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MODEL PREDICTIVE CONTROL

Prediction model Online optimization

|

process

. Model,
set-points (T U inputs outputs
* Predictive _
r(t) .4 u(t) y(t)
Controller
] measurements

e Use adynamical (M)odel of the process to (P)redict its future evolution and
choose the “best” (C)ontrol action
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MODEL PREDICTIVE CONTROL

e MPC problem: find the best control sequence over a future horizon of NV steps

N—-1
min > [WY(yr — r(0)3 + W (ur — ur($))]13
k=0
st.  xpi1 = f(aw, ug) Pradiciziom model
yr = 9(zk)
Umin < Uk < Umax ~ CcOnstraints
Ymin < Yk < Ymax
xo = x(t) state feedback
numerical optimization problem

If+1 t+1+k t+N+1

@ -estimate current state z(t)
@ optimizewrt {uo, ..., un_1}

9 only apply optimal ug as input u(¢)

A. Bemporad - All rights reserved.



MODEL PREDICTIVE CONTROL

e Conceivedinthe 60’s

e Used in the process industries since the 80’s

e Nowadays spreading to the automotive industry and other sectors

e An MPC for engine control developed by General Motors and ODYS is in
high-volume production since 2018

First known mass production of MPC
in the automotive industry

& opeim www.odys.it
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MODEL PREDICTIVE CONTROL

Prediction model Online optimization

|

Model,

process

set-points (G inputs outputs
" Predictive —_—
r(t) - L u(t) y(t)
Controller
measurements

Calibration

e MPCrequires a prediction model, a way to solve on-line optimization
efficiently, and to calibrate various parameters (weights, horizon, etc.)
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MODEL PREDICTIVE CONTROL

How to get good bredic o Online ofimizati Can we reduce problem size ?
prediction models rediction mode niine optimization | vy to warm-start the solver ?
from data ? ‘
process
set-points inputs outputs
(t) u(t) y(t)
measurements

How to select the best
MPC parameters ?

Calibration

e Machine Learning (ML) can help addressing the above questions
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OUTLINE

e Prediction models

- Autoencoders to learn nonlinear models from data

- Softmax+ridge regression to learn hybrid models from data

e Online optimization
- Binary classification to learn the initial guess for hybrid MPC

- Unsupervised learning + SVD to reduce the number of
optimization variables in linear MPC

e (Semi)automatic calibration using radial basis functions

- Learning the best MPC parameters from closed-loop experiments

- Active preference-based learning from human assessments
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LEARNING PREDICTION MODELS



MACHINE LEARNING (ML)

e Massive set of techniques to extract mathematical models from data
for regression, classification, decision-making

¢ Good mathematical foundations from artificial intelligence,
statistics, optimization

e Works very well in practice (despite training is most often
a nonconvex optimization problem ...)

output

e Used in myriads of very diverse application domains

¢ Availability of excellent open-source software tools also explains success

scikit-learn, TensorFlow/Keras, PyTorch,.. (f" python )
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NONLINEAR PREDICTION MODELS

e Physics-based nonlinear models (=white-box models)

e Black-box nonlinear models (NL SYS-ID/machine learning)

e A mix of the above (gray-box models) is often the best

n .
faiecieded: v Y
J ook et s
> > - 4 /
" e > |
> f T
A bW e ~ki) + T i
e 2[E
= balkn =Wy =Wt W) + 222 box

Pe= }(Pe=mmP)

e Online computation complexity depends on chosen model

e Jacobians of prediction models are required
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NONLINEAR MPC

e Nonlinear MPC: solve a sequence of LTV-MPC problems at each sample step

current state

simulate QP
initial input
sequence I.ﬂ ‘.
optimize

linearize

optimal
sequence

e Sequential QP solves the full nonlinear MPC problem, by using well assessed
linear MPC/QP technologies

e Special case of single QP = LTV-MPC (a.k.a. Real-Time Iteration)

e Same model can be used for state estimation (e.g., extended Kalman filtering)
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NONLINEAR SYS-ID BASED ON NEURAL NETWORKS

e Neural networks proposed for nonlinear system identification since the '90s

o NNARX models: use a feedforward neural network to approximate the
nonlinear difference equation y; & N (Ys—1, -« Yt—n, s Ut—1,- - - Ut—ny)

o Neural state-space models:

- w/state data: fit a neural network model ;41 & Ny (z¢,ut), yr ~ Ny(xt)

- /O dataonly: set x; = value of an inner layer of the network

e Recurrent neural networks are more appropriate for accurate open-loop
predictions, but more difficult to train (although not impossible....)

e Alternative for MPC: learn entire prediction

—_—

Yt+k = hk(.Tt,Ut,. . :“’2‘,+k71)7 k= I.. 'aN Y




LEARNING NONLINEAR STATE-SPAGE MODELS FOR MPC

e |dea: use autoencoders and artificial neural networks to learn a nonlinear

state-space model of desired order from input/output data

ANN with hourglass structure
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LEARNING NONLINEAR STATE-SPAGE MODELS FOR MPC

e Training problem: choose n,, ny, n, and solve
N—1 (%A ({k 1
;no}ne D« <él(ok, Ok) +£1(Og1, Ok+1)) R OQO?OO,O
h=ho N oooo' & oooo
+B82(xf 1 Th+1) +7€3(Ok41,OF 4 1) T
OOOO O state map 0000
dOOOOOb

N
OOOOOOO

N -1 ] |

N I uy I

st. wxp =e(lg_1), k=ko,...,

Thiq = [(@ksug), k=Ko, ...

Oy = d(zy), Of = d(z}), k = ko, ...,

o Model complexity reduction: add group-LASSO penalties on subsets of weights

e Quasi-LPV structure for MPC:set  f(ak,ur) = A(xg,ur)|["F]+ Bk, uk)uk
= C(xg,ur) [F]

(Aij, Bij, C;; =feedforward NNs) Yk

o Different options for the state-observer:
- use encoder e to map past I/0O into x;, (deadbeat observer)

- design extended Kalman filter based on obtained model f, d
- simultaneously fit state observer Zx11 = s(xk, uk, yx) With loss L4 (£x+1, Tr41)

rights reserved.
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LEARNING NONLINEAR NEURAL STATE-SPACE MODELS FOR MPC

Example: nonlinear two-tank benchmark problem

- { z1(t+1) = 21(t) — k1 /71 (£) + kau(t)

(
X, 0) .}H z2(t + 1) = x2(t) + ks/z1(t) — k4\/m

y(t) = @2(t) + u(t)

“‘“"“_Eu Model is totally unknown to learning algorithm

www.mathworks.com

e Artificial neural network (ANN): 3 hidden layers

60 exponential linear unit (ELU) neurons . \NM

e For given number of model parameters,
autoencoder approach is superior to NNARX

e Jacobians directly obtained from ANN structure E I S

xxxxxxxxx

for Kalman filtering & MPC problem construction LTV-MPC results
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LEARNING HYBRID MODELS

e Switching dynamics are better captured by piecewise affine (PWA) models and
handled by hybrid MPC techniques

f(2)
Fiz(k)+¢g1 ifHiz(k) < K3 —
v(k)=4q :
Foz(k)+gs ifHez(k) < K,
& x \ —= |2
o(k) =[], 2k = [20]

e PWA regression: learn both the { F}, g;} and the partition { H;, K;}

e Any ML technique can be applied that leads to PWA models, such as
ReLU-NNs, decision trees, softmax regression, KNN, ...
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PARC - PIECEWISE AFFINE REGRESSION AND CLASSIFICATION

e New Piecewise Affine Regression and Classification (PARC) algorithm

e Training dataset:
- feature vector z € R™ (categorical features one-hot encoded in {0, 1})
- target vector v, € R™¢ (numeric),va; € {wy;, ... ,wlh:'} (categorical)
e PARC iteratively clusters training data in K sets and fit linear predictors
1. fitve. = ajz + b; by ridge regression (=¢2-regularized least squares)
2. fitvg; = whr, h. = argmax{al};;, 2 + bl};} by softmax regression

3. fit aconvex PWL separation function by softmax regression

D(2) = w Pz 4473 j(2) = min {arg ) nlaaxK{wjz + ’yj}}
j=1,...,
e Datareassigned to clusters based on weighted fit/PWL separation criterion

e PARC is a block-coordinate descent algorithm = (local) convergence ensured

©2021 A Bemporad - All rights reserved.



PARC - PIECEWISE AFFINE REGRESSION AND CLASSIFICATION

e PARC for learning hybrid models (state-space form):

zc (k)
feature vector: z;, = [Z;ég] € Rnretme x {0, 1}metme
ug (k)

zc(k+1)

target vector: vy = |::czj(ck(«l|c—)l):| € R"etPe x {0,1}metPe

ye (k)
o Input: dataset {z, vk}kN;Ol and desired number K of partitions.
e The PARC algorithm iteratively finds:

1. [‘”C(k“)] = a;z + b; by ridge regression (={2-regularized least squares)

ye (k) .
7=1...,K
2. [”y(ek(:)l)] = (1 +sign(cjzx + d})) by logistic regression j=1,....K

3. APWApartition P, = {2 : w'z + " > w/z 4+ +7, Vj # i} by softmax regression
(possibly sub-partitioned by categorical target functions)
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PARC - PIECEWISE AFFINE REGRESSION AND CLASSIFICATION

o Simple PWA regression example:

- 1000 samples of y = sin(4x1 — 5(x2 — 0.5)?) 4 222 (use 80% for training)
- Look for PWA approximation over K = 10 polyhedral regions

Nonlinear function PARC (K = 10) . PARC (K = 10)

e Code download: p http://cse.lab.imtlucca.it/~bemporad/parc/

©2021 A. Bemporad - Al rights reserved
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DATA-DRIVEN HYBRID-MPC EXAMPLE

e Example: moving cart and bumpers +
heat transfer during bumps

e Categorical input F € {—F,0, F'} and
output ¢ € {green, ,red}

e Continuous-time system simulated for 2,000 s,
sample time = 0.5 s (=4000 training samples)

e Feature vector zy, = [yk, Uk, Tk, F]

o Targetvector vy = [yk+1, Uk+1, Tht1, Ck]

e Hybrid model learned by PARC (K = 6 regions) ol |

500 2000
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DATA-DRIVEN HYBRID-MPC EXAMPLE

e Open-loop simulation on 500 s test data:

position [m]

04 A-mR-—Hn
02 A |
001 —— | 1|l N — N -
02 HH-HHA iyl
-04 i
0 jﬂ = iillﬂ 400 500

continuous-time system discrete-time PWA model

e Model fit is good enough

©2021 A. Bemporad - All rights reserved.



DATA-DRIVEN HYBRID-MPC EXAMPLE

position [m]

e MPC problem with prediction horizon N = 20: a5

30 ﬁ
N—-1 25 J
minFOv“gFNfl Z |Ck - | + O2|Fk| 2014 ;
k=0 15

s.t. Fy € {—F,O,F} 10
PWA model equations 50 temperature ['C]

ol L T~ [~

e Problem can be cast to MILP 20 /
e Continuous-time system in closed-loop with fore 1]
hybrid MPC simulated for 100 s 04
0.2
e Data-driven hybrid MPC controller is able to 00
keep mass temperature in zone zj
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REDUCTION OF ONLINE COMPUTATIONS



(APPROXIMATE) EXPLICIT MPC

e Explicit MPC solves (small, LTI) MPC problems offline exactly
Fiz+g1 if Hizx<K;

Fyr+gy  if Hyz < Ky

e Limited to small (LTI) problems, online QP is often lighter

e Any function regression technique can be used to approximate MPC laws:
- Collect M samples (z;, u;) by solving MPC optimization problem for each z;
- Fitapproximate mapping @(x) on the samples, such as using

o Neural networks
o PWA regression
o Nonlinear system identification

- Performance / feasibility/ closed-loop stability usually verified a posteriori

A. Bemporad - All rights reserved.



SEMI-EXPLICIT MPC

e Semi-explicit MPC: use binary classification to learn the optimal active set of a
parametric QP for warm start

e Learn optimal binary variables §*(x) of parametric MIQP/LP, then solve QP/LP
online, or warm-start MIP solver

e Example: hybrid MPC of for microgrid optimization

1
microgrid I binary variable
model : parameterization

online
optimizer

|
—L
|
| |
MILP LP
15,725 MILP solutions collected to train 6*(z)

decision tree and random forest classifiers compared to exact MILP solution
and rule-based controller

©2021 A. Bemporad - All rights reserved.



SEMI-EXPLICIT MPC

e Example: hybrid MPC of a microgrid (cont'd)
‘Average CPU time (s)‘

QL L

MILP | (4202.4) (4737.0)
RB | 4341713.3%) | 472950.9%)
RF7_[(4270.5)1.6%) | (4786.611.0%)
DT7 | 4296.5(2.2%) | 4761.9 (0.5%)

—%— MILP
e RF7 = Random Forest (depth=7)
s DT7 = Decision Tree (depth=7) |
RB = Rule-Based algorithm

| RB | REZ | D17
% infeasible | 0% \ngp\ 8.04%

AN M MUANA e A AN A AA e AALANAN e pm s

0 50 simulation number 100 150

e RF7 and DT7 reduce online CPU time by ~ 9698 %
e Optimal costs of exact MILP and RF7 are similar
e RF7 produces almost always feasible solutions

e RB controller is lighter better but requires deep domain-specific knowledge !




LOSSLESS REDUCTION OF MPC PROBLEM VARIABLES

e Linear (parameter-varying) MPC = constrained least squares problem

min, %HA(Q)Z - b(@)”%
st. C(0)z =e(0)
G(0)z < g(0)

e Standard condensing: eliminate xy,
only keep u, as optimization variables

e LQ prestabilizer: apply u, = Kz + vg
and condense

102

2= Qo()s + 2(0) € RT(natnu) ol ‘
s € RT™ = new variables ! ig % l ] i
numerically very robust wL% % $ #

10 20 30 40 10 20 30 40
T T

* QR factorization: C’ = [Q1 Q2] [ § ] 3 ] %

©2021 A. Bemporad - All rights reserved.




LOSSY REDUCTION OF MPC PROBLEM VARIABLES

suboptimality

e Control horizon often used to reduce # vars

10 S
%%%%%%%%%%%%%
e ldea: linear PCAtoreducetom < T'n,, - %%
vars
- Co"ect optimal SOIUtions S;:: fongiVen 0% 123456 7 8 91011121314151617 1819
values of 6, remove mean s optimizer error
A . 10° TEEST
- compute Singular Value Decomposition %%%%%%%%%%%%%%
! 10
S = [ST—E 37\4—5} =UxV’
-10
- keep onlyﬁrstm principal directions 10 123456 7 8 910111213141516171819
P = [Vl . Vm] %108 constraint violation
1
- new optimization vectorv € R™ 08
0.6
- 0.4
— vt M@Q@MMM
RIS el el e T

12345678 910111213141516171519

o Complexity / solution quality tradeoff

A. Bemporad - All rights reserved.




LOSSY REDUCTION OF MPC PROBLEM VARIABLES

. . . suboptimality
e The optimal basis ® is an average over all 8;, ﬁ e
e K-SVD: a new “K-means’like algorithm to w0* % # # # # # #
k=1
cluster 6y, ...,0, in K sets and get wiHERD %
K=4
Corresponding bases ®1,...,P R I E R Tt AT
optimizer error
e K-SVD converges in a finite number of e
" B e
steps to a local minimum of e Hﬂ% %&Hl #
M e %ﬁ
. . i [ 1K=3
min Zmln Isi — @ v — g(i)H% ; K-
]7{(1)]145%}5(:1 =1 v 0 1 3 5 7 9 11 13 15 17 19
] 1 . %108 constraint violation
s.t. ¢%:ﬁzsj,]:1,,K ! e
I ier; o8 =
0.6 K=14
¢ K neural one-to-all classifiers trained to o4 M M M
0.2
separate the resulting clusters . i& M M

1 3 5 7 9 1 13 15 17 19
m
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LOSSY REDUCTION OF MPC PROBLEM VARIABLES

7 (Bemporad, Cimini, 2020, arXiv)
s ﬂ@f

e Example: LPV-MPC control of CSTR

— g = eXact (n=3)

b = single SVD (m=2)
¢=K-8VD (m=2)
s (| = €XaCt (R=2)

e M=10,000 samples, K = 10 clusters

" s [kgmol/m]
5 a
b
. 0
0 20 40 60 80 100
time (h)
7 [K]
400 N
@0 @0 w0 w0 I w0 a0 a0 b
T, K] 350 d
performance | value MPC setting
Jexact,?O 31968 n= 20 = T’ exaCt 3000 20 40 60 80 100
Jexact, 10 319.69 n = 10, exact time (k)
Jexact,4 319.93 | n =4, exact 7y [K]
Joxact,3 320.17 n = 3, exact
Jexact,2 567.86 n = 2, exact
Jeva 32833 | n =3 m = 2 (single SVD)
Jxsvd 320.17 | n =3, m = 2 (K-SVD) 00

time [h]
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LEARNING OPTIMAL MPC CALIBRATION



MPC CALIBRATION PROBLEM

The design depends on a vector x of MPC parameters
MPC parameters are intuitive to set (e.g., weights)

Still, can we auto-calibrate them ?

Define a performance index f over a closed-loop simulation or real experiment.
For example:

Z ly(t) = r(®)]” W

(!:ro«cmvxg quality)

Auto-tuning = find the best combination of parameters by solving
the global optimization problem

min f(x)

©2021 A. Bemporad - All rights reserved.



AUTO-TUNING - GLOBAL OPTIMIZATION ALGORITHMS

e Several derivative-free global optimization algorithms exist:

Lipschitzian-based partitioning techniques:
o DIRECT (Dlvide in RECTangles)
e Multilevel Coordinate Search (MCS)

- Response surface methods
o Kriging ,DACE
o Efficient global optimization (EGO)
e Bayesian optimization

Genetic algorithms (GA)

Particle swarm optimization (PSO)

e New method: radial basis function surrogates + inverse distance weighting
(GLlS) cse.lab.imtlucca.it/~bemporad/glis

©2021 A. Bemporad - Al rights reserved


cse.lab.imtlucca.it/~bemporad/glis

25

AUTO-TUNING - GLIS

e Goal: solve the global optimization problem

mlniE f(l') 15
st. f<zx<u
g(z) <0

o Step #0: Get random initial samples z1, ...,z N,
(Latin Hypercube Sampling) oE e e

o Step #1: given N samples of f atzq, ...,z N, build the surrogate function
¢ = radial basis function

N
fA(m) = ZBZ¢(€||‘7" - :I"iHQ) Example: ¢(ed) =
=1

(inverse quadratic)

1
1+ (ed)?

Vector 3 solves f(xl) = f(=z;)foralli =1,..., N (=linear system)

e CAVEAT: build and minimize f(xi) iteratively may easily miss global optimum!

©2021 A. Bemporad - All rights reserved.



AUTO-TUNING - GLIS

e Step #2: construct the IDW exploration function
_ 2 -1 1
z(r) = ZAFtan (Zﬁ\’zlwi(r))
orOifx € {z1,...,2n}
o () e lle—z;|?
where w;(z) = ——=
' = i

AF = observed range of f(x;)
o= exploitation vs

e Step #3: optimize the acquisition function exploration tradeoff

ey = argmin  f(z) — 02(x) parameter

st. £<z<wu, g(z)<0

to get new sample x 11

e l|terate the procedure to get new samples zy42,..., TN,

©2021 A. Bemporad - All rights reserved.



GLIS VS BAYESIAN OPTIMIZATION

ackley . adjiman
10 o problem n BO [s] GLIS [s]
5 . ackley 2 2939 313
ol . 72 adjiman 2 329 0.68
10 20 30 40 50 60 5 Branm > 365 7
branin camelsixhumps _ . :
200 6000 camelsixhumps 2 4.82 0.62
4000 hartman3 3 2627 335
100
2000 hartmané 6 5437 8.80
S 0 5 n) is Rimmelblau 2 740 030
0 hartman3 hartman6 rosenbrock8 8 63.09 13.73
stepfunction2 4 1172 1.81
2 styblinski-tang5 5 37.02 .10

1500 1

Results computed on 20 runs per test

1000 f\

500

BO = MATLAB's bayesopt fcn

20 40 60 80

styblinski-tang5

\

5 10 15 20 25 ) 10 20 30 40 50 60
number of function evaluations number of function evaluations




MPC AUTOTUNING EXAMPLE

e Linear MPC applied to cart-pole system: 14 parameters to tune

- sample time

- weights on outputs and input increments
- prediction and control horizons

- covariance matrices of Kalman filter

- absolute and relative tolerances of QP solver

T
¢ Closed-loop performance score: J = / [p(t) — pree(t)| + 30]|(2)|dt
0

e Performance tested with simulated cart on two hardware platforms
(PC, Raspberry PI)

©2021 A. Bemporad - All rights reserved.



MPC AUTOTUNING EXAMPLE

MPC optimized for desktop PC MPC optimized for Raspberry PI

L0

iton (m)

Angle (deg) o
. % |
Angle (deg) o
g

Force (N)
Force (N)

optimal sample time =6 ms optimal sample time = 22 ms

e Auto-calibration can squeeze max performance out of the available hardware
o MPC parameters tuned by GLIS global optimizer

e Bayesian Optimization gives similar results, but with larger computation effort

©2021 A Bemporad - All rights reserved.



AUTO-TUNING: PROS AND CONS

e Pros:

sy Selection of calibration parameters x to test is fully automatic
s Applicable to any calibration parameter (weights, horizons, solver tolerances, ...)

s Rather arbitrary performance index f(x) (tracking performance, response time,
worst-case number of flops, ...)

e Cons:

i@ Need to quantify an objective function f(z)
i® No room for qualitative assessments of closed-loop performance

i® Often have multiple objectives, not clear how to blend them in a single one




ACTIVE PREFERENCE LEARNING

Objective function f(x) is not available (latent function)

We can only express a preference between two choices:

—1 if z1 “better” than z, [f(z1) < f(z2)]
m(x1,22) =¢ 0  ifx; “asgoodas” z [f(z1) = f(x2)]
1 if zo “better” than z; [f(x1) > f(x2)]

We want to find a global optimum z* (=“better” than any other x)

find 2* suchthat w(2*,2) <0, Vza e X, { <z <u

Active preference learning: iteratively propose a new sample to compare

Key idea: learn a surrogate of the (latent) objective function from preferences

©2021 A. Bemporad - All rights reserved.



SEMI-AUTOMATIC TUNING BY PREFERENCE-BASED LEARNING

e Use preference-based optimization (GLISp) algorithm for semi-automatic
tuning of MPC WeB06.1

e Latent function = calibrator’s (unconscious) score

of closed-loop MPC performance
testing &
e GLISp proposes a new combination x 1 of MPC assessment

parameters to test

e By observing test results, the calibrator expresses a

preference, telling if x 11 is “better”, “similar”, or
“worse” than current best combination

control preference

parameters [
. preference-

. based learning |

. algorithm

o Preference learning algorithm: update the
surrogate f(z) of the latent function, optimize the
acquisition function, ask preference, and iterate

©2021 A. Bemporad - All rights reserved.



PREFERENCE-BASED TUNING: MPC EXAMPLE

e Example: calibration of a simple MPC for lane-keeping (2 inputs, 3 outputs)

vcos(f + 0) A $0

vsin(6 + 0) /

6 = Lvsin(6) o

e Multiple control objectives:

» o« G

“optimal obstacle avoidance”, “pleasant drive”, “keep CPU time small’, ...

not easy to quantify in a single function
e 5MPC parameters to tune:

- sampling time
- prediction and control horizons

- weights on input increments Av, A§

©2021 A. Bemporad - All rights reserved.



PREFERENCE-BASED TUNING: MPC EXAMPLE

e Preference query window:

T,=0.3325, N, =16, N, =17, log(d,,) = 0.06, T,=0.2435,N, =12, N, =17, log(q,,) = 019,
109(d, 5) = 2020 0.0867 S 10g(d, ,,) = 0.70,t 1 0.0846's
hic ehicle
obstacle obstacle
_. 6 m— chicle OA _. 6 m—chicle OA
£ m— obstacle OA £ m— obstacle OA
=3 =3
> >
0 0
0 50 100 150 200 250 0 50 100 150 200 250
80 Input 80 Input
— Ref - Ref
E70 eference E0 eference
_i 60 g 60 (\
> 50 > 50 o
40 40
0 50 100 150 200 250 0 50 100 150 200 250
50 50
25 25 -
= = MPC closed-I...
P e e e — ,,,O—/\/V‘—'—\“(\AA-—-———-
w sl -
25 -25 L . .
9 Which tuning do you prefer ?
-50 -50
0 50 100 150 200 250 0 50 100 150 200 250 @
%, [m] X, [m]
©2021 All rights reserv




PREFERENCE-BASED TUNING: MPC EXAMPLE

e Convergence after 50 GLISp iterations (=49 queries):

Optimal MPC parameters:

y, [m]

- sample time =85 ms (CPU time = 80.8 ms)

- prediction horizon = 16
- control horizon =5

- weighton Av=1.82
- weighton A6 =828

200 250
X, [m]

e Note: no need to define a closed-loop performance index explicitly!

v [km/hr]

e Extended to handle also unknown constraints

©2021 A. Bemporad - All rights reserved.




CONCLUSIONS

e Numerical methods have steadily revolutionized control design over the years
(linear algebra, LMI’s, embedded optimization, ...)

Now it's machine learning’s turn

Machine learning offers several tools for MPC design:
- toget nonlinear and hybrid prediction models from data
- toreduce on-line computations

- toautomatically (or semi-automatically) calibrate the control law

A wide spectrum of research opportunities
and new practices is open !

past | future




