
1st ELO-X Seasonal School -March 22, 2022

Model Predictive Control
from Basics to Learning-based Design

Alberto Bemporad

imt.lu/ab

 / 8
Model predictive control toolset 1

imt.lu/ab

Contents of my lecture

• Model predictive control (MPC): basic concepts

• LinearMPC and extensions to nonlinearMPC

• Embedded quadratic optimization

• Learning-based nonlinearMPC (feedforward and recurrent neural networks)

• Learning-based hybridMPC (piecewise affinemodels)

• Active preference learning forMPC calibration

©2022 A. Bemporad - MPC: from basics to learning-based design 1/66

(extended slide set: http://cse.lab.imtlucca.it/~bemporad/mpc_course.html)

Model Predictive Control: Basic Concepts

http://cse.lab.imtlucca.it/~bemporad/mpc_course.html

Model Predictive Control (MPC)

prediction model

model-based optimizer

set-points outputsinputs

measurements

r(t) u(t) y(t)

optimization

algorithm

process

Use a dynamical model of the process to predict its future

evolution and choose the “best” control action

simplified likely

a good

©2022 A. Bemporad - MPC: from basics to learning-based design 2/66

t+1 t+1+k t+N+1

future

predicted outputs

manipulated inputs

t t+k t+N

uk

r(t)

yk

past

Model Predictive Control
• MPCproblem: find the best control sequence over a future horizon ofN steps

min
u0, . . . , uN−1

N−1∑
k=0

∥yk − r(t)∥2
2 + ρ∥uk − ur(t)∥2

2

s.t. xk+1 = f(xk, uk) prediction model
yk = g(xk)

umin ≤ uk ≤ umax constraints
ymin ≤ yk ≤ ymax

x0 = x(t) state feedback

numerical optimization problem

1 estimate current state x(t)

2 optimizewrt {u0, . . . , uN−1}

3 only apply optimal u0 as input u(t)

Repeat at all time steps t

©2022 A. Bemporad - MPC: from basics to learning-based design 3/66

Daily-life examples of MPC

• MPC is like playing chess !

• You useMPC toowhen you drive !

©2022 A. Bemporad - MPC: from basics to learning-based design 4/66

(energytransition.org) (pixabay.com, aecdiagnostics.com)

MPC in industry

• Conceived in the 60’s (Rafal, Stevens, 1968) (Propoi, 1963)

• Used in the process industries since the 80’s (Qin, Badgewell, 2003)

• Nowadays spreading to the automotive industry and other sectors

• MPC byGeneralMotors andODYS in high-volume production since 2018

(Bemporad, Bernardini, Long, Verdejo, 2018)

First known mass production of MPC
in the automotive industry

 / 8
Model predictive control toolset 1

www.odys.it

©2022 A. Bemporad - MPC: from basics to learning-based design 5/66

www.odys.it

T. Samad, M. Bauer and S. Bortoff et al. / Annual Reviews in Control 49 (2020) 1–14 5

(a)

(b)

0%

10%

20%

30%

40%

50%

60%

70%

1961-1970 1971-1980 1981-1990 1991-2000 2001-2010 2011-2020

0

2

4

6

8

10

12

14

16

18

1961-1970 1971-1980 1981-1990 1991-2000 2001-2010 2011-2020

Fig. 3. Leaders of the IEEE Control Systems Society whose affiliation is with industry: (a) percentage by decade, (b) absolute numbers by decade. See text for explanation.

4.1. Advanced control technologies vary significantly in their impact

and perceptions thereof

Table 2 shows the results of a survey conducted by the Industry

Committee in March, 2018. The results of an earlier, similar survey,

with similar results, are reported in (Samad, 2017). Respondents—

members of the Industry Committee—were asked whether each

technology in the list had demonstrated “high impact in multiple

sectors,” “high impact in a single sector,” “medium impact,” “low

impact,” or “no impact.” Assessments of both “the present level of

impact” and “the potential for future impact … over the next 10

years” were prompted for. Of the 77 members of the committee

then, 66 responded.

The intent of the survey was to determine Industry Committee

members’ opinions regarding the real-world impact of advanced

control technologies, such as model predictive control (MPC), ro-

bust control, adaptive control, etc. The survey also included cross-

cutting ancillary topics such as system identification, data analyt-

ics, and estimation. PID control was also included—not as an ad-

vanced control technology but for calibration purposes. The survey

as distributed included a glossary for the terms used (for exam-

ple, the glossary noted that nonlinear control included feedback

linearization, dynamic inversion, sliding-mode control, etc.).

Table 2

The percentage of survey respondents indicating whether a control technology had

demonstrated (“Current Impact”) or was likely to demonstrate over the next five

years (“Future Impact”) high impact in practice.

Current Impact Future Impact

Control Technology %High %High

PID control 91% 78%

System Identification 65% 72%

Estimation and filtering 64% 63%

Model-predictive control 62% 85%

Process data analytics 51% 70%

Fault detection and identification 48% 78%

Decentralized and/or coordinated control 29% 54%

Robust control 26% 42%

Intelligent control 24% 59%

Discrete-event systems 24% 39%

Nonlinear control 21% 42%

Adaptive control 18% 44%

Repetitive control 12% 17%

Hybrid dynamical systems 11% 33%

Other advanced control technology 11% 25%

Game theory 5% 17%

As can be observed, MPC is clearly considered more impactful,

and likely to be more impactful, vis-à-vis other control technolo-

gies, especially those that can be considered the “crown jewels” of "As can be observed, MPC is clearly considered more impactful, and likely to be more impactful,
vis-à-vis other control technologies, especially those that can be considered the "crown jewels"
of control theory - robust control, adaptive control, and nonlinear control."

MPC in industry
(Samad et al., 2020)

©2022 A. Bemporad - MPC: from basics to learning-based design 6/66

Word trends

model predictive control machine learning

nonlinear control system identification PID control

(source: https://books.google.com/ngrams)

©2022 A. Bemporad - MPC: from basics to learning-based design 7/66

Model Predictive Control - The Basics

Linear MPC

• Linear predictionmodel:

{
xk+1 = Axk +Buk

yk = Cxk

x ∈ Rn

u ∈ Rm

y ∈ Rp

• Constrained optimal control problem (quadratic performance index):

min
z

x′
NPxN +

N−1∑
k=0

x′
kQxk + u′

kRuk

s.t. umin ≤ uk ≤ umax, k = 0, . . . , N − 1

ymin ≤ yk ≤ ymax, k = 1, . . . , N

R = R′≻0

Q = Q′⪰0

P = P ′⪰0

z =

 u0
u1

...
uN−1



©2022 A. Bemporad - MPC: from basics to learning-based design 8/66

Linear MPC

• Optimization problem (condensed form): xk = Akx0 +

k−1∑
i=0

AiBuk−1−i

V (x0) =
1
2x

′
0Y x0+ min

z

1
2z

′Hz + x′
0F

′z (quadratic objective)

H = H ′ ≻ 0

s.t. Gz ≤ W + Sx0 (linear constraints)

convexQuadratic Program (QP)

• z =

 u0
u1

...
uN−1

 ∈ RNm is the optimization vector z*

• QPmatrices depend on chosenweights, model, and constraints

• Alternative: keep also x1, . . . , xN as optimization variables and the equality

constraints xk+1 = Axk +Buk (non-condensed form, which is sparse)

©2022 A. Bemporad - MPC: from basics to learning-based design 9/66

future

predicted outputs

manipulated inputs

t t+k t+N

uk

r(t)

yk

past

Linear MPC algorithm

@each sampling step t:

• Estimate the current state x(t)

• Get the solution z∗ =


u∗
0

u∗
1

...
u∗
N−1

 of theQP


min
z

1
2z

′Hz +

feedback︷ ︸︸ ︷
x′(t)F ′z

s.t. Gz ≤ W + S x(t)︸︷︷︸
feedback

• Apply only u(t) = u∗
0 , discarding the remaining optimal inputs u

∗
1, . . . , u

∗
N−1

• UnconstrainedMPC:

gradient︷ ︸︸ ︷
Hz + Fx(t) = 0 u(t) = −[I 0 . . . 0]H−1Fx(t)

linear state feedback!

©2022 A. Bemporad - MPC: from basics to learning-based design 10/66

Basic convergence properties
(Keerthi, Gilbert, 1988) (Bemporad, Chisci, Mosca, 1994)

• Theorem: Let theMPC law be based on

V ∗(x(t)) = min

N−1∑
k=0

x′
kQxk + u′

kRuk

s.t. xk+1 = Axk +Buk

umin ≤ uk ≤ umax

ymin ≤ Cxk ≤ ymax

xN = 0 ← “terminal constraint”

withR,Q ≻ 0, umin < 0 < umax, ymin < 0 < ymax.

If the optimization problem is feasible at time t = 0 then

lim
t→∞

x(t) = 0, lim
t→∞

u(t) = 0

and the constraints are satisfied at all time t ≥ 0, for allR,Q ≻ 0.

• Manymore convergence and stability results exist (Mayne, 2014)

©2022 A. Bemporad - MPC: from basics to learning-based design 11/66

Linear MPC - Tracking

• Objective: make the output y(t) track a reference signal r(t)

• Let us parameterize the problem using the input increments

∆u(t) = u(t)− u(t− 1)

• As u(t) = u(t− 1) + ∆u(t)we need to extend the systemwith a new state

xu(t) = u(t− 1){
x(t+ 1) = Ax(t) +Bu(t− 1) +B∆u(t)

xu(t+ 1) = xu(t) + ∆u(t)


[

x(t+1)
xu(t+1)

]
= [A B

0 I]
[

x(t)
xu(t)

]
+ [BI]∆u(t)

y(t) = [C 0]
[

x(t)
xu(t)

]
• Again a linear systemwith states x(t), xu(t) and input∆u(t)

©2022 A. Bemporad - MPC: from basics to learning-based design 12/66

Linear MPC - Tracking

• Optimal control problem (quadratic performance index):

min
z

N−1∑
k=0

∥W y(yk+1 − r(t))∥22 + ∥W∆u∆uk∥22

[∆uk ≜ uk − uk−1], u−1 = u(t− 1)

s.t. umin ≤ uk ≤ umax, k = 0, . . . , N − 1

ymin ≤ yk ≤ ymax, k = 1, . . . , N

∆umin ≤ ∆uk ≤ ∆umax, k = 0, . . . , N − 1

z =


∆u0

∆u1

...

∆uN−1

 or z =


u0

u1

...

uN−1



weightW (·) = diagonal matrix

min
z

J(z, x(t)) = 1
2
z′Hz + [x′(t) r′(t)u′(t− 1)]F ′z

s.t. Gz ≤ W + S

 x(t)

r(t)

u(t− 1)


convex

Quadratic

Program

• Add the extra penalty ∥Wu(uk − uref(t))∥22 to track input references
• Constraints may depend on r(t), such as emin ≤ yk − r(t) ≤ emax

©2022 A. Bemporad - MPC: from basics to learning-based design 13/66

Anticipative action (a.k.a. "preview")

min
∆U

N−1∑
k=0

∥W y(yk+1 − r(t+ k))∥22 + ∥W∆u∆u(k)∥22

• Reference not known in advance
(causal):

rk ≡ r(t), ∀k = 0, . . . , N − 1

use r(t)

output / reference

input

• Future refs (partially) known in
advance (anticipative action):

rk = r(t+ k), ∀k = 0, . . . , N − 1

use r(t+k)

output / reference

input

• Same for previewingmeasured disturbancesxk+1 = Axk +Buk +Bvv(t+ k)

©2022 A. Bemporad - MPC: from basics to learning-based design 14/66

Output integrators and offset-free tracking
• Add constant unknown disturbances onmeasured outputs:

xk+1 = Axk +Buk

dk+1 = dk
yk = Cxk + dk

• Use the extendedmodel to design a state observer (e.g., Kalman filter) that

estimates both the state x̂(t) and disturbance d̂(t) from y(t)

• Whywe get offset-free tracking in steady-state (intuitively):

– the observer makesCx̂(t) + d̂(t)→ y(t) (estimation error)

– theMPC controller makesCx̂(t) + d̂(t)→ r(t) (predicted tracking error)

– the combination of the twomakes y(t)→ r(t) (actual tracking error)

• In steady state, the term d̂(t) compensates for model mismatch

• Seemore on survey paper (Pannocchia, Gabiccini, Artoni, 2015)

©2022 A. Bemporad - MPC: from basics to learning-based design 15/66

Embedded Quadratic Optimization for MPC

Embedded Linear MPC and Quadratic Programming

• MPC based on linear models requires solving aQuadratic Program (QP)

min
z

1

2
z′Qz + x′(t)F ′z +

1

2
x′(t)Y x(t)

s.t. Gz ≤ W + Sx(t)
z =


u0

u1

...

uN−1


z*

(Beale, 1955)

A rich set of goodQP algorithms is available today

• Not all QP algorithms are suitable for industrial embedded control

©2022 A. Bemporad - MPC: from basics to learning-based design 16/66

MPC in a production environment
Key requirements for deployingMPC in production:

mi
n

1
2
x

0
Q

x

+ c

0
x

s.t
.

A

x

 b

1. speed (throughput)

– worst-case execution time less than sampling interval

– also fast on average (to free the processor to execute other tasks)

2. limitedmemory and CPU power (e.g., 150MHz / 50 kB)

3. numerical robustness (single precision arithmetic)

4. certification of worst-case execution time

5. code simple enough to be validated/verified/certified

(library-free C code, easy to check by production engineers) for (i=0;i<nx;i++) {
v[i]=x[i];
}

h=v[0];

©2022 A. Bemporad - MPC: from basics to learning-based design 17/66

Embedded solvers in industrial production

• MultivariableMPC controller

• Sampling frequency = 40Hz (= 1QP solved every 25ms)

• Vehicle operating≈1 hr/day for≈360 days/year on average

• Controller running on 10million vehicles

~520,000,000,000,000 QP/yr
and none of them should fail.

©2022 A. Bemporad - MPC: from basics to learning-based design 18/66

Dual gradient projection for QP
(Goldstein, 1964) (Levitin, Poljak, 1965) (Combettes,Waijs, 2005)

• Consider the strictly convexQP and its dual

min 1
2z

′Qz + x′F ′z

s.t. Gz ≤ W + Sx

min 1
2y

′Hy + (Dx+W)′y

s.t. y ≥ 0

withH = GQ−1G′,D = S +GQ−1F . TakeL ≥ λmax(H)

• Apply proximal gradientmethod to dual QP:

yk+1 = max{yk− 1

L
(Hyk+Dx+W), 0} y0 = 0

• The primal solution is related to the dual solution by

zk = −Q−1(Fx+G′yk)

• Convergence is slow: the initial error f(z0)− f(z∗) reduces as 1/k

©2022 A. Bemporad - MPC: from basics to learning-based design 19/66

Fast gradient projection for (dual) QP
(Nesterov, 1983) (Beck, Teboulle, 2008) (Patrinos, Bemporad, 2014)

• The fast gradientmethod is applied to solve the dual QP problem

min
z

1

2
z′Qz + x′F ′z

s.t. Gz ≤ W + Sx

K = Q−1G′

J = Q−1F

L ≥ λmax(GQ−1G′)

βk = max{ k−1
k+2

, 0}

wk = yk + βk(y
k − yk−1)

zk = −Kwk − Jx

sk = 1
LGzk − 1

L (W + Sx)

yk+1 = max
{
wk + sk, 0

}

while k<maxiter
beta=max((k-1)/(k+2),0);
w=y+beta*(y-y0);
z=-(iMG*w+iMc);
s=GL*z-bL;

y0=y;

% Termination
if all(s<=epsGL)
gapL=-w'*s;
if gapL<=epsVL

return
end

end

y=w+s;
k=k+1;

end

• Very simple to code

©2022 A. Bemporad - MPC: from basics to learning-based design 20/66

theoretical

experimental

Fast gradient projection for (dual) QP
• Termination criteria: when the following two conditions aremet

ski ≤ 1
LϵG, i = 1, . . . ,m primal feasibility

−(wk)′sk ≤ 1
Lϵf optimality

the solution zk = −Kwk − Jx satisfiesGiz
k −Wi − Six ≤ ϵG and, ifwk ≥ 0,

f(zk)− f(z∗) ≤ f(zk)− q(wk)︸ ︷︷ ︸
dual fcn

= −(wk)′skL ≤ ϵf

• Convergence rate: f(xk)− f(x∗) ≤ 2L

(k + 2)2
∥z0 − z∗∥22

• Tight bounds onmaximum number of iterations

• Can be useful to warm-start active-set methods (Bemporad, Paggi, 2015)

• Extended tomixed-integer quadratic programming (MIQP) (Naik, Bemporad, 2017)

©2022 A. Bemporad - MPC: from basics to learning-based design 21/66

ADMM
(Gabay,Mercier, 1976) (Glowinski, Marrocco, 1975) (Douglas, Rachford, 1956) (Boyd et al., 2010)

• Alternating DirectionsMethod ofMultipliers for QP
min 1

2
z′Qz + c′z

s.t. ℓ ≤ Az ≤ u

zk+1 = −(Q+ ρA′A)−1(ρA′(vk − sk) + c)

sk+1 = min{max{Azk+1 + vk, ℓ}, u}
vk+1 = vk +Azk+1 − sk+1

ρv = dual vector

while k<maxiter
k=k+1;
z=-iM*(c+A'*(rho*(v-s)));
Az=A*z;
s=max(min(Az+v,u),ell);
v=v+Az-s;

end

(7 lines EML code)

(≈40 lines of C code)

• Matrix (Q+ ρA′A)must be nonsingular

• The factorization of matrix (Q+ ρA′A) can be done at start and cached

• Very simple to code. Sensitive tomatrix scaling (as gradient projection)

• Used inmany applications (control, signal processing, machine learning)

©2022 A. Bemporad - MPC: from basics to learning-based design 22/66

Regularized ADMM for quadratic programming
(Stellato, Banjac, Goulart, Bemporad, Boyd, 2020)

• Robust “regularized” ADMM iterations:

zk+1 = −(Q+ ρATA+ ϵI)−1(c− ϵzk + ρAT (vk − zk))

sk+1 = min{max{Azk+1 + vk, ℓ}, u}
vk+1 = vk +Azk+1 − sk+1

• Works for anyQ ⪰ 0,A, and choice of ϵ > 0

• Simple to code, fast, and robust

• Only needs to factorize

[
Q+ ϵI A′

A − 1
ρ
I

]
once

• Implemented in free osQP solver http://osqp.org
(Python interface:≈ 1,700,000 downloads)

• Extended to solvemixed-integer quadratic programming problems

(Stellato, Naik, Bemporad, Goulart, Boyd, 2018)

©2022 A. Bemporad - MPC: from basics to learning-based design 23/66

http://osqp.org

ODYS QP solver
• General purposeQP solver designed for industrial production

min
z

1

2
z′Qz + c′z

s.t. bℓ ≤ Az ≤ bu

ℓ ≤ z ≤ u

Ez = f

• Implements a proprietary state-of-the-art method for QP

• Completely written inANSI-C andMISRA-C 2012 compliant

• Fast, robust (also in single precision), low-memory requirements

• optimized version forMPC available (≈ 50% faster)

• Licensed to several automotiveOEMs and Tier-1 suppliers

• Certifiable execution time
odys.it/qp

©2022 A. Bemporad - MPC: from basics to learning-based design 24/66

https://odys.it/qp

Primal-dual interior-point method for QP
(Nocedal,Wright, 2006) (Gondzio, Terlaki, 1994)

• The Karush-Kuhn-Tucker(KKT) optimality conditions for the convexQP

minx
1
2x

′Qx+ c′x

s.t. Ax ≤ b Q = Q′ ⪰ 0

Ex = f

are

rQ = Qx+ c+ E′y +A′z = 0 x = primal vars
rE = Ex− f = 0 y = dual vars (eq. constr.)
rA = Ax+ s− b = 0 s = slacks (ineq. constr.)
rS = [z1s1 . . . zmsm]′ = 0 z = dual vars (ineq. constr.)
z, s ≥ 0

• In a nutshell, interior-pointmethods use Newton’s methodwith line search to

solve the above nonlinear system of equations

• The complementary slackness constraint is replaced by zisi = µ and µ → 0

©2022 A. Bemporad - MPC: from basics to learning-based design 25/66

Primal-dual interior-point method for QP
(Nocedal,Wright, 2006) (Gondzio, Terlaki, 1994)

• Each interior-point iteration requires solving a linear system of the form
Q E′ A′ 0

E 0 0 0

A 0 0 I

0 0 S Z



∆x

∆y

∆z

∆s

 =


−rQ
−rE
−rA
−rS

 Z = diag z

S = diag s

• InMPC the structure xk+1 = Axk +Buk can be heavily exploited to

factorize/solve the linear systems efficiently (Rao,Wright, Rawlings, 1998) (Wright, 2018)

• IP provides good solutions within 10-15 IP iterations (usually ...).

• Linear systems tends to become ill-conditioned at convergence

• IP usually faster for sparse and largeQPs (say >500 vars & constraints)

©2022 A. Bemporad - MPC: from basics to learning-based design 26/66

YES !

MPC without on-line QP

prediction model

model-based optimizer

set-points outputsinputs

measurements

r(t) u(t) y(t)

optimization

algorithm

process

(aecdiagnostics.com)

• Canwe implement constrained linearMPC

without an on-lineQP solver ?

©2022 A. Bemporad - MPC: from basics to learning-based design 27/66

Explicit model predictive control
• Continuous& piecewise affine solution of strictly convexmultiparametric QP

z∗(x) = argminz
1
2z

′Qz + x′F ′z

s.t. Gz ≤ W + Sx

(Bemporad,Morari, Dua, Pistikopoulos, 2002)

• Corollary: linearMPC is continuous & piecewise affine !

z
∗
=


u0

u1

.

.

.

u∗
N−1

 u∗
0(x) =


F1x+ g1 if H1x ≤ K1

...
...

FMx+ gM if HMx ≤ KM

• NewmpQP solver based onNNLS available (Bemporad, 2015)

and included inMPCToolbox since R2014b (Bemporad,Morari, Ricker, 1998-today)

Is explicit MPC better than on-line QP (=implicit MPC) ?

©2022 A. Bemporad - MPC: from basics to learning-based design 28/66

Complexity certification for active-set QP solvers
• Result: The number of iterations to solve theQP via a dual active-set method is

a piecewise constant function of the parameter x

(Cimini, Bemporad, 2017)

We can exactly quantify how

many iterations (flops) the QP

solver takes in the worst-case !

• Examples (fromMPC Toolbox):

inverted pendulum DC motor nonlinear demo AFTI F16
Explicit MPC
max flops 3382 1689 9184 16434
max memory (kB) 55 30 297 430
Implicit MPC
max flops 3809 2082 7747 7807
sqrt 27 9 37 33
max memory (kB) 15 13 20 16

• QP certification algorithm currently used in industrial production projects

©2022 A. Bemporad - MPC: from basics to learning-based design 29/66

From linear to nonlinear MPC

Linear time-varying models

• Linear Time-Varying (LTV)model{
xk+1 = Ak(t)xk +Bk(t)uk

yk = Ck(t)xk

• At each time t themodel can also change over the prediction horizon k

• Possible measured disturbances are embedded in themodel

• On-line optimization is still a QP

min
z

1

2
z′H(t)z +

[
x(t)
r(t)

u(t−1)

]′
F (t)′z

s.t. G(t)z ≤ W (t) + S(t)

[
x(t)
r(t)

u(t−1)

]

• TheQPmatrices cannot be constructed offline

©2022 A. Bemporad - MPC: from basics to learning-based design 30/66

Linearizing a nonlinear model

• LTVmodels can be obtained by linearizing a nonlinearmodel{
dxc(t)

dt = f(xc(t), uc(t))

yc(t) = g(xc(t))

• At time t, consider the nominal trajectory

U = {ūc(t), ūc(t+ Ts), . . . , ūc(t+ (N − 1)Ts)}

For exampleU = shifted previous sequence optimized byMPC@t− 1

• Integrate themodel from x̄c(t) and get nominal state/output trajectories

X = {x̄c(t), x̄c(t+ Ts), . . . , x̄c(t+ (N − 1)Ts)}
Y = {ȳc(t), ȳc(t+ Ts), . . . , ȳc(t+ (N − 1)Ts)}

For example x̄c(t) = current state

©2022 A. Bemporad - MPC: from basics to learning-based design 31/66

Linearizing a nonlinear model

• Linearize the nonlinear model around the nominal states and inputs:

dxc

dt
= f(xc, uc) ≈ f(x̄c, ūc)︸ ︷︷ ︸

dx̄c
dt

+
∂f

∂xc

∣∣∣∣
x̄c,ūc︸ ︷︷ ︸

Jacobian matrix Ac

(xc − x̄c) +
∂f

∂uc

∣∣∣∣
x̄c,ūc︸ ︷︷ ︸

Jacobian matrix Bc

(uc − ūc)

y = g(xc) ≈ g(x̄c)︸ ︷︷ ︸
ȳc

+
∂g

∂xc

∣∣∣∣
x̄c︸ ︷︷ ︸

Jacobian matrix C

(xc − x̄c)

• Define x ≜ xc − x̄c, u ≜ uc − ūc, y ≜ yc − ȳc and get the linear system

dx

dt
= Acx+Bcu y = Cx

• Convert linear model to discrete-time and get matrices (Ak, Bk, Ck)

• Alternative: compute (Ak, Bk, Ck) (a.k.a. sensitivities) during integration

©2022 A. Bemporad - MPC: from basics to learning-based design 32/66

From LTV-MPC to Nonlinear MPC

• How to use the LTV-MPCmachinery to handle nonlinearMPC ?

• Key idea: Solve a sequence of LTV-MPC problems at each time t

For h = 0 to hmax − 1 do:

1. Simulate from x(t)with inputsUh and get state trajectoryXh

2. Linearize around (Xh, Uh) and discretize in time

3. GetU∗
h+1 =QP solution of corresponding LTV-MPC problem

4. Line search: find optimal step sizeαh ∈ (0, 1];

5. SetUh+1 = (1− αh)Uh + αhU
∗
h+1;

Return solutionUhmax

• Special case: just solve one iteration withα = 1 (a.k.a. Real-Time Iteration)

(Diehl, Bock, Schloder, Findeisen, Nagy, Allgower, 2002) = LTV-MPC

©2022 A. Bemporad - MPC: from basics to learning-based design 33/66

Nonlinear MPC
(Gros, Zanon, Quirynen, Bemporad, Diehl, 2020)

• Example

8

2 4 6 8 10 12 14 16 18 20
-5

0

5

10

x1

2 4 6 8 10 12 14 16 18 20
-2

0

2

4

x2

2 4 6 8 10 12 14 16 18 20

-0.4

-0.2

0

0.2

u
1

time

Linear MPC

RTI

Fully converged

Linear MPC

RTI

Fully converged

Linear MPC
RTI
Converged

Fig. 7. Illustration of the RTI solution vs. the linear MPC solutions at the
discrete time instant i = 2, with state noise.

0 5 10 15 20 25 30

0

1

2

3

4

x1

0 5 10 15 20 25 30

0

1

2

3

4

x2

0 5 10 15 20 25 30

-0.4

-0.2

0

0.2

u
1

time

Linear MPC
RTI
Converged

Fig. 8. Illustration of the RTI solution vs. the linear MPC solutions in
closed-loop simulations, without state noise.

0 5 10 15 20 25 30
-1

0

1

2

3

4

x1

0 5 10 15 20 25 30
-1

0

1

2

3

4

x2
0 5 10 15 20 25 30

-0.4

-0.2

0

0.2

u
1

time

Linear MPC
RTI
Converged

Fig. 9. Illustration of the RTI solution vs. the linear MPC solutions in
closed-loop simulations, with state noise of covariance 0.1.

the system is readily described as a discrete dynamic system,
such as when the model is identified from input/output data,
computing f (x,u) and — f (x,u) is straightforward. However,
in many applications, the system dynamics are available in a
continuous form, typically as an Ordinary Differential Equa-
tion (ODE) of the form:

ẋ(t) = F (x(t),u(t)) . (23)

In this section, we will present a family of numerical meth-
ods for simulation and sensitivity generation. It is important
to stress that the well-known matrix exponential can also
be considered as such a method for numerical simulation.
However, depending on the system considered, other methods
might be more accurate and less computationally intensive.
We also want to stress the fact that several integration steps
can be taken inside each control interval in order to increase
the accuracy of the simulation. We will also sketch how the
sensitivities can be propagated in case multiple integration
steps are taken.

For the sake of simplicity we consider here an explicit
ODE having time-invariant dynamics, though the following
developments can be easily extended to the time-varying case
and to implicit ODE or Differential Algebraic Equation (DAE)
systems.

Let us consider a piecewise constant discretization of the

©2022 A. Bemporad - MPC: from basics to learning-based design 34/66

Output feedback - Extended Kalman filter
• For state estimation, an Extended Kalman Filter (EKF) can be used based on

the same nonlinear model (with additional noise)

x(k + 1) = f(x(k), u(k), ξ(k))

y(k) = g(x(k)) + ζ(k)

• measurement update:

C(k) =
∂g

∂x
(x̂k|k−1)

M(k) = P (k|k − 1)C(k)′[C(k)P (k|k − 1)C(k)′ +R(k)]−1

consumed by MPC → x̂(k|k) = x̂(k|k − 1) +M(k) (y(k)− g(x̂(k|k − 1)))

P (k|k) = (I −M(k)C(k))P (k|k − 1)

• time update:

x̂(k + 1|k) = f(x̂(k|k), u(k))

A(k) =
∂f

∂x
(x̂k|k, u(k), E[ξ(k)]), G(k) =

∂f

∂ξ
(x̂k|k, u(k), E[ξ(k)])

P (k + 1|k) = A(k)P (k|k)A(k)′ +G(k)Q(k)G(k)′

©2022 A. Bemporad - MPC: from basics to learning-based design 35/66

 / 8
Model predictive control toolset 1

odys.it/embedded-mpc

ODYS Embedded MPC Toolset

• ODYS EmbeddedMPC is a software toolchain for design and

deployment ofMPC solutions in industrial production

• Support for linear & nonlinearMPC and extended Kalman filtering

• Extremely flexible, all MPC parameters can be changed at runtime

• Integrated withMPC-optimized version ofODYSQP Solver

• Library-free C code,MISRA-C 2012 compliant, supports also single precision

• Currently usedworldwide by several automotiveOEMs in R&D and production

• MPCToolbox Plugin to easily import NL-MPC projects fromMPC Toolbox

• ODYSDeep Learning supports neural networks as predictionmodels

©2022 A. Bemporad - MPC: from basics to learning-based design 36/66

https://odys.it/embedded-mpc

Learning-based nonlinear MPC

Machine Learning (ML)

• Goodmathematical foundations from artificial intelligence, statistics,

optimization

• Works verywell in practice (despite training is most often a nonconvex

optimization problem ...)

• Used inmyriads of very diverse application domains

• Availability of excellent open-source software tools also explains success

scikit-learn, TensorFlow/Keras, PyTorch, JAX, Flux.jl, ...

©2022 A. Bemporad - MPC: from basics to learning-based design 37/66

Control-oriented nonlinear models
• Black-boxmodeling: purely data-driven. Use training data to fit a prediction

model that can explain them

prediction
model

x y
data

• Physics-basedmodeling: use physical principles to create a predictionmodel

(e.g.: weather forecast, chemical reaction, mechanical laws, ...)

Boyle

Faraday

Newton

Gauss

Pascal

Maxwell

Galileo prediction
model

x y

• Gray-boxmodeling is a mix of the two. It can be quite effective

"All models are wrong, but some are useful."

(George E. P. Box)©2022 A. Bemporad - MPC: from basics to learning-based design 38/66

Nonlinear SYS-ID based on Neural Networks
• Neural networks proposed for nonlinear system identification since the ’90s

(Hunt et al., 1992) (Suykens, Vandewalle, DeMoor, 1996)

• NNARXmodels: use a feedforward neural network to approximate the

nonlinear difference equation yt ≈ N (yt−1, . . . , yt−na , ut−1, . . . , ut−nb
)

• Neural state-spacemodels:

– w/ state data: fit a neural networkmodel xt+1 ≈ Nx(xt, ut), yt ≈ Ny(xt)

– I/O data only: set xt = value of an inner layer of the network (Prasad, Bequette, 2003)

• Alternative forMPC: learn entire prediction (Masti, Smarra, D'Innocenzo, Bemporad, 2020)

yt+k = hk(xt, ut, . . . , ut+k−1), k = 1, . . . , N

• Recurrent neural networks aremore appropriate for accurate open-loop

predictions, but more difficult to train (see later ...)

©2022 A. Bemporad - MPC: from basics to learning-based design 39/66

Nonlinear state-space models via autoencoders
• Idea: use autoencoders and artificial neural networks to learn a nonlinear

state-spacemodel of desired order from input/output data

ANN with hourglass structure
(Hinton, Salakhutdinov, 2006)

dead-beat
observer

output
map

state map

Ok = [y′
k . . . y′

k−m]′ (Masti, Bemporad, 2021)

Ik = [y′
k . . . y′

k−na+1 u
′
k . . . u′

k−nb+1]
′

• Quasi-LPV structure forMPC: set

(Aij , Bij , Cij = feedforward NNs)

xk+1 = A(xk, uk) [
xk
1] +B(xk, uk)uk

yk = C(xk, uk) [
xk
1]

©2022 A. Bemporad - MPC: from basics to learning-based design 40/66

Learning neural network models for control

Training feedforward neural networks
• Feedforward neural networkmodel:

yk = fy(xk, θ) =



v1k = A1xk + b1
v2k = A2f1(v1k) + b2

...
...

vLk = ALyfL−1(v(L−1)k) + bL
ŷk = fL(vLk)

x

v1
v2

vL
y

θ = (A1, b1, . . . , AL, bL)

Examples: xk =measured state, or xk = (yk−1, . . . , yk−na
, uk−1, . . . , uk−nb

)

• Training problem: given a dataset {x0, y0, . . . , xN−1, yN−1} solve

min
θ

r(θ) +

N−1∑
k=0

ℓ(yk, f(xk, θ))

• It is a nonconvex, unconstrained, nonlinear programming problem that can be

solved by stochastic gradient descent, quasi-Newtonmethods, ... and EKF !

©2022 A. Bemporad - MPC: from basics to learning-based design 41/66

Training feedforward neural networks by EKF
(Singhal,Wu, 1989) (Puskorius, Feldkamp, 1994)

• Key idea: treat parameter vector θ of the feedforward neural network as a

constant state {
θk+1 = θk + ηk
yk = f(xk, θk) + ζk

and use EKF to estimate θk on line from a streaming dataset {xk, yk}

• RatioVar[ηk]/Var[ζk] is related to the learning-rate

• Initial matrix (P0|−1)
−1 is related to quadratic regularization on θ

• Implemented inODYSDeep Learning library

• Extended to rather arbitrary convex loss functions/regularization terms

(Bemporad, 2021 - https://arxiv.org/abs/2111.02673)

©2022 A. Bemporad - MPC: from basics to learning-based design 42/66

https://arxiv.org/abs/2111.02673

Recurrent neural networks

• Recurrent Neural Network (RNN)model:

xk+1 = fx(xk, uk, θx) fx, fy = feedforward neural network
yk = fy(xk, θy)

• Training problem: given a dataset {u0, y0, . . . , uN−1, yN−1} solve

min
θx, θy

x0, x1, . . . , xN−1

r(x0, θx, θy) +

N−1∑
k=0

ℓ(yk, fy(xk, θy))

s.t. xk+1 = fx(xk, uk, θx)

• Main issue: xk are hidden states, i.e., are unknowns of the problem

©2022 A. Bemporad - MPC: from basics to learning-based design 43/66

Training RNNs online by EKF
(Bemporad, 2021 - https://arxiv.org/abs/2111.02673)

• Estimate both hidden states xk and parameters θx, θy by EKF based on
xk+1 = fx(xk, uk, θxk) + ξk[

θx(k+1)

θy(k+1)

]
=

[
θxk
θyk

]
+ ηk

yk = fy(xk, θyk) + ζk

• RNN and its hidden state xk can be estimated on line from a streaming dataset

{uk, yk}, and/or offline by processingmultiple epochs of a given dataset

• Can handle general smooth strictly convex loss functions/regularization terms

• Can add ℓ1-penalty λ
∥∥∥[θx

θy

]∥∥∥
1
to sparsify θx, θy by changing EKF update into[

x̂(k|k)
θx(k|k)
θy(k|k)

]
=

[
x̂(k|k−1)
θx(k|k−1)
θy(k|k−1)

]
+M(k)e(k)−λP (k|k − 1)

[
0

sign(θx(k|k−1))
sign(θy(k|k−1))

]
©2022 A. Bemporad - MPC: from basics to learning-based design 44/66

https://arxiv.org/abs/2111.02673

50 100 150 200 250
epochs

102

104

M
S
E

EKF
AMSGrad

0 2 4 6 8 10 12
training time (s)

102

104

M
S
E

EKF
AMSGrad

Training RNNs by EKF - Examples

• Dataset: 3499 I/O data ofmagneto-rheological fluid damper (Wang et al., 2009)

• N=2000 data used for training, 1499 for testing themodel

• Same data used in NNARXmodeling demo of SYS-ID Toolbox forMATLAB

• RNNmodel: 4 hidden states

shallow state-update and output functions

6 neurons each, leaky-ReLU activation

• Compare with gradient descent (AMSGrad)

• Training timemeasured onMATLAB+CasADi implementation of EKF/AMSGrad

©2022 A. Bemporad - MPC: from basics to learning-based design 45/66

0 500 1000 1500

samples

-80

-60

-40

-20

0

20

40

60

80
Test data

EKF: 90.54%
Narx_6_2: 85.15%
measured

Training RNNs by EKF - Examples

• Compare NRMSE1 wrt NNARXmodel (SYS-ID TBX):

EKF = 91.97, AMSGrad = 85.58, NNARX(6,2) = 88.18 (training)
EKF = 90.54, AMSGrad = 80.95, NNARX(6,2) = 85.15 (test)

• Repeat training with ℓ1-penalty λ
∥∥∥[θx

θy

]∥∥∥
1

10
4

10
3

10
2

10
1

10
0

10
1

60

70

80

90

N
R

M
SE

 (%
)

NRMSE (test data)
NRMSE (training data)
percentage of zeros in

0

20

40

60

pe
rc

en
ta

ge
 o

f z
er

os

1normalized root-mean-square error

©2022 A. Bemporad - MPC: from basics to learning-based design 46/66

accuracy [%]
σ training test

0.000 99.20 98.90

0.001 99.30 98.90

0.010 99.20 98.70

0.100 96.50 97.00

0.200 93.00 93.80

Training RNNs by EKF - Examples
• Dataset: 2000 I/O data of linear systemwith binary outputs

x(k + 1) =
[
.8 .2 −.1
0 .9 .1
.1 −.1 .7

]
x(k) +

[−1
.5
1

]
u(k) + ξ(k) Var[ξi(k)] = σ2

y(k) =

{
1 if [−2 1.5 0.5]x(k)− 2 + ζ(k) ≥ 0

0 otherwise
Var[ζ(k)] = σ2

• N=1000 data used for training, 1000 for testing themodel

• Train linear state-spacemodelwith 3 states

and sigmoidal output function

fy
1 (y) = 1/(1 + e−Ay

1 [x
′(k) u(k)]′−by1)

• Training loss: (modified) cross-entropy loss

ℓCEϵ(y(k), ŷ) =

ny∑
i=1

−yi(k) log(ϵ+ ŷi)− (1− yi(k)) log(1 + ϵ− ŷi)

©2022 A. Bemporad - MPC: from basics to learning-based design 47/66

Training RNNs by Sequential Least-Squares
(Bemporad, 2021 - http://arxiv.org/abs/2112.15348)

• RNN training problem = optimal control problem:

minθx,θy,x0,x1,...,xN−1
r(x0, θx, θy) +

N−1∑
k=0

ℓ(yk, ŷk)

s.t. xk+1 = fx(xk, uk, θx)

ŷk = fy(xk, θy)

– θx, θy, x0 =manipulated variables, ŷk = output, yk = reference signal

– r(x0, θx, θy) = input penalty, ℓ(yk, ŷk) = output penalty

– N = prediction horizon, control horizon = 1

• Linearizedmodel:

∆xk+1 = (∇xfx)
′∆xk + (∇θxfx)

′∆θx
∆yk = (∇xk

fy)
′∆xk + (∇θyfy)

′∆θy

• Idea: take 2nd-order expansions of the loss ℓ and regularization term r

and use sequential least-squares + line search tominimize wrt x0, θx, θy

©2022 A. Bemporad - MPC: from basics to learning-based design 48/66

http://arxiv.org/abs/2112.15348

Training RNNs by Sequential LS and ADMM
(Bemporad, 2021 - http://arxiv.org/abs/2112.15348)

• Fluid-damper example:

50 100 150 200 250
epochs

102

104

M
S
E

EKF
AMSGrad
Seq. LS

0 2 4 6 8 10 12
training time (s)

102

104

M
S
E

EKF
AMSGrad
Seq. LS

• Wewant to also handle non-smooth (and non-convex) regularization terms

minθx,θy,x0 r(x0, θx, θy) +
∑N−1

k=0 ℓ(yk, fy(xk, θy)) + g(θx, θy)

s.t. xk+1 = fx(xk, uk, θx)

• Idea: use alternating directionmethod ofmultipliers (ADMM) by splitting

minθx,θy,x0,νx,νy
r(x0, θx, θy) +

∑N−1
k=0 ℓ(yk, fy(xk, θy)) + g(νx, νy)

s.t. xk+1 = fx(xk, uk, θx)

[νx
νy] =

[
θx
θy

]
©2022 A. Bemporad - MPC: from basics to learning-based design 49/66

http://arxiv.org/abs/2112.15348

Training RNNs by Sequential LS and ADMM
(Bemporad, 2021 - http://arxiv.org/abs/2112.15348)

• ADMM+ Seq. LS =NAILS algorithm (Nonconvex ADMM Iterations and Sequential LS)[
xt+1
0

θt+1
x

θt+1
y

]
= argminx0,θx,θy V (x0, θx, θy) +

ρ
2

∥∥∥[θx−νt
x+wt

x

θy−νt
y+wt

y

]∥∥∥2

2
(sequential) LS[

νt+1
x

νt+1
y

]
= prox 1

ρ
g(θ

t+1
x + wt

x, θ
t+1
y + wt

y) proximal step[
wt+1

x

wt+1
y

]
=

[
wh

x+θt+1
x −νt+1

x

wh
y+θt+1

y −νt+1
y

]
update dual vars

• Fluid-damper example: group-Lasso regularization g(νgi) = τ
∑nx

i=1 ∥ν
g
i ∥2

to zero entire rows and columns and reduce state-dimension automatically

10-2 10-1 100 101 102

group-lasso regularization parameter =

0

50

100

N
R

M
S
E

(%
)

0

2

4

6

8

-
n
al

m
o
d
el

o
rd

er

NRMSE (test data)
NRMSE (training data)
final model order

©2022 A. Bemporad - MPC: from basics to learning-based design 50/66

http://arxiv.org/abs/2112.15348

Training RNNs by Sequential LS and ADMM
(Bemporad, 2021 - http://arxiv.org/abs/2112.15348)

• Fluid-damper example: quantization of θx, θy for simplifyingmodel arithmetic

+ReLU activation function

g(θi) =

{
0 if θi ∈ Q

+∞ otherwise
Q =multiples of 0.1 between -0.5 and 0.5

– NRMSE = 83.10 (training), 80.51 (test)

– NRMSE = 8.83 (training), 2.69 (test) ← no ADMM, just quantize after training

– Training time: ≈ 5 s

• Note: no convergence to a global minimum is guaranteed

• NAILS = very flexible & efficient learning algorithm for control-oriented RNNs

©2022 A. Bemporad - MPC: from basics to learning-based design 51/66

http://arxiv.org/abs/2112.15348

Learning hybrid prediction models

Learning hybrid models

• Switching dynamics are better captured by piecewise affine (PWA)models and

handled by hybridMPC techniques

v(k) =


F1z(k) + g1 ifH1z(k) ≤ K1

...

Fsz(k) + gs ifHsz(k) ≤ Ks

v(k) =
[
x(k+1)
y(k)

]
, z(k) =

[
x(k)
u(k)

]

f(z)

z

• PWA regression: learn both the {Fi, gi} and the partition {Hi, Ki}
(Ferrari-Trecate, Muselli, Liberati, Morari, 2003) (Roll, Bemporad, Ljung, 2004) (Juloski,Wieland, Heemels,

2004) (Bemporad, Garulli, Paoletti, Vicino, 2005) (Pillonetto, 2016) (Breschi, Piga, Bemporad, 2016) (...)

• AnyML technique can be applied that leads to PWAmodels, such as

(leaky)ReLU-NNs, decision trees, softmax regression,KNN, ...

©2022 A. Bemporad - MPC: from basics to learning-based design 52/66

PARC - Piecewise affine regression and classification
(Bemporad, 2021, arXiv)

• New Piecewise Affine Regression and Classification (PARC) algorithm

• Training dataset:

– feature vector z ∈ Rn (categorical features one-hot encoded in {0, 1})

– target vector vc ∈ Rmc (numeric), vdi ∈ {w1
di, . . . , w

mi
di } (categorical)

• PARC iteratively clusters training data inK sets and fit linear predictors

1. fit vc = ajz + bj by ridge regression (=ℓ2-regularized least squares)

2. fit vdi = wh∗
di , h∗ = argmax{ah

dihz + bhdi} by softmax regression

3. fit a convex PWL separation function by softmax regression

Φ(z) = ωj(z)z + γj(z), j(z) = min

{
arg max

j=1,...,K
{ωjz + γj}

}
• Data reassigned to clusters based onweighted fit/PWL separation criterion

• PARC is a block-coordinate descent algorithm⇒ (local) convergence ensured
©2022 A. Bemporad - MPC: from basics to learning-based design 53/66

PARC - Piecewise Affine Regression and Classification
• Simple PWA regression example:

– 1000 samples of y = sin(4x1 − 5(x2 − 0.5)2) + 2x2 (use 80% for training)

– Look for PWA approximation overK = 10 polyhedral regions

x1
0.0

0.2
0.4

0.6
0.8

1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

y

1.0
0.5

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Nonlinear function

x1
0.0

0.2
0.4

0.6
0.8

1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

y

1

0

1

2

3

PARC (K = 10)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

11 22

33

4455

66

77

88

99 1010

PARC (K = 10)

• Code download: http://cse.lab.imtlucca.it/~bemporad/parc/

©2022 A. Bemporad - MPC: from basics to learning-based design 54/66

http://cse.lab.imtlucca.it/~bemporad/parc/

y

M
F

T

0

2

4

position [m]

10

20

30

40

50 temperature [oC]

0 250 500 750 1000 1250 1500 1750 2000
time (s)

1

0

1
force switch

Data-driven hybrid-MPC example

• Example: moving cart and bumpers +

heat transfer during bumps.

Spring and viscous forces are nonlinear.

• Categorical inputF ∈ {−F̄ , 0, F̄} and
categorical output c ∈ {green, yellow, red}

• Continuous-time system simulated for 2,000 s,

sample time = 0.5 s (=4000 training samples)

• Feature vector zk = [yk, ẏk, Tk, Fk]

• Target vector vk = [yk+1, ẏk+1, Tk+1, ck]

• Hybridmodel learned by PARC (K = 5 regions)

©2022 A. Bemporad - MPC: from basics to learning-based design 55/66

Data-driven hybrid-MPC example
• Open-loop simulation on 500 s test data:

0

2

4
position [m]

10

20

30

40

50 temperature [oC]

0 200 400
time (s)

1

0

1
force switch

continuous-time system

0

2

4
position [m]

10

20

30

40

50 temperature [oC]

0 200 400
time (s)

1

0

1
force switch

discrete-time PWA model

• Model fit is good enough forMPC design purposes

©2022 A. Bemporad - MPC: from basics to learning-based design 56/66

1

2

3

position [m]

10

20

30

40

50 temperature [oC]

0 20 40 60 80 100
time (s)

1

0

1
force switch

Data-driven hybrid-MPC example

• MPC problemwith prediction horizonN = 9:

minF0,...,FN−1

N−1∑
k=0

|ck − 1|+ 0.25|Fk|

s.t. Fk ∈ {−F̄ , 0, F̄}
PWAmodel equations

• Problem can be cast toMILP.

Solution time: 0.15-0.29 s (CPLEX)

• Data-driven hybridMPC controller can keep temperature in yellow zone

• Approximate explicitMPC: fit a decision tree on 10,000 samples

(accuracy: 99.9%). CPU time = 52÷67 µs. Closed-loop trajectories very similar.

©2022 A. Bemporad - MPC: from basics to learning-based design 57/66

Learning optimal MPC calibration

x1

x3

x2
x4

MPC calibration problem
• The design depends on a vector x ofMPCparameters

• MPC parameters are intuitive to set (e.g., weights)

• Still, can we auto-calibrate them ?

• Define a performance index f over a closed-loop simulation or real experiment.

For example:

f(x) =

T∑
t=0

∥y(t)− r(t)∥2

(tracking quality)

• Auto-tuning = find the best combination of parameters by solving

the global optimization problem

min
x

f(x)

©2022 A. Bemporad - MPC: from basics to learning-based design 58/66

Auto-tuning - Global optimization algorithms
• Several derivative-free global optimization algorithms exist: (Rios, Sahidinis, 2013)

– Lipschitzian-based partitioning techniques:

• DIRECT (DIvide in RECTangles) (Jones, 2001)

• Multilevel Coordinate Search (MCS) (Huyer, Neumaier, 1999)

– Response surfacemethods

• Kriging (Matheron, 1967),DACE (Sacks et al., 1989)

• Efficient global optimization (EGO) (Jones, Schonlau,Welch, 1998)

• Bayesian optimization (Brochu, Cora, De Freitas, 2010)

– Genetic algorithms (GA) (Holland, 1975)

– Particle swarm optimization (PSO) (Kennedy, 2010)

– ...

• Newmethod: radial basis function surrogates + inverse distanceweighting

(GLIS) (Bemporad, 2020) cse.lab.imtlucca.it/~bemporad/glis

©2022 A. Bemporad - MPC: from basics to learning-based design 59/66

cse.lab.imtlucca.it/~bemporad/glis

Auto-tuning: Pros and Cons

• Pros:

 Selection of calibration parameters x to test is fully automatic

 Applicable to any calibration parameter (weights, horizons, solver tolerances, ...)

 Rather arbitrary performance index f(x) (tracking performance, response time,

worst-case number of flops, ...)

• Cons:

 Need to quantify an objective function f(x)

 No room for qualitative assessments of closed-loop performance

 Often havemultiple objectives, not clear how to blend them in a single one

©2022 A. Bemporad - MPC: from basics to learning-based design 60/66

Active preference learning
(Bemporad, Piga,Machine Learning, 2021)

• Objective function f(x) is not available (latent function)

• We can only express a preference between two choices:

π(x1, x2) =


−1 if x1 “better” than x2 [f(x1) < f(x2)]

0 if x1 “as good as” x2 [f(x1) = f(x2)]

1 if x2 “better” than x1 [f(x1) > f(x2)]

• Wewant to find a global optimum x⋆ (=“better” than any other x)

find x⋆ such that π(x⋆, x) ≤ 0, ∀x ∈ X , ℓ ≤ x ≤ u

• Active preference learning: iteratively propose a new sample to compare

• Key idea: learn a surrogate of the (latent) objective function from preferences

©2022 A. Bemporad - MPC: from basics to learning-based design 61/66

Semi-automatic tuning by preference-based learning

• Use preference-based optimization (GLISp) algorithm for semi-automatic

tuning ofMPC (Zhu, Bemporad, Piga, 2021)

• Latent function = calibrator’s (unconscious) score

of closed-loopMPC performance

• GLISp proposes a new combination xN+1 ofMPC

parameters to test

• By observing test results, the calibrator expresses a

preference, telling if xN+1 is “better”, “similar”, or

“worse” than current best combination

• Preference learning algorithm: update the

surrogate f̂(x) of the latent function, optimize the

acquisition function, ask preference, and iterate

control
parameters

testing &
assessment

preference

preference-
based learning
algorithm

©2022 A. Bemporad - MPC: from basics to learning-based design 62/66

Preference-based tuning: MPC example
(Zhu, Bemporad, Piga, 2021)

• Example: calibration of a simpleMPC for lane-keeping (2 inputs, 3 outputs)


ẋ = v cos(θ + δ)

ẏ = v sin(θ + δ)

θ̇ = 1
Lv sin(δ)

±

µ

L

v

x

y

• Multiple control objectives:

“optimal obstacle avoidance”, “pleasant drive”, “keep CPU time small”, …
not easy to quantify in a single function

• 5MPC parameters to tune:

– sampling time

– prediction and control horizons

– weights on input increments∆v,∆δ

©2022 A. Bemporad - MPC: from basics to learning-based design 63/66

Preference-based tuning: MPC example

• Preference query window:

0 50 100 150 200 250

0

3

6

 y
f [

m
]

vehicle
obstacle
vehicle OA
obstacle OA

0 50 100 150 200 250
40

50

60

70

80

 v
 [

km
/h

r]

Input
Reference

0 50 100 150 200 250
 x

f
 [m]

-50

-25

0

25

50

s [
°]

0 50 100 150 200 250

0

3

6

 y
f [

m
]

vehicle
obstacle
vehicle OA
obstacle OA

0 50 100 150 200 250
40

50

60

70

80

 v
 [

km
/h

r]

Input
Reference

0 50 100 150 200 250
 x

f
 [m]

-50

-25

0

25

50

s [
°]

T
s
 = 0.243 s, N

u
 = 12, N

p
 = 17, log(q

u11
) = 0.19,

log(q
u22

) = 0.70, t
comp

: 0.0846 s

T
s
 = 0.332 s, N

u
 = 16, N

p
 = 17, log(q

u11
) = 0.06,

log(q
u22

) = 2.02,t
comp

: 0.0867 s

©2022 A. Bemporad - MPC: from basics to learning-based design 64/66

Preference-based tuning: MPC example
• Convergence after 50 GLISp iterations (=49 queries):

0 50 100 150 200 250
-1
0
1
2
3
4

 y
f [

m
]

vehicle
obstacle
vehicle OA
obstacle OA

0 50 100 150 200 250

50
55
60
65
70
75

 v
 [

km
/h

r]

Input
Reference

0 50 100 150 200 250
 x

f
 [m]

-20

-10

0

10

20

s [
°]

Optimal MPC parameters:

– sample time = 85 ms (CPU time = 80.8 ms)

– prediction horizon = 16

– control horizon = 5

– weight on∆v = 1.82

– weight on∆δ = 8.28

• Note: no need to define a closed-loop performance index explicitly!

• Extended to handle also unknown constraints (Zhu, Piga, Bemporad, 2021)

©2022 A. Bemporad - MPC: from basics to learning-based design 65/66

future

predicted outputs

manipulated inputs

past

Conclusions
• Learning-basedMPC is a formidable combination for advanced control:

– MPC / on-line optimization is an extremely powerful control methodology

– ML extremely useful to get control-orientedmodels and control laws from data

• IgnoringML tools would be amistake (a lot to “learn” frommachine learning)

• ML cannot replace control engineering:

– Black-boxmodeling can be a failure. Better use gray-boxmodels when possible

– Approximating the control law can be a failure. Don’t abandon on-line optimization

– Pure AI-based reinforcement learningmethods can be also a failure

• Awide spectrum of research opportunities

and new practices is open !

©2022 A. Bemporad - MPC: from basics to learning-based design 66/66

