MODEL PREDICTIVE CONTROL
FROM BASICS TO LEARNING-BASED DESIGN

Alberto Bemporad

imt.lu/ab

OOOOOO

CCCCC

nnnnnnnnnnnnnnnnnnnnnnnnnnnnn

1% ELO-X Seasonal School - March 22, 2022


imt.lu/ab

CONTENTS OF MY LECTURE

Model predictive control (MPC): basic concepts

Linear MPC and extensions to nonlinear MPC

Embedded quadratic optimization

Learning-based nonlinear MPC (feedforward and recurrent neural networks)

Learning-based hybrid MPC (piecewise affine models)

Active preference learning for MPC calibration

©2022 A. Bemporad - MPC: from basics to learning-based design 1/66



MODEL PREDICTIVE CONTROL: BASIC CONCEPTS

(extended slide set: http://cse.lab.imtlucca.it/~bemporad/mpc_course.html)


http://cse.lab.imtlucca.it/~bemporad/mpc_course.html

MODEL PREDICTIVE CONTROL (MPC)

prediction model optm!|zat|on
: algorithm ]

\ model-based optimizer

process

set-points inputs outputs
—p —p
(t) u(t) y(t)
1 measurements
simplified

Use a dynamical model of the process to predict its futurt?

evolution and choose-the“best*controt-action
a good
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MODEL PREDICTIVE CONTROL

¢ MPC problem: find the best control sequence over a future horizon of N steps

N-1
. 2 2
min > [lyk — r(0)]13 + pllux — ux(B)[I3
Ugy -+, UN—-1 k=0

st zpp1 = f(ap, uk) Fradtcﬁovx model

yr = g(Tk)

Umin < Uk < Umax ~ consbrainks
Ymin < Yk < Ymax

zo = x(t) state feedback

numerical optimization problem

I ++N+1
@ estimate current state z(t) /
@ optimizewrt {uo,...,un_1} /
9 only apply optimal ug as input u(¢)
Repeat at all time steps ¢
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DAILY-LIFE EXAMPLES OF MPC

e MPCis like playing chess !

e You use MPC too when you drive !
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MPC IN INDUSTRY

e Conceivedinthe 60’s

e Used inthe process industries since the 80’s

o Nowadays spreading to the automotive industry and other sectors

o MPC by General Motors and ODYS in high-volume production since 2018

First known mass production of MPC

in the automotive industry

ODY'S

role & Opeimizach www.odys.it
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www.odys.it

MPC IN INDUSTRY

Table 2

The percentage of survey respondents indicating whether a control technology had
demonstrated (“Current Impact”) or was likely to demonstrate over the next five
years (“Future Impact”) high impact in practice.

Current Impact ~ Future Impact

Control Technology %High %High
PID control 91% 78%
System Identification 65% 72%
Estimation and filtering 64% 63%
[Model-predictive control 62% 85% | e
Process data analytics 51% 70%
Fault detection and identification 48% 78%
Decentralized and/or coordinated control  29% 54%
Robust control 26% 42%
Intelligent control 24% 59%
Discrete-event systems 24% 39%
Nonlinear control 21% 42%
Adaptive control 18% 44%
Repetitive control 12% 17%
Hybrid dynamical systems 11% 33%
Other advanced control technology 11% 25%
Game theory 5% 17%

"As can be observed, MPC s clearly considered more impactful, and likely to be more impactful,
vis-a-vis other control technologies, especially those that can be considered the "crown jewels"
of control theory - robust control, adaptive control, and nonlinear control."
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WORD TRENDS

model predictive control machine learning

A

1970 1975 1980 1985 1990 1995 2000 2005 2010 2018

197[] 1975 1980 1985 1990 1995 2000 2005 2010 2015

nonlinear control system identification PID control

o 1975 1980 1985 1990 1995 2000 2005 210 218

(source: https://books.google.com/ngrams)
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MODEL PREDICTIVE CONTROL - THE BASICS



LINEAR MPC

— Az 4B r € R™
e Linear prediction model: { T+l B ka Uk u € R™
Y = Ty y € RP

e Constrained optimal control problem (quadratic performance index):

N-1
min  zyPzy + E z},Qxy + up Ruy,
z R = R's0 s
k=0 w
Q = Qx0 z=
J— ’ N
8.t Umin < Uk < Umax, k= Oa EERE) N-1 po= Pro UN-1

ymingykgymaxakzla-“vN
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LINEAR MPC

k—1

¢ Optimization problem (condensed form): z, = A*z, + Z A'Buj,_1_;
i=0

V(zo) = 22(Yzo+ min 12'Hz+ 2(F'z (quadratic objective)

H=H =0

s.t. Gz < W + Szg | (linear constraints)

convex Quadratic Program (QP)

Gz < W+ Sa(t)

Uo
ul

e z=| . | € RN™isthe optimization vector
u}\;—l 'Qz + (t)' F'z = constant
e QP matrices depend on chosen weights, model, and constraints

o Alternative: keep also x1, . ..,z as optimization variables and the equality
constraints zx4+1 = Az + Buy (non-condensed form, which is sparse)
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LINEAR MPC ALGORITHM

@ each sampling step t:

o Estimate the current state x(¢)

e Get the solution z* =

e Applyonly u(t) = ug, discarding the remaining optimal inputs u], . . .

*

%rwé]ew’f

of the QP

——
e Unconstrained MPC: Hz + Fz(t) =0

linear state feedback!

A. Bemporad - MPC: from basics

to learning-based design

past [ future

Yk

manipulated inputs

t t+k t+N
l Seedy atc‘L

——
min  $2'Hz+ 2/ (t)F'z
z

st. Gz<W+S z(t)
~—

Seedvack

u(t) =—[I0..

ES
yUN—1

. OJH 1 Fx(t)
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BASIC CONVERGENCE PROPERTIES

e Theorem: Let the MPC law be based on
N-1

V*(z(t)) = min Z 2, Qxr + uj Ruy
k=0
s.t. Trp+1 = Axy + Bug

Umin S Uk S Umax
Ymin S ka S Ymax
zny =0 < “terminal constraint’

q

Wlth R7 Q > O, Umin < 0< Umaxs Ymin <0< Ymax-
If the optimization problem is feasible at time ¢ = 0 then

lim 2(¢t) =0, lim u(t)=0

t—o0 t—o0

and the constraints are satisfied at all time ¢ > 0,for all R, () > 0.

e Many more convergence and stability results exist

11/66
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LINEAR MPC - TRACKING

e Objective: make the output y(¢) track a reference signal r(t)

e Let us parameterize the problem using the input increments
Au(t) = u(t) —u(t — 1)

o Asu(t) = u(t — 1) + Au(t) we need to extend the system with a new state

z(t+1) = Ax(t)+ Bu(t— 1)+ BAu(t)
Tu(t+1) = z,(t) + Ault)
[2en] = @2 ]29)] + 1518w
we) = [oo] [0

e Again alinear system with states x(t), x,,(t) and input Au(t)
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LINEAR MPC - TRACKING

e Optimal control problem (quadratic performance index):
N—-1

min 1;) W (yrr1 = r(0))]13 + WA Auyl3 Auo wo
[Aup £ up —up_1], u—1 =u(t —1) Auy 1
z= . orz =
s.t. Umin < Ug < Umax, k=0,...,N —1
Ymin < Uk < Ymax, k=1,..., N Aun-—1 UN-1
Aumin < Aug < AUumax, k=0,...,N —1
weight W () = diagonal matrix
: _ 1 / / (4 _ /
min J(z,2(t)) = 52" Hz 4 [/ (t) ' (t) ' (t — D)]F'2 convex
a(t) Quadratic
st. Gz<W+S r(t)
w(t —1) Program
—

e Add the extra penalty | W (ux — uret(t))|3 to track input references

e Constraints may depend on r(t), such as epmin < yx — 7(t) < emax
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ANTICIPATIVE ACTION (A.K.A. "PREVIEW™)

N-1

PN Zj W (s =t + RDIE + WS Au(k)l3
e Reference not known in advance e Future refs (partially) known in
(causal): advance (anticipative action):
re =r(t),vk=0,...,N -1 re=r({t+k),YVk=0,...,N—1
output/ reference output / reference
1 , — 1
ol USe r(t) .| Use r(t+k) fﬂ
. / ¥
0 5 10 15 0 5 10 15
input input
2 -lU’\, 2
1 1 J. =
00 5 10 15 0 5 10 15

o Same for previewing measured disturbances z 1 = Axy + Buy + Byv(t + k)
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OUTPUT INTEGRATORS AND OFFSET-FREE TRACKING

e Add constant unknown disturbances on measured outputs:

Tpy1 = Axp + Buy
drpy1 = dg
ye = Cxp+dy

Use the extended model to design a state observer (e.g., Kalman filter) that
estimates both the state #(¢) and disturbance d(t) from y(t)

Why we get offset-free tracking in steady-state (intuitively):

- the observer makes C'(t) + d(t) — y(t) (estimation error)
- the MPC controller makes Cz(t) + d(t) — (t) (predicted tracking error)
- the combination of the two makes y(t) — r(t) (actual tracking error)

In steady state, the term d(t) compensates for model mismatch

e See more on survey paper
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EMBEDDED QUADRATIC OPTIMIZATION FOR MPC



EMBEDDED LINEAR MPC AND QUADRATIC PROGRAMMING

e MPC based on linear models requires solving a Quadratic Program (QP)

Gz < W+ Sx(t)

uo

1 1
min iz’Qz +2'()F' 2+ ix'(t)Yx(t) w
s.t. Gz <W + Sz(t) o S

UN -1
ON MiNMIZING A CONVEX FUNCTION SUBJECT To LINEAR INEQUALLTIES

By E. M. L. BEALE
Admiralty Research Laboratory, Teddington, Middlesex

SUMMARY
THE minimization of a convex function of variables subject.to lincar inequalities is
discussed bricfly in general terms. Dantzig’s Simplex Method is extended to yield
finite algorithms for minimizing either a convex quadratic function or the sum of
the ¢ largest of a set of linear functions, and the solution of a generalization of the
latter problem is indicated. In the last two sections a form of lincar programming
with random variables as cocfficients is described, and shown to involve the minimiza-
tion of a convex function.

Arich set of good QP algorithms is available today

e Not all QP algorithms are suitable for industrial embedded control
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MPC IN A PRODUCTION ENVIRONMENT

Key requirements for deploying MPC in production:

1. speed (throughput)
- worst-case execution time less than sampling interval P
- alsofast on average (to free the processor to execute other tasks) @
2. limited memory and CPU power (e.g., 150 MHz / 50 kB)

3. numerical robustness (single precision arithmetic)

4. certification of worst-case execution time

5. code simple enough to be validated/verified/certified CEY “

(library-free C code, easy to check by production engineers) fcy nxiio) {
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EMBEDDED SOLVERS IN INDUSTRIAL PRODUCTION

e Multivariable MPC controller
e Sampling frequency = 40 Hz (= 1 QP solved every 25 ms)
e Vehicle operating =1 hr/day for ~360 days/year on average

e Controller running on 10 million vehicles

~MER20,000,000,000,000 Q‘F/\jr

and none of them should fail.
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DUAL GRADIENT PROJECTION FOR QP

e Consider the strictly convex QP and its dual

min  32'Qz +2'F'z min  1y'Hy+ (Dz+ W)y
st. Gz<W+ Sz st. y>0
withH = GQ7'G',D = S + GQ ' F. Take L > Aax (H)
e Apply proximal gradient method to dual QP:

1
Yy = max{y®— - (Hy"+Dz+ W), 0} yo =0

e The primal solution is related to the dual solution by
#=—Q N (Fe+G'y")
e Convergence is slow: the initial error f(2°) — f(z*) reduces as 1/k
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FAST GRADIENT PROJECTION FOR (DUAL) QP

e The fast gradient method is applied to solve the dual QP problem

whlk

1
min 5Z'Qz +2'F'z k
z

wk = g+ Br(yF -y b <5:";§;<k 2
s.t. Gz < W+ Sz o~ Kb — Jx y:; 2-bL;
st = %sz - %(W + Sz) fgziﬁn:tlsnen
y* 1 = max {wk + s*,0) eﬂ;:sg‘ﬂt" gl
Ko

e Very simple to code
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FAST GRADIENT PROJECTION FOR (DUAL) QP

e Termination criteria: when the following two conditions are met

s¥ < Lleg,i=1,...,m  primalfeasibility
_(wk)lsk < %ef optimality
the solution z¥ = — Kw* — Jz satisfies G,z — W, — S;z < eq and, if w® > 0,
FEM) = f(27) < F(ZM) = q(w) = —(w*)'s" L < ¢

v 10°)

duad fon 4‘ theoretical
oL N

. k * *
e Convergencerate: f(z") — f(2") < ——5ll20 — 2 3 o S S S

(k+2)

| Rtexperimehkak

Tight bounds on maximum number of iterations

Can be useful to warm-start active-set methods

Extended to mixed-integer quadratic programming (MIQP)
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in L
e Alternating Directions Method of Multipliers for QP Hsutn ;iazzzcuz
while k<maxiter
2Kl = (Q 4+ pA’A)"H(pA (vF — sF) +¢) Ekln (cH X (rho*(v-5)));
Sk+1 _ min{maX{Azk-i-l + ’Uk, £}7 u} :l:aﬁm;n(hw Ju),ell);

end

,Uk-i-l _ Uk—i-AZk'H _Sk—i-l
(7 lines EML code)
(40 lines of C code)

pv = dual vector

e Matrix (@ + pA’ A) must be nonsingular
¢ The factorization of matrix (Q) + pA’A) can be done at start and cached
e Very simple to code. Sensitive to matrix scaling (as gradient projection)

e Used in many applications (control, signal processing, machine learning)
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REGULARIZED ADMM FOR QUADRATIC PROGRAMMING

e Robust “regularized” ADMM iterations:

M = Q4 pATA+ D)"Y — ez + pAT (vF — 2F))
sl = min{max{Az**t! + % ¢} u}
UkJrl _ Uk +Azk+1 _ Sk+1

Works for any @ = 0, A, and choice of ¢ > 0

Simple to code, fast, and robust
Q+el A’
A 7%1

Implemented in free osQP solver http://osqgp.org

(Python interface: ~ 1,700,000 downloads)

Only needs to factorize once

Extended to solve mixed-integer quadratic programming problems
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0DYS QP SOLVER

e General purpose QP solver designed for industrial production

@)
S PO® L
z 2 t*tr
s.t. by <Az < b, [interfaces MO -~ (D
(<2< ¢
SZ2sSsUu D

Ez=f 4 @ A

e Implements a proprietary state-of-the-art method for QP

o Completely written in ANSI-C and MISRA-C 2012 compliant

e Fast, robust (also in single precision), low-memory requirements
e optimized version for MPC available (= 50% faster)

e Licensed to several automotive OEMs and Tier-1 suppliers

e Certifiable execution time
odys.it/qp
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https://odys.it/qp

PRIMAL-DUAL INTERIOR-POINT METHOD FOR QP

e The Karush-Kuhn-Tucker(KKT) optimality conditions for the convex QP

min, 12'Qr+cx

st. Az <b R=Q =0
Ex=f
are
rg = Qr+c+Ey+Az2 = 0 @ = primal vars
rg = FEx—f = 0 y = dual vars (eq. constr.)
ra = Arxr+s—0» = 0 s = slacks (ineq. constr)
rs = [2151 ... ZmSm)’ 0 z = dual vars (imeq. constr.)
z,s > 0

e In anutshell, interior-point methods use Newton’s method with line search to
solve the above nonlinear system of equations

o The complementary slackness constraint is replaced by z;s, = pand u — 0
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PRIMAL-DUAL INTERIOR-POINT METHOD FOR QP

Each interior-point iteration requires solving a linear system of the form

Q E A o0 Az —rQ
E 0 0 0||Ay| |-re Z = diagz
A 0 0 I Az | | =ra S = diags
0 0 S Z As —rs

In MPC the structure x, 1 = Axy + Buyg can be heavily exploited to
factorize/solve the linear systems efficiently

IP provides good solutions within 10-15 IP iterations (usually ...).

Linear systems tends to become ill-conditioned at convergence

IP usually faster for sparse and large QPs (say >500 vars & constraints)
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MPC WITHOUT ON-LINE QP

model-based optimizer

set-points inputs outputs
— —
(t) u(t) y(t)
T measurements |
e Canwe implement constrained linear MPC
-

without an on-line QP solver?

YES !
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EXPLICIT MODEL PREDICTIVE CONTROL

e Continuous & piecewise affine solution of strictly convex multiparametric QP

z*(z) = argmin, 12/Qz+2'F'z
st. Gz< W+ Sz

e Corollary: linear MPC is continuous & piecewise affine !

o Fiz+g if Hiz<K
uy
z" = . US(Z‘) =
. Fyr+gy  if Hyz < Ky
UN_—1

o New mpQP solver based on NNLS available
and included in MPC Toolbox since R2014b

Is explicit MPC better than on-line QP (=implicit MPC) ?
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COMPLEXITY CERTIFICATION FOR ACTIVE-SET QP SOLVERS

e Result: The number of iterations to solve the QP via a dual active-set method is
a piecewise constant function of the parameter x

20

10

We can exactly quantify how
many iterations (flops) the QP
solver takes in the worst-case !

2,

-10

_

op L 1

—20 —10 :.Bl 10 20
e Examples (from MPC Toolbox):

inverted pendulum ~ DCmotor  nonlinear demo  AFTIF16
Explicit MPC
max flops 3382 1689 9184 16434
max memory (kB) 55 30 297 430
Implicit MPC
max flops 3809 2082 7747 7807
sqrt 27 9 37 33
max memory (kB) 15 13 20 16

e QP certification algorithm currently used in industrial production projects
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FROM LINEAR TO NONLINEAR MPC



LINEAR TIME-VARYING MODELS

e Linear Time-Varying (LTV) model

Tht1 = Ak(t)xk-‘rB;g(t)uk
ye = Cr(t)zk

At each time t the model can also change over the prediction horizon k

Possible measured disturbances are embedded in the model

On-line optimization is still a QP

N =0 1
min —2’Ht)z+ | r@® | F(t)'z
z 2 u(t—1)

z(t)
s.t. G(t)z <W(t)+ S(t) { (r(t) J
u(t—1

The QP matrices cannot be constructed offline
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LINEARIZING A NONLINEAR MODEL

e LTV models can be obtained by linearizing a nonlinear model

o) —  f(ma(t), ue(t))
ye(t) = glae(t))

e Attimet, consider the nominal trajectory
U = {u.(t),a.(t+Ts),...,0.(t+(N—-1)Ts)}
For example U = shifted previous sequence optimized by MPC @t — 1
¢ Integrate the model from Z.(¢) and get nominal state/output trajectories

X {Ze(t),Ze(t+ Ts)y ..., Tt + (N —1)Ts)}

Y = {yc(t)ayc(t + Ts)a s 7gc(t + (N - 1)Ts)}
For example Z.(t) = current state
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LINEARIZING A NONLINEAR MODEL

e Linearize the nonlinear model around the nominal states and inputs:

dzx. 0 0
B = Jeu) m @)t o R el e
dz. %’;/ w;/
dt Tacomian waten A, Tacdian waken B
_ 0 _
y = (o) mgE)t S| (we—)
N——— BZEC Ze

73(:
Tacodian madrin Cf

e Definex £ 2. — Zo,u = ue — e,y = yo — 7o and get the linear system

d
d—f:Acx—i—Bcu y=Cx

e Convert linear model to discrete-time and get matrices (A, By, Ci)

o Alternative: compute (A, By, Ci) (a.k.a. sensitivities) during integration
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FROM LTV-MPC T0 NONLINEAR MPC

e How to use the LTV-MPC machinery to handle nonlinear MPC ?

o Keyidea: Solve a sequence of LTV-MPC problems at each time ¢

For h = 0to hpmax — 1 do:
1. Simulate from z(¢) with inputs U}, and get state trajectory X

Linearize around (X, Uy,) and discretize in time

2.
3. Get U;Jrl = QP solution of corresponding LTV-MPC problem
4. Line search: find optimal step size a, € (0, 1];

5.

SetUp4+1 = (1 — ap)Up + ahU;:+1;

Return solution Uj,

max

e Special case: just solve one iteration with o = 1 (a.k.a. Real-Time Iteration)
=LTV-MPC
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NONLINEAR MPC

e Example
10t ‘ ‘ 9 ;i;learMPC L
5k DDDDDD <> Fully converged
= &%
Jmees 996@@@@mmmmmm§
T2 4 6 8 10 12 14_16 18 20
D Linear MPC
‘T8, | x~&m
ol m Fully converged ||
ol @@Eﬁﬁ@@@@ammmm@§
é 4 10 12 18 20
0.2/ _—El;lg{i_?lear MPC
= 07| <~ Converged
02 o
0.4} 34
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OUTPUT FEEDBACK - EXTENDED KALMAN FILTER

e For state estimation, an Extended Kalman Filter (EKF) can be used based on
the same nonlinear model (with additional noise)

z(k+1) = f(z(k),u(k),£(k))
y(k) = g(z(k)) + (k)
e measurement update: 5
Ck) = 5 (i)
M(k) = P(klk—1)C(k)'[C(k)P(klk —1)C(k)" + R(k)] ™"
consumed bj MPC — .f(]f“i:) = (k|]€ — 1) + M k})( ( )— g I(k‘“ﬂ — 1)))
P(klk) = (I —M(k)C(k))P(klk—1)

o time update:
&k + 1|k) = f(2(k[k), u(k))
A = I g uh), BIERN), G4y = 9L
P(k + 1|k) = A(k)P(k|k)A(k)" + G(k)Q(k)G(k)'

Zg|k, u(k), E[E(K)])
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0DYS EMBEDDED MPC TOOLSET

e ODYS Embedded MPC is a software toolchain for design and D D\ /S
deployment of MPC solutions in industrial production =~ Aevenses ceneros & opmizasien

e Support for linear & nonlinear MPC and extended Kalman filtering

e Extremely flexible, all MPC parameters can be changed at runtime

o Integrated with MPC-optimized version of ODYS QP Solver

e Library-free C code, MISRA-C 2012 compliant, supports also single precision

e Currently used worldwide by several automotive OEMs in R&D and production
e MPC Toolbox Plugin to easily import NL-MPC projects from MPC Toolbox

e ODYS Deep Learning supports neural networks as prediction models

odys.it/embedded-mpc
36/66
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LEARNING-BASED NONLINEAR MPC



MACHINE LEARNING (ML)

e Good mathematical foundations from artificial intelligence, statistics,
optimization

e Works very well in practice (despite training is most often a nonconvex
optimization problem....)

e Used in myriads of very diverse application domains

e Availability of excellent open-source software tools also explains success
scikit-learn, TensorFlow/Keras, PyTorch, JAX,Flux.j1,.. @ python julia

Bemporad - MPC: from basics to learning-based design 37/66



CONTROL-ORIENTED NONLINEAR MODELS

e Black-box modeling: purely data-driven. Use training data to fit a prediction
model that can explain them

,»"‘Y_"‘\. ’ z _— Yy
e 4 prediction

e Physics-based modeling: use physical principles to create a prediction model
(e.g.: weather forecast, chemical reaction, mechanical laws, ...)

o s}
P =k (Wet Wege = kepr) + =21 T
d " Z | prediction Y
b= halkum = Wege = e+ 1W7) + 22 model
Pe=1(Pe=mmP)

e Gray-box modeling is a mix of the two. It can be quite effective

"All models are wrong, but some are useful."

(George E. P. Box)

38/66
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NONLINEAR SYS-ID BASED ON NEURAL NETWORKS

e Neural networks proposed for nonlinear system identification since the '90s

NNARX models: use a feedforward neural network to approximate the
nonlinear difference equation y; & N (Ys—1, -« Yt—n, s Ut—1,- - - Ut—ny)

Neural state-space models:

- w/state data: fit a neural network model ;41 & Ny (z¢,ut), yr ~ Ny(xt)

- /O dataonly: set x; = value of an inner layer of the network

Alternative for MPC: learn entire prediction

——— ]

Yook = hg(Te,ug, oy upap—1), k=1,...,N : —

|y

Recurrent neural networks are more appropriate for accurate open-loop
predictions, but more difficult to train (see later ...)
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NONLINEAR STATE-SPACE MODELS VIA AUTOENCODERS

e |dea: use autoencoders and artificial neural networks to learn a nonlinear
state-space model of desired order from input/output data

Ok Okt
0000000 QOO0000
S d v d /
0000 o 0000
,13; 8 — Thel —h mru
OdOO O statemap QO‘OQ
i € % g e
0000000 0000000
f
T e IIA
. I _ ’ / / ’ /
ANN with hourglass structure k= (Y o Yhongt1 Uk - Uy 1]
e Quasi-LPV structure for MPC:set  zx41 =  A(xk,ur) [F] + B(@r, uk)ur
— Tk
(Aij7 Bij7 Cij = feedforward NNS) Ye = C('Tk’ uk) [ 1 }

3

T

emporad - MPC: from basics to learning-based design 40/66



LEARNING NEURAL NETWORK MODELS FOR CONTROL



TRAINING FEEDFORWARD NEURAL NETWORKS

e Feedforward neural network model:

vig = A1z +b A g v
vo =  Aafi(vig) + b2 A
Yk = fy(zr,0) =
0= (A1,b1,...,ApL,b
vk = Ap,fr—1(v-1r) + b1 (A1, b1 z:be)
9 = fo(vew)
Examples: xj, = measured state, or 2, = (Yk—1,- -+ Yk—ny s Uk—1s - - - s Uk—ny, )
e Training problem: given a dataset {x¢, yo,...,ZNn—_1,Yyn—1} SOlve

N—1
mlnr )+ Z Uyk, f Hflm )
k=0

e |tis anonconvex, unconstrained, nonlinear programming problem that can be
solved by stochastic gradient descent, quasi-Newton methods, ... and EKF !
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TRAINING FEEDFORWARD NEURAL NETWORKS BY EKF

o Key idea: treat parameter vector 6 of the feedforward neural network as a
constant state

Ork+1 = Op+m
Y [k, 0r) + Gk

and use EKF to estimate 6, on line from a streaming dataset {z, yx }
e Ratio Var[n;]/ Var[(x] is related to the learning-rate
e [nitial matrix (PO‘,l)‘l is related to quadratic regularization on ¢
e Implemented in ODYS Deep Learning library

e Extended to rather arbitrary convex loss functions/regularization terms
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RECURRENT NEURAL NETWORKS

e Recurrent Neural Network (RNN) model:

Tyl = Sz (x;ﬁ Uk, Gm) [z, fy = feedforward neural network
Y = fy(xk7 ey)
e Training problem: given a dataset {uo, yo,- .., un—1,yn—1} SOlve
N—1
min r(0,00,0y) + > Lk, fy (k. 0y))
O, 0y k=0
oy, L1y TN—1

s.t. Th41 = fz(xknukﬁe )

e Mainissue: zj are hidden states, i.e., are unknowns of the problem
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TRAINING RNNS ONLINE BY EKF

Estimate both hidden states x;, and parameters 6., 0, by EKF based on

Thp1 = fo(Th, Uk, Ook) + &k

0:6(k+1) _ exk
0y(k+1) ayk

Yk fy(xk;‘gyk)+<k

+ Nk

RNN and its hidden state x, can be estimated on line from a streaming dataset
{uk, yx }, and/or offline by processing multiple epochs of a given dataset

Can handle general smooth strictly convex loss functions/regularization terms

Can add /1 -penalty A H [gw } H to sparsify 6, 0,, by changing EKF update into
vl
2(k|k) #(k|k—1) 0
{Gw(kk)} = [%(kk—l)] + M(k)e(k)—AP(k|k — 1) {signwm(krlkl))}
6, (k|k) 6, (k|k—1) sign(0y (k|k—1))
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TRAINING RNNS BY EKF - EXAMPLES

e Dataset: 3499 1/0 data of magneto-rheological fluid damper
e N=2000 data used for training, 1499 for testing the model

e Same data used in NNARX modeling demo of SYS-ID Toolbox for MATLAB

——EKF

¢ RNN model: 4 hidden states g ‘\%

shallow state-update and output functions L
6 neurons each, leaky-RelLU activation ® 1 pocts

S

e Compare with gradient descent (AMSGrad) e M

0 2 4

6 8 10 12
training time (s)

e Training time measured on MATLAB+CasADi implementation of EKF/AMSGrad
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TRAINING RNNS BY EKF - EXAMPLES

o Compare NRMSE® wrt NNARX model (SYS-ID TBX): [ 7

EKF = 91.97, AMSGrad = 85.58, NNARK(6,2) = 88.18 (training) || | ] e

——Narx_6_2: 85.15%

EKF =90.54, AMSGrad = 80.95, NNARX(6,2) = 85.15 (test) | S

e Repeat training with ¢1-penalty A H {ZZ }

‘ 1

90 0 8
- @
X N
40| —— NRMSE (test data) 405
| —— NRMSE (training data) o
= . ©
& 70/ —— percentage of zeros in 8 20E
z 3

1]

60 ) &

107" 107 107 107" 10° 10'
A

Ihormalized root-mean-square error
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TRAINING RNNS BY EKF - EXAMPLES

e Dataset: 2000 I/O data of linear system with binary outputs

G PN E

(k) = {1 if [-21.505]

0 otherwise

1

)+ |5 Juk+eky  Varlsi(k) = o
z(k) —2+C( ) >

Var[¢ (k)] = 02
e N=1000 data used for training, 1000 for testing the model

e Train linear state-space model with 3 states accuracy [%]
and sigmoidal output function 7 training | test

0.000 99.20 98.90
fl ( ) /(1 + e—Ay[z (k) u(k)) —b“) 0.001 99.30 98.90
0.010 99.20 98.70
0.100 96.50 97.00

o Training loss: (modified) cross-entropy loss 0.200 | 93.00 | 93.80
Cone(y(k),9) =D —vi(k)log(e + §i) — (1 — yi(k)) log(1 + € — §i)
=1
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TRAINING RNNS BY SEQUENTIAL LEAST-SQUARES

e RNN training problem = optimal control problem:
N—1

k=0
s.t. Th4+1 = fz(wkaulmez)
Uk = fy(-rkvey)

- 0,0y, x0 =manipulated variables, g = output, y, = reference signal
- r(xo, 0z, 0y) =input penalty, £(yx, i) = output penalty
- N = prediction horizon, control horizon = 1

e Linearized model:
Argyr = (Vafe) Az + (Vg f2) A0,
Ayy = (Va, fy)' Az, + (Ve, fy)' AD,
o Idea: take 2*d-order expansions of the loss ¢ and regularization term r
and use sequential least-squares + line search to minimize wrt xg, 6, 6,
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TRAINING RNNS BY SEQUENTIAL LS AND ADMM

o Fluid-damper example:

10* T 10" T
——EKF s EKF
—— AMSGrad —— AMSGrad
52 Seq. LS E Seq. LS
= L =
50 100 150 200 250 0 2 4 6 8 10 12
epochs training time (s)

¢ We want to also handle non-smooth (and non-convex) regularization terms

ming, g, o (w0, 0z, ey) + ch\]:_ol £y, fy(ack7 99» +9(0s,0,)
s.t. Tk+1 — fz(xkaukvam)

¢ ldea: use alternating direction method of multipliers (ADMM) by splitting

. N—
ming,,,0, ,xo,vy vy r(zo,0z,0,) + X:IC:O1 Yk, fy(zr, 0y)) + 9(va, 1vy)

s.t. Th41 = f:]:(xk7uk7 926)
)= |5

Vy

= o
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TRAINING RNNS BY SEQUENTIAL LS AND ADMM

e ADMM + Seq. LS = NAILS algorithm (Nonconvex ADMM lterations and Sequential LS)

.
z?+1 . P Or—v, +w
ot = argmingge,.0, V(z0,0z,0,) + § by vl (sequential) LS
9t+1
Hl t+1 t pgt+1 t
t+1 = prox;g(ex +w,, 0, + wy) proximal step
p
[ot+1] h o pt+1_ t4+1
wy, _ wy+0,T T —vy
wit! = [w3+0;+17,/;+1 u[acio&e dual vars

e Fluid-damper example: group-Lasso regularization g(vy) = 751, [[vf|]2
to zero entire rows and columns and reduce state-dimension automatically

@

100 F O .
g 16 &
= =
@ sof <473
= NRMSE (test data) &
DZ: NRMSE (training data) 23

final model order &
. . 0

0 )
10 10 10° 10t
group-lasso regularization parameter 7

=
Q
.
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TRAINING RNNS BY SEQUENTIAL LS AND ADMM

¢ Fluid-damper example: quantization of 0, 0, for simplifying model arithmetic
+ReLU activation function

g(6;) = { 0 if6;€Q Q = multiples of 0.1 between -0.5 and 0.5

+o00 otherwise

- NRMSE = 83.10 (training), 80.51 (test)
- NRMSE = 8.83(training), 2.69 (test) <« no ADMNM, just quantize after training
- Trainingtime: = 5s

o Note: no convergence to a global minimum is guaranteed

o NAILS = very flexible & efficient learning algorithm for control-oriented RNNs
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LEARNING HYBRID PREDICTION MODELS



LEARNING HYBRID MODELS

e Switching dynamics are better captured by piecewise affine (PWA) models and
handled by hybrid MPC techniques

f(2)
Fiz(k)+¢g1 ifHiz(k) < K3 =
v(k)=4q
Foz(k)+gs ifHez(k) < K,
T x \ —= |2
o(k) = ["6D] 2k = [20]

e PWA regression: learn both the { }, g;} and the partition { H;, K;}

¢ Any ML technique can be applied that leads to PWA models, such as
(leaky)ReLU-NNs, decision trees, softmax regression, KNN, ...
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PARC - PIECEWISE AFFINE REGRESSION AND CLASSIFICATION

e New Piecewise Affine Regression and Classification (PARC) algorithm

e Training dataset:
- feature vector z € R™ (categorical features one-hot encoded in {0, 1})
- target vector v, € R™¢ (numeric),va; € {wy;, ... ,wlh:'} (categorical)
e PARC iteratively clusters training data in K sets and fit linear predictors
1. fitve. = ajz + b; by ridge regression (=¢2-regularized least squares)
2. fitvg; = why, h. = argmax{ali;;, 2 + bl}; } by softmax regression

3. fit aconvex PWL separation function by softmax regression

B(2) = w Pz 4473 j(2) = min {arg ) nlaaxK{wjz + ’yj}}
J=1,...,
e Datareassigned to clusters based on weighted fit/PWL separation criterion

e PARC is a block-coordinate descent algorithm = (local) convergence ensured
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PARC - PIECEWISE AFFINE REGRESSION AND CLASSIFICATION

e Simple PWA regression example:

- 1000 samples of y = sin(4x1 — 5(x2 — 0.5)%) + 2z2 (use 80% for training)
- Look for PWA approximation over K = 10 polyhedral regions

Nonlinear function PARC (K = 10) N PARC (K = 10)

e Code download: ﬂ http://cse.lab.imtlucca.it/~bemporad/parc/
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DATA-DRIVEN HYBRID-MPC EXAMPLE

e Example: moving cart and bumpers +
heat transfer during bumps.

Spring and viscous forces are nonlinear.

e Categorical input F € {—F,0, F} and
categorical output ¢ € {green, ,red}

e Continuous-time system simulated for 2,000 s, w
sample time = 0.5 s (=4000 training samples)

e Feature vector z, = [yx, Uk, Tk, Fl] '

e Targetvector vy = [yk+1, Ukt1, Tht1, Ck]

0 250 500 750 1000 1250 1500 1750 2000
ime (s)

e Hybrid model learned by PARC (K = 5 regions)
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DATA-DRIVEN HYBRID-MPC EXAMPLE

e Open-loop simulation on 500 s test data:

position [m] position [m]

force switch force switch
1 1
0 J\Pﬁ 0 J\Pﬁ
-1 -1
200 200
time ( time (
continuous-time system discrete-time PWA model

e Model fit is good enough for MPC design purposes
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DATA-DRIVEN HYBRID-MPC EXAMPLE

position [m]

o MPC problem with prediction horizon N = 9: : J.'.\/ﬂ,_’ /\-/
1 \ d
N-1 temperature [°C]
ming, . Fy_, Z lex — 1 +0.25] Fy| i ——
k= 7
s.t. Fkoe {-F,0,F} L —
PWA model equations ! ‘"““ g "; ;‘ ;‘ ‘1 |
o ] i | |
e Problem can be cast to MILP. Al ‘“‘ - LM = —

time (s)

Solution time: 0.15-0.29 s (CPLEX)

e Data-driven hybrid MPC controller can keep temperature in zone

e Approximate explicit MPC: fit a decision tree on 10,000 samples
(accuracy: 99.9%). CPU time = 52--67 us. Closed-loop trajectories very similar.
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LEARNING OPTIMAL MPC CALIBRATION



MPC CALIBRATION PROBLEM

e The design depends on a vector x of MPC parameters

MPC parameters are intuitive to set (e.g., weights)

Still, can we auto-calibrate them ?

Define a performance index f over a closed-loop simulation or real experiment.
For example:

Z ly(t) = r(®)]” W

(!:ro«cmvxg quality)

Auto-tuning = find the best combination of parameters by solving
the global optimization problem

min f(x)
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AUTO-TUNING - GLOBAL OPTIMIZATION ALGORITHMS

e Several derivative-free global optimization algorithms exist:

Lipschitzian-based partitioning techniques:
o DIRECT (Dlvide in RECTangles)
e Multilevel Coordinate Search (MCS)

Response surface methods
o Kriging ,DACE
e Efficient global optimization (EGO)
o Bayesian optimization

Genetic algorithms (GA)

Particle swarm optimization (PSO)

¢ New method: radial basis function surrogates + inverse distance weighting

(GLIS) cse.lab.imtlucca.it/~bemporad/glis
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AUTO-TUNING: PROS AND CONS

e Pros:

sy Selection of calibration parameters x to test is fully automatic
sy Applicable to any calibration parameter (weights, horizons, solver tolerances, ...)

sl Rather arbitrary performance index f(x) (tracking performance, response time,
worst-case number of flops, ...)

e Cons:

i@ Need to quantify an objective function f(z)
i® No room for qualitative assessments of closed-loop performance

i@ Often have multiple objectives, not clear how to blend them in a single one
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ACTIVE PREFERENCE LEARNING

Objective function f(x) is not available (latent function)

We can only express a preference between two choices:

—1 ifx; “better” than x4 [f(z1) < f(z2)]
m(x1,9) =< 0  ifx; “asgoodas” zo [f(z1) = f(z2)]
1 if zo “better” than z; [f(x1) > f(x2)]

We want to find a global optimum z* (=“better” than any other x)

find 2* suchthat w(2*,2) <0, Vza e X, { <z <u

Active preference learning: iteratively propose a new sample to compare

Key idea: learn a surrogate of the (latent) objective function from preferences
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SEMI-AUTOMATIC TUNING BY PREFERENCE-BASED LEARNING

e Use preference-based optimization (GLISp) algorithm for semi-automatic
tuning of MPC

e Latent function = calibrator’s (unconscious) score

of closed-loop MPC performance
testing &
e GLISp proposes a new combination z 51 of MPC assessment

parameters to test

e By observing test results, the calibrator expresses a

n

preference, telling if x y 11 is “better”, “similar”, or
“worse” than current best combination

control preference

parameters :
. preference-

| based learning |

[ algorithm

o Preference learning algorithm: update the
surrogate f(z) of the latent function, optimize the —
acquisition function, ask preference, and iterate
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PREFERENCE-BASED TUNING: MPC EXAMPLE

e Example: calibration of a simple MPC for lane-keeping (2 inputs, 3 outputs)

vcos(f + 0) I —" e ]

vsin(6 + 0) /

6 = Lvsin(6) L

e Multiple control objectives:

» o« G

“optimal obstacle avoidance”, “pleasant drive”, “keep CPU time small’, ...

not easy to quantify in a single function

e 5MPC parameters to tune:

- sampling time
- prediction and control horizons

- weights on input increments Av, Ad
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PREFERENCE-BASED TUNING: MPC EXAMPLE

e Preference query window:

T,=0.3325, N, =16, N, =17, log(d,,) = 0.06, T,=0.2435,N, =12, N, =17, log(q,,) = 0.19,
109(d 5) = 2020 0.0867 'S 10g(d, ,,) = 0.70,t 1 0.0846's
obstacle obstacle
_ 6 — chicle OA _ 6 — chicle OA
£ m— obstacle OA £ m— obstacle OA
=3 =3
> >
0 0
0 50 100
80
E 70
g 60
> 50
40
0 50 100 150 200 250 0 50 100 150 200 250
50 50
25 25 -
= = MPC closed-I...
P e e e — mo—/\/w—a/\(v\»-—
w w
-25 -25
-50 -50
0 50 100 150 200 250 0 50 100 150 200 250

X, [m] X, [m]
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PREFERENCE-BASED TUNING: MPC EXAMPLE

e Convergence after 50 GLISp iterations (=49 queries):

4 —varicie Optimal MPC parameters:

E M —cbs!ac\%A

= 1 s obstacle OA
: !
1 - - - - - - sample time =85 ms (CPU time = 80.8 ms)
7%

- prediction horizon = 16

s — Reterence|
w ] - control horizon =5
* ] weight on Av =1.82

v [km/hr]

0 50 100 150 200 250
o I I I I - weighton A§=8.28
?:‘/' 0 l\\f
= Lot
20 | | ‘ |
0 50 100 150 200 250
X, [m]

e Note: no need to define a closed-loop performance index explicitly!

e Extended to handle also unknown constraints
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CONCLUSIONS

e Learning-based MPC is a formidable combination for advanced control:

- MPC/on-line optimization is an extremely powerful control methodology

- ML extremely useful to get control-oriented models and control laws from data

e |gnoring ML tools would be a mistake (a lot to “learn” from machine learning)

e ML cannot replace control engineering:
- Black-box modeling can be a failure. Better use models when possible
- Approximating the control law can be a failure. Don’t abandon on-line optimization

- Pure Al-based reinforcement learning methods can be also a failure

o A wide spectrum of research opportunities
and new practices is open ! // 3] e
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