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MODEL PREDICTIVE CONTROL (MPC)

prediction model

optimization
: algorithm

model-based optimizer
process

set-points inputs outputs
— —p
r(t) u(t) y(t)
T measurements

Use a dynamical model of the process to predict its future
evolution and choose the “best” control action
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MODEL PREDICTIVE CONTROL (MPC)

o MPC setup: find the best control sequence over a future horizon of IV steps

N—1
min Y WY (g — r(@)II3 + W (ur — ue(®))]]3 past | future
k=0 B Jv 777777 !
st.  xpi1 = f(zr, uk) Pra&ic&tou model ‘ predicted outputs
pﬂ-: U —
yr = g(zr) '/F‘—f manipulated inputs
Umin < Uk < Umax  conskrainks f ok TN
Ymin < Yk < Ymax
zo = x(t) state feedback o //‘-.“‘H-‘
numerical optimization problem e
t+1  t+1+k t+N+1

@ estimate current state z(t)
9 optimize wrt {uo, ..., un-1}

@ only apply optimal u as input u(t)

e [f prediction model is linear then optimization is a Quadratic Program (QP)

Bemporad 3/45



MPC IN INDUSTRY

e The MPC concept dates back to the 60’s

' Discrete Dynamic Optimization
pplied to On-Line Optimal Control
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e MPC used in the process industries since the 80’s

Today APC (advanced process control) = MPC
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OUTLINE

e Model Predictive Control (MPC) (in a nutshell)
= MPC in the automotive industry
e Embedded quadratic programming (QP) solvers for MPC

e Calibration of embedded MPC controllers

future
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e Trends in MPC technology (MPC and machine learning)




AUTOMOTIVE APPLICATIONS OF MPC

Powertrain Ford Motor Company

engine control, magnetic actuators, robotized gearbox, Jaguar
ower MGT in HEVs, cabin heat control, electrical motors .
P DENSO Automotive FCA

Vehicle dynamics
traction control, active steering, semiactive suspensions,

autonomous driving
oDN'SsS

General Motors

Most automotive OEMs are looking into MPC solutions today
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MPC OF GASOLINE TURBOCHARGED ENGINES

e Optimize engine actuators (throttle, wastegate, intake/exhaust cams) to make
engine torque track set-points, maximizing efficiency and satisfying constraints

MPC
Desired Actuators Achieved
torque commands Torque
—_—
Measurements

numerical optimization problem

solved in real-time on ECU

General D D\ /8 ;

Motors Py —

e, TR [y . :

engine operating at low pressure (66 kPa)
6/45

(Bemporad, Bernardini, Long, Verdejo, 2018)
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ENGINE CONTROL — MULTIPLE LINEAR MODELS

e Multitude of linear prediction
models derived to cover entire
operating envelope of the engine

¢ Models calibrated to engine data

e Each MPC paired to unique
prediction model and Kalman filter

Y

(courtesy of ). Verdejo, GM)

e Number and scheduling of models
is important
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ENGINE CONTROL — STEADY-STATE INPUTS

Good steady-state input references w,.(t) are very important for fuel efficiency

N-1
min Y [[W¥(yx — r())]3 + IW* (ur, — us(0)]13
k=0
Va
e Optimal (most fuel-efficient) steady-state -2 — 4, throtte

—> u, wg

actuator positions computed for each desired

— u,; ecam

torque level and stored in ROM as look-up tables —= > U icam

(courtesy of ). Verdejo, GM)
o MPC will closely follow u,. as a suggestion during steady-state

o MPC will deviate from u,. during transients and due to aging/changes in
environmental conditions
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ENGINE CONTROL - CONTROLLER STRUCTURE

M2

e State estimated by Kalman Filter

from output measurements y(t) NV |

Engine

Signals fed to MPC in real-time:
- state estimate
- references r(t), u,(t)
- constraints : g—

e

- measured disturbances -

Main tuning parameters:
Hry 9 "’1/'11, ’ I/{/YA ws P

Optimal input trajectory returned by QP solver in real-time

Framework easily generalizable to other control problems
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SUPERVISORY MPC OF POWERTRAIN WITH CVT

e Coordinate engine torque request and continuously variable transmission
(CVT) ratio to improve fuel economy and drivability

e Real-time MPC is able to take into account coupled dynamics and constraints,
optimizing performance also during transients

Engine

torque

request
—

Desired

axle torque
—_—

,:‘.!"“‘
MPC L, B8

CVT
ratio
request

CVT Control US06 Double Hill driving cycle
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MPC IN AUTOMOTIVE PRODUCTION SINCE 2018

The MPC developed by General Motors and ODYS for torque tracking in
turbocharged gasoline engines is in high-volume production since 2018

e Multivariable system, 4 inputs, 4 outputs.
QP solved in real time on ECU

e Supervisory MPC for powertrain control
also in production since 2018

First known mass production of MPC in the automotive industry

/
http://www.odys.it/odys-and-gm-bring-online-mpc-to-production D D \

Advanced Controls & Optimization
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DO WE REALLY NEED ADVANCED CONTROL ?

¢ Increasingly demanding requirements (emissions/consumption, passenger

safety and comfort,...)
convtroller engine

e Better control performance only achieved gesieq actuators
—p

by better coordination of actuators: torque

j | torque
| —

T sensors

- increasing number of actuators

(e.g., due to electrification) ,@.W

- take into account limited range of actuators Ty

- resilience in case of some actuator failure .._/‘

e Shorter development time for control solution
(market competition, changing legislation)

2019 2020
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LIMITATIONS OF CLASSICAL CONTROL

e Classical approach:
- many single PID loops
- anti-windup for actuator saturation
- many lookup tables

o Longdesign & calibration time due to:
- complexity of anti-windup due to interactions
difficulty to recover from actuator failure e e

design space increases exponentially AN, Uy
(e.g: 5inputs, 10 values each — 10° entries)

hard to coordinate multiple actuators optimally
design difficult to port to a different vehicle model

TR R U1 min

Modern vehicles need advanced controls
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KEY CHALLENGES IN MPC DESIGN FOR PRODUCTION

e Online optimization

- Need fast & reliable embedded optimization solvers

- Can we avoid real-time optimization ?

¢ Modeling

- Getting the prediction model is usually the largest design effort

- Canwe learn good prediction models from data?

e Calibration (=reinforcement learning) of MPC

- Canwe automate MPC calibration based on observed performance?
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OUTLINE

e Model Predictive Control (MPC) (in a nutshell)
e MPC in the automotive industry
= Embedded quadratic programming (QP) solvers for MPC

e Calibration of embedded MPC controllers

future
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e Trends in MPC technology (MPC and machine learning)




EMBEDDED LINEAR MPC AND QUADRATIC PROGRAMMING

e MPC based on linear models requires solving a Quadratic Program (QP)

Gz < W+ Sa(t)

. 1 / / U 1 / o 2
min 57 Qz+2'(t)F'z + Phd (t)Yx(t) w1
! e

s.t. Gz <W + Sz(t) T

UN -1

O MINmizing A CoNyeX FUNCTION SUBJIECT TO LINEAR INEOUALITIES

Ry F. M. . Roarn

Admivaity fewaren £

sutngrin, M

SUMMARY
Tre minimizatian of 4 convex function of varinbles subject to linear inequalities is
discussed briefly in zenccal wernms.  Daatziy’s Siowplex Method i exended o yield
linite slgorithms for minimuzng either > convex guadratic function or the sum of
the r largest of a set of lincar functions, aad the solution of a geoemlization of the
latter probar is indicated. I the last twa sections & form ol lineur programoun;
with madom variahks as cosfficienrs is deseribed, and shown to inwalva the minimiza-
Lion of 8 conves (unction.

Arich set of good QP algorithms is available today &, ~

o Not all QP algorithms are suitable for industrial embedded control
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MPC IN A PRODUCTION ENVIRONMENT

Key requirements for deploying MPC in production:

1. speed (throughput) P
)
- worst-case execution time less than sampling interval O
- alsofast on average (to free the processor to execute other tasks) N

2. limited memory and CPU power (e.g., 150 MHz / 50 kB) m

3. numerical robustness (single precision arithmetic) L‘i!
4. certification of worst-case execution time AR Y
c\‘,\"‘““
5. code simple enough to be validated/verified/certified
(library-free C code, easy to check by production engineers)
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EMBEDDED SOLVERS IN INDUSTRIAL PRODUCTION

e Multivariable MPC controller
e Sampling frequency = 40 Hz (= 1 QP solved every 25 ms)
e Vehicle operating ~1 hr/day for ~360 days/year on average

e Controller running on 10 million vehicles

~§20,000,000,000,000 QP/yr

and none of them should fail.
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REGULARIZED ADMM FOR QUADRATIC PROGRAMMING

e “Regularized” Alternating Direction Method of Multipliers (ADMM):

A = (Q+ pA A+ el)T e — ez + pA(uF — 2F))
skt = min{max{AzF*tt +y* £} u}
uktl =k 4 ARkl _ gkl

o Worksforany @ > 0, A, and choiceof e > 0 [constraints: £ < Az < u]

e Simple to code, fast, and robust
Q+el A’
A 7%1

e Implemented in the free 0sQP solver http://osqgp.org

(Python interface: ~ 1,700,000 downloads)

e Only needs to factorize once

e Extended to solve mixed-integer quadratic programming problems
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SOLVING QP'S VIA NONNEGATIVE LEAST SQUARES

e Complete the squares and transform QP to least distance problem (LDP)

. 1. / 7 i 1 2
min 52 Qz+cz Q=LL min 5 |lul|
st. Gz<yg st. Mu<d

ry -T
0=0 =0 u=Lz4+L ¢
e AnLDPis equivalent to the nonnegative least squares (NNLS) problem
2

. 1| M n 0

min =
v [T,

st. y>0

o [f residual = 0 then the original QP is infeasible. Otherwise set

* 1 — * —
z :_1+d’y*L My —Q e
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ROBUST QP SOLVER BASED ON NNLS

e Solve QP via NNLS within proximal-point iterations

Zpp1 = argmin,  12'Qz +dz+ 5z — 2|3
st. Az <b
Gr=g

o Numerical robustness: ) + €I can be arbitrarily well conditioned !

CPU time (ms) (worst-cose) distance |z - 2| from optimizer (worst-case)

single precision arithmetic |'|| /_//
30 vars, 100 constraints .// |
(Macbook Pro 3 GHz Intel Core i7) R s e e
B T e |
1® . . . .,
Al i) L) "w o hl hll Rl

e Extended to solve MIQP problems
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MPC WITHOUT ON-LINE QP

model-based optimizer

process

set-points inputs outputs
—_— —_—
) u(t) y(t)
T measurements

e Canwe implement constrained linear MPC without
anon-line QP solver?

¢ If model / constraints are linear, and model /
constraints / quadratic cost are time-invariant:

YES !
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EXPLICIT MODEL PREDICTIVE CONTROL

e Continuous & piecewise affine solution of strictly convex multiparametric QP

z*(z) = argmin, 12/Qz+ 2'F'z »
st. Gz<W+ Sz

e Corollary: linear MPC is continuous & piecewise affine !

uo Fie+g1 if Hizx<K;
uy
z" = . ug(x) =
- Fyx+gyu  if Hyz < Ky
UN -1

o New mpQP solver based on NNLS available
and included in MPC Toolbox since R2014b

Is explicit MPC better than on-line QP (=implicit MPC) ?
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COMPLEXITY CERTIFICATION FOR ACTIVE-SET QP SOLVERS

e Result: The number of iterations to solve the QP via a dual active-set method is
a piecewise constant function of the parameter x

We can exactly quantify how
many iterations (flops) the QP
solver takes in the worst-case !

—un b T
]

0 \:I;1 a
e Examples (from MPC Toolbox):

inverted pendulum DCmotor  nonlineardemo  AFTIF16
Explicit MPC
max flops 3382 1689 9184 16434
max memory (kB) 55 30 297 430
Implicit MPC
max flops 3809 2082 7747 7807
sqrt 27 9 37 33
max memory (kB) 15 13 20 16

o QP certification algorithm currently used in industrial production projects
©2020 A. Bemporad 23/45



OUTLINE

e Model Predictive Control (MPC) (in a nutshell)
e MPC in the automotive industry
e Embedded quadratic programming (QP) solvers for MPC

< Calibration of embedded MPC controllers

future
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e Trends in MPC technology (MPC and machine learning)




MPC CALIBRATION PROBLEM

e Controller depends on a vector x of parameters

e Parameters can be many things:
- MPC weights, prediction model coefficients, horizons
- Entries of covariance matrices in Kalman filter
- Tolerances used in numerical solvers

o Define a performance index f over a closed-loop simulation or real experiment.
For example:

Z I(®) = r(o) :FU

(brm:kmg qualu&j)

y a w 5 = e 1

e Auto-tuning = find the best combination of parameters by solving
the global optimization problem

min f(x)
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GLOBAL OPTIMIZATION ALGORITHMS FOR AUTO-TUNING

What is a good optimization algorithm to solve min f(z)?

e The algorithm should not require the gradient V f of f(x)
(derivative-free or black-box optimization )

e The algorithm should not get stuck on local minima (global optimization)

o The algorithm should make the fewest evaluations of the cost function f
(which is expensive to evaluate)

©2020 A. Bemporad 25/45



AUTO-TUNING - GLOBAL OPTIMIZATION ALGORITHMS

e Several derivative-free global optimization algorithms exist:

Lipschitzian-based partitioning techniques:
e DIRECT (Dlvide in RECTangles)
e Multilevel Coordinate Search (MCS)

Response surface methods
e Kriging ,DACE
e Efficient global optimization (EGO)
e Bayesian optimization

- Genetic algorithms (GA)

Particle swarm optimization (PSO)

¢ New method: radial basis function surrogates + inverse distance weighting

(GLIS) cse.lab.imtlucca.it/~bemporad/glis
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AUTO-TUNING: MPC EXAMPLE

e We want to auto-tune the linear MPC controller

50—1
min 3 (gt — 1(8)? + (W2 (g — wg1))?
k=0 ,
st. xpi1 = Az, + Buy, _,—l_'_l—l_,—l—ﬁ
Yo = Cxy,
~1.5<u, <15 —
ur = un,, Vk=N,,...,N—1 t Ny t+N
e Calibration parameters: = = [log;, W2", N,/]
e Range: -5 < z; <3and1 < x5 <50
o Closed-loop performance objective:
4 1
fl@)=) () —r®)*+ 5 (u(t) —u(t —1))*+ 2N,
t—O%/_/ 2 N~~~
- Areack well small QY

smooth cowtrol action 27/45
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AUTO-TUNING: EXAMPLE

15 oquul

1
0.5
0
-0.5
-1

—— output

reference | | best function value
220 T T

0 10 20 30 40 50 60 70 80 90

input

0.5

-0.5F

15 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90

e Result: 2* = [-0.2341, 2.3007]
mporad

100 60 v -
0 50 100 150

function evaluations

WAY = (.5833, N,, = 2
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MPC AUTOTUNING EXAMPLE

e Linear MPC applied to cart-pole system: 14 parameters to tune

- sample time

- weights on outputs and input increments
- prediction and control horizons

- covariance matrices of Kalman filter

- absolute and relative tol of QP solver

T
e Closed-loop performance score: J = / [p(t) — pret(t)| + 30]|(2)|dt
0

e MPC parameters tuned using 500 iterations of GLIS

e Performance tested with simulated cart on two hardware platforms
(PC, Raspberry PI)
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MPC AUTOTUNING EXAMPLE

MPC optimized for desktop PC MPC optimized for Raspberry Pl

10

— < —_—

Angle (deg)
8 - &
. % I,
Angle (deg)
g

Force (N)
Force (N)

optimal sample time = 6 ms optimal sample time = 22 ms

e Auto-calibration can squeeze max performance out of the available hardware

e Bayesian Optimization gives similar results, but with larger computation effort
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AUTO-TUNING: PROS AND CONS

e Pros:

sy Selection of calibration parameters x to test is fully automatic
sy Applicable to any calibration parameter (weights, horizons, solver tolerances, ...)

sl Rather arbitrary performance index f(x) (tracking performance, response time,
worst-case number of flops, ...)

e Cons:

i@ Need to quantify an objective function f(z)
i® No room for qualitative assessments of closed-loop performance
i@ Often have multiple objectives, not clear how to blend them in a single one

e Current research: preference-based optimization (GLISp), having human
assessments in the loop (semi-automatic tuning)

cse.lab.imtlucca.it/~bemporad/glis
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PREFERENCE-BASED LEARNING (=SEMI-AUTOMATIC TUNING)

e Latent function = calibrator’s (unconscious) score

e The active preference learning algorithm proposes
anew combination z 1 of parameters to test

e By observing test results, the calibrator expresses a

preference, telling if z 511 is “better”, “similar”, or
“worse” than current best combination

e Preference learning algorithm: update the
surrogate f(z) of the latent function, optimize the
acquisition function, ask preference, and iterate

testing &
assessment

control preference

parameters :
. preference-

: based learning :

: algorithm
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PREFERENCE-BASED TUNING: MPC EXAMPLE

e Semi-automatic tuning of = = [log;, W4, N, ] inlinear MPC

50—1

min > (geyr — r(8)" + (W (ur — up—1))?
k=0
S.t.  Zr41 = Az + Buy

Ye = Cxg
—15<ur <15

1.5
1 —vneuiarencs
— 05
up = un,, Vk=Ny,...,N —1 ;
-0.5
Bl

. -1.5,
e Same performance index to assess R

closed-loop quality, but unknown:

2
1
only preferences are available ,
El
720 10 20 30 40 50 60 70 80 90 100

e Result: WA* = 0.6888, N,, = 2
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OUTLINE

e Model Predictive Control (MPC) (in a nutshell)
e MPC in the automotive industry
e Embedded quadratic programming (QP) solvers for MPC

e Calibration of embedded MPC controllers

future
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E IS CONTROL ENGINEERING HEADING T0 ?

mechanical design 3 m
N . '? Lyapunov methods w LMI-based methods
; z | ! ‘l] 1970 nonlinear control 1980 stability analysis
e | bl ‘| feedback synthesis
- - functional - semidefinite
analysis programming robust control
complex
analysis
v . e .
R frequency domain o system identification
i L statistics T—T— :
Bode, Nyquist T ']
X 4 | rootlocus F w = F_)_ 7
1930-1950 | robust control - w . s l &
' machine = i
> §
linear 1990 learning = =
ML) =
algebra . (ML) g
. R >2020
pole-placement [T
i LQR [ o] — | -
1960-1970 Kalman filtering numerical ' -
optimization icti
state-space P model predictive control (MPC)
>1990

e MPC and ML = main trends in control R&D in industry !

©2020 A. Bemporad 34/45



MACHINE LEARNING (ML)

e Massive set of techniques to extract mathematical models from data
for classification, prediction, decision-making

e Good mathematical foundations from artificial intelligence,
statistics, optimization

e Works very well in practice (despite training is most often
a nonconvex optimization problem ...)

output

e Used in myriads of very diverse application domains

e Availability of excellent open-source software tools like
scikit-learn,Keras/TensorFlow also explains success
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ML FOR MPC

e How can ML be useful in MPC:

Tpr1 = flog,ug)
ye = 9g(zk)

Identification = learn the prediction model from data {

Control = learn the MPC control law from data

e reinforcement learning (best for automatic calibration)

e imitation learning (= approximate explicit MPC)

Optimization = learn (partial) solutions offline for on-line optimization
e binary variables solving parametric MIQP/LP, 6* = §(x), then solve QP/LP online

e active set of parametric QP for warm start

Estimation = learn how to reconstruct unmeasured signals from data (e.g., states)
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NLMPC BASED ON DEEP NEURAL NETWORKS

e Approach: use a (feedforward deep) neural network model for prediction

neural

- prediction nonlinear

v, model optimization
o >0 i algorithm

J /e

J 4

process

model-based optimizer

set-points inputs . outputs
—_—
r(t) u(t) y(t)

state esti

measurements
o MPC design workflow:
collect @ codegen i
neural model NLMPC controller
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NONLINEAR MPC

¢ Nonlinear MPC: solve a sequence of LTV-MPC problems at each sample step

current state

simulate ‘ ‘
initial input i
sequence | == - .
s m— optimal

Optlmlze sequence
linearize

e Sequential QP solves the full nonlinear MPC problem, by using well assessed
linear MPC/QP technologies

e One QP iteration is often sufficient (= linear time-varying MPC)

e The current state can be estimated, e.g., by extended Kalman filtering
©2020 A. Bemporad 38/45



0DYS EMBEDDED MPC TOOLSET

e ODYS Embedded MPC is a software toolchain for design and D D\ ’S
deployment of MPC solutions in industrial production Ao s opemezesen

e Support for linear & nonlinear MPC and extended Kalman filtering

o Extremely flexible, all MPC parameters can be changed at runtime
(models, cost function, horizons, constraints, ...)

o Integrated with ODYS QP Solver for max speed, low memory footprint, and
robustness (also in single precision)

e Library-free C code, MISRA-C 2012 compliant
e Currently used worldwide by several automotive OEMs in R&D and production

e Support for neural networks as prediction models (ODYS Deep Learning)

odys.it/embedded-mpc
39/45
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MPC OF ETHYLENE OXIDATION PLANT

e Chemical process = oxidation of ethylene to ethylene oxide in a nonisothermal
continuously stirred tank reactor (CSTR)

CoHy + %OQ — C2H40
CoHy 4+ 305 = 2C05 +2H20
CyH40 + 302 — 2C02 + 2H>0

e Nonlinear model (dimensionless variables):

x1 = gas density

e 4 A — x2 =ethylene concentration
b2 = ua(uz - @amy) - Are ™ <fﬂ4> 2 Aae® (””) 0 x3 = ethylene oxide concentration
g5 = —wasgmit Aie T (@2e0)2 - Age w (’”W) : x4 = temperature in reactor
by = u,(1—x,)+ B e T4 (z,wzja)HBzex-t (3‘23‘4)4
LB e (o, I); By, —Te) uy = feed volumetric flow rate
v = as e ug = ethylene concentration in feed

e 1 = manipulated variables, x3 = controlled output, u, = measured disturbance
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MPC OF ETHYLENE OXIDATION PLANT

o MPC settings:
sampling time Ts=5s measured disturbance @t=200
prediction horizon N =10

control horizon N, =3
constraints 0.0704 < uy <0.7042
cost function ZkN:_Ol(yk—i-l — 1) + 1o5 (ui ke — wrk-1)?

o We compare 3 different configurations:
- NLMPC based on physical model

- Switched linear MPC based on 3 linear models obtained by linearizing the
nonlinear model at Co H,O = {0.03, 0.04, 0.05}

- NLMPC based on black-box neural network model
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NEURAL NETWORK MODEL OF ETHYLENE OXIDATION PLANT

¢ Train state-space neural-network model poss, L3 (validation data)

0.06

0.055
Th+1 :N(l'k,Uk) 005
0.045
0.04
0.035

1,000 training samples {uy, 1. } B o

2 layers (6 neurons, 6 neurons) - ’\ o

b inputs, 4 outputs @D &

sigmoidal activation function § /o ‘

. ‘ 4 2 x10”

— 112 coefficients T T "
¢ NN model trained by ODYS Deep Learning toolset 0

(model fitting + Jacobians — neural model in C) 05
¢ Model validated on 200 samples. 185 W e mo

x3 k41 reproduced from xy,, uy, with max 0.4% error validation sample
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MPC OF ETHYLENE OXIDATION PLANT - CLOSED-LOOP RESULTS

C2 H4 O concentration C2 H4O concentration C2 H4O concentration
0.06 T T T T 0.06 T T T T 0.06 T T T T
0.055 — 0.055 - — 0.055 -
( FaSu

*™" model-based NLMPC | **®I' switched linear MPC | **T" neural NLMPC
0.04 4 0.04 - 4 004
0.035 L - 0.035 | - 0.035 |-
0.03 —J ﬁk &l 0.03 v = 0.03 —é

— | |

o 0 20 T — T —
time (s) time (s) time (s)

e Neural and model-based NLMPC have similar closed-loop performance

e Neural NLMPC requires no physical model
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ON THE USE OF NEURAL NETWORKS FOR MPC

e Neural prediction models can speed up the MPC design a lot

e Experimental data:

- need to cover the operating range well (as in linear SYS-ID)

- no need to define linear operating ranges with NN’s,

it is a one-shot model-learning step

- NN coefficients can be updated on-line (=adaptive NLMPC) 'I/ ‘ \\ =

e Physical models may better predict unseen situations e
than black box models

e Physical modeling can help driving the choice of the
nonlinear model structure to use ( models)
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CONCLUSIONS

e Long history of success of MPC in the process industries

- multivariable, linear/nonlinear/stochastic systems w/ constraints

- intuitive to design and calibrate, easy to reconfigure

e MPCis now a viable technology in the automotive industry too:

1. modern ECUs can solve MPC problems in real-time

2. advanced software tools are available for identification, design, calibration, and
deployment of MPC solutions

3. increasingly tight requirements ask for advanced multivariable control solutions

4. production managers are willing to deploy MPC in the vehicle

e MPC based on deep neural models is probably the next step in MPC technology
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