MODEL PREDICTIVE CONTROL: A RISING TECHNOLOGY IN THE AUTOMOTIVE INDUSTRY

Alberto Bemporad

http://imt.lu/ab

CCTA 2020

OUTLINE

- Model Predictive Control (MPC) (in a nutshell)
- MPC in the automotive industry
- Embedded quadratic programming (QP) solvers for MPC
- Calibration of embedded MPC controllers
- Trends in MPC technology (MPC and machine learning)

MODEL PREDICTIVE CONTROL (MPC)

Use a dynamical model of the process to predict its future evolution and choose the "best" control action

MODEL PREDICTIVE CONTROL (MPC)

• MPC setup: find the best control sequence over a future horizon of N steps

numerical optimization problem

- **1** estimate current state x(t)
- **2** optimize wrt $\{u_0, \ldots, u_{N-1}\}$
- **3** only apply optimal u_0 as input u(t)
- If prediction model is linear then optimization is a Quadratic Program (QP)

MPC IN INDUSTRY

The MPC concept dates back to the 60's

Discrete Dynamic Optimization Applied to On-Line Optimal Control

MARSHALL D. RAFAL and WILLIAM F. STEVENS

(Rafal, Stevens, AiChE Journal, 1968)

USE	OF LINEAR PROGRAMMING METHODS
FOR	SYNTHESIZING SAMPLED-DATA AUTOMATIC SYSTEMS
	A. I. Propol
	(Moscow)
	Translated from Avromatilia I Telemekhanika, Vol. 24, No. 7, pp. 912-920, July, 1963
	Criginal article submitted September 24, 1962

MPC used in the process industries since the 80's

(Qin, Badgewell, 2003) (Bauer, Craig, 2008)

Today APC (advanced process control) = MPC

Esso

©2020 A. Bemporad

OUTLINE

- Model Predictive Control (MPC) (in a nutshell)
- MPC in the automotive industry
 - Embedded quadratic programming (QP) solvers for MPC
 - Calibration of embedded MPC controllers
 - Trends in MPC technology (MPC and machine learning)

AUTOMOTIVE APPLICATIONS OF MPC

(Bemporad, Bernardini, Borrelli, Cimini, Di Cairano, Esen, Giorgetti, Graf-Plessen, Hrovat, Kolmanovsky Levijoki, Livshiz, Long, Pattipati, Ripaccioli, Trimboli, Tseng, Verdejo, Yanakiev, ..., 2001-present)

Powertrain

engine control, magnetic actuators, robotized gearbox, power MGT in HEVs, cabin heat control, electrical motors

Vehicle dynamics

traction control, active steering, semiactive suspensions, autonomous driving

Ford Motor Company

Most automotive OEMs are looking into MPC solutions today

MPC OF GASOLINE TURBOCHARGED ENGINES

 Optimize engine actuators (throttle, wastegate, intake/exhaust cams) to make engine torque track set-points, maximizing efficiency and satisfying constraints

engine operating at low pressure (66 kPa)

ENGINE CONTROL - MULTIPLE LINEAR MODELS

- Multitude of linear prediction models derived to cover entire operating envelope of the engine
- Models calibrated to engine data
- Each MPC paired to unique prediction model and Kalman filter
- Number and scheduling of models is important

(courtesy of J. Verdejo, GM)

ENGINE CONTROL - STEADY-STATE INPUTS

• Good steady-state input references $u_r(t)$ are very important for fuel efficiency

$$\min \sum_{k=0}^{N-1} \|W^{y}(y_{k}-r(t))\|_{2}^{2} + \|W^{u}(u_{k}-u_{r}(t))\|_{2}^{2}$$

 Optimal (most fuel-efficient) steady-state
 Desired Torque
 Torque
 Torque level and stored in ROM as look-up tables

(courtesy of J. Verdejo, GM)

u, throttle

u_{ra} ecam

u,, icam

- MPC will closely follow u_r as a suggestion during steady-state
- MPC will deviate from u_r during transients and due to aging/changes in environmental conditions

ENGINE CONTROL - CONTROLLER STRUCTURE

- State estimated by Kalman Filter from output measurements y(t)
- Signals fed to MPC in real-time:
 - state estimate
 - references $r(t), u_r(t)$
 - constraints
 - measured disturbances
- Main tuning parameters: $W_y, W_u, W_{\Delta u},
 ho$

• Framework easily generalizable to other control problems

SUPERVISORY MPC OF POWERTRAIN WITH CVT

- Coordinate engine torque request and continuously variable transmission (CVT) ratio to improve fuel economy and drivability
- Real-time MPC is able to take into account **coupled dynamics** and **constraints**, optimizing performance also during transients

(Bemporad, Bernardini, Livshiz, Pattipati, 2018)

MPC IN AUTOMOTIVE PRODUCTION SINCE 2018

The MPC developed by **General Motors** and **ODYS** for torque tracking in turbocharged gasoline engines is in high-volume production since 2018

• Multivariable system, 4 inputs, 4 outputs. QP solved in real time on ECU

(Bemporad, Bernardini, Long, Verdejo, 2018)

• Supervisory MPC for powertrain control also in production since 2018

(Bemporad, Bernardini, Livshiz, Pattipati, 2018)

First known mass production of MPC in the automotive industry

http://www.odys.it/odys-and-gm-bring-online-mpc-to-production

DO WE REALLY NEED ADVANCED CONTROL ?

- Increasingly demanding requirements (emissions/consumption, passenger safety and comfort, ...)
- Better control performance only achieved by better coordination of actuators:
 - increasing number of actuators (e.g., due to electrification)
 - take into account limited range of actuators
 - resilience in case of some actuator failure

• Shorter development time for control solution (market competition, changing legislation)

LIMITATIONS OF CLASSICAL CONTROL

- Classical approach:
 - many single PID loops
 - anti-windup for actuator saturation
 - many lookup tables

- Long design & calibration time due to:
 - complexity of anti-windup due to interactions
 - difficulty to recover from actuator failure
 - design space increases exponentially (e.g.: 5 inputs, 10 values each $\rightarrow 10^5$ entries)
 - hard to coordinate multiple actuators optimally
 - design difficult to port to a different vehicle model

Modern vehicles need advanced controls

KEY CHALLENGES IN MPC DESIGN FOR PRODUCTION

• Online optimization

- Need fast & reliable embedded optimization solvers
- Can we avoid real-time optimization?
- Modeling
 - Getting the **prediction model** is usually the largest design effort
 - Can we learn good prediction models from data?
- Calibration (=reinforcement learning) of MPC
 - Can we automate MPC calibration based on observed performance?

OUTLINE

- Model Predictive Control (MPC) (in a nutshell)
- MPC in the automotive industry
- **Embedded quadratic programming** (QP) solvers for MPC
 - Calibration of embedded MPC controllers
 - Trends in MPC technology (MPC and machine learning)

EMBEDDED LINEAR MPC AND QUADRATIC PROGRAMMING

• MPC based on linear models requires solving a Quadratic Program (QP)

$$\min_{z} \qquad \frac{1}{2}z'Qz + x'(t)F'z + \frac{1}{2}x'(t)Yx(t) \\ \text{s.t.} \qquad Gz \le W + Sx(t) \qquad z = \begin{bmatrix} u_{0} & u_{1} \\ u_{1} \\ \vdots \\ u_{N-1} \end{bmatrix}$$

ON MINIMUZING A CONVEX FUNCTION SUBJECT TO LINEAR INEQUALITIES

By F. M. L. BEALE Admirally Research Laboratory, Teachington, Middlews

SUMMARY

The minimization of a convex function of variables subject to linear inequalities is discussed briefly in general terms. Datating' Statplets Nethod is extended to yield linke algorithms for minimizing either a convex quadratic function or the sum of the *i* largest of a set of linear functions, and the solution of a generalization of the lafter problem is indicated. In the last two sections a lorm of linear programming with madom variables as coefficients is described, and shown to involve the minimization of a convex function.

A rich set of good QP algorithms is available today

• Not all QP algorithms are suitable for industrial embedded control ©2020 A. Bemporad

MPC IN A PRODUCTION ENVIRONMENT

- Key requirements for deploying MPC in production:
- 1. speed (throughput)
 - worst-case execution time less than sampling interval
 - also fast on average (to free the processor to execute other tasks)
- 2. limited memory and CPU power (e.g., 150 MHz / 50 kB)
- 3. numerical robustness (single precision arithmetic)
- 4. certification of worst-case execution time
- 5. code simple enough to be validated/verified/certified (library-free C code, easy to check by production engineers)

EMBEDDED SOLVERS IN INDUSTRIAL PRODUCTION

- Multivariable MPC controller
- Sampling frequency = 40 Hz (= 1 QP solved every 25 ms)
- Vehicle operating \approx 1 hr/day for \approx 360 days/year on average
- Controller running on 10 million vehicles

```
~520,000,000,000,000 QP/yr
and none of them should fail.
```


REGULARIZED ADMM FOR QUADRATIC PROGRAMMING

(Banjac, Stellato, Moehle, Goulart, Bemporad, Boyd, 2020)

• "Regularized" Alternating Direction Method of Multipliers (ADMM):

$$\begin{array}{lll} z^{k+1} &=& -(Q+\rho A'A+\epsilon I)^{-1}(c-\epsilon z_k+\rho A'(u^k-z^k))\\ s^{k+1} &=& \min\{\max\{Az^{k+1}+y^k,\ell\},u\}\\ u^{k+1} &=& u^k+Az^{k+1}-s^{k+1} \end{array}$$

- Works for any $Q \succeq 0, A$, and choice of $\epsilon > 0$ [constraints: $\ell \le Az \le u$]
- Simple to code, fast, and robust

• Only needs to factorize
$$\begin{bmatrix} Q + \epsilon I & A' \\ A & -\frac{1}{\rho}I \end{bmatrix}$$
 once

- Implemented in the free osQP solver (Python interface: ≈ 1,700,000 downloads)
- Extended to solve mixed-integer quadratic programming problems

(Stellato, Naik, Bemporad, Goulart, Boyd, 2018)

©2020 A. Bemporad

http://osqp.org

SOLVING QP'S VIA NONNEGATIVE LEAST SQUARES

(Bemporad, 2016)

• Complete the squares and transform QP to least distance problem (LDP)

• An LDP is equivalent to the nonnegative least squares (NNLS) problem

(Lawson, Hanson, 1974)

$$\min_{y} \quad \frac{1}{2} \left\| \begin{bmatrix} M' \\ d' \end{bmatrix} y + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\|_{2}^{2} \qquad M = GL^{-1} \\ d = b + GQ^{-1}c$$

s.t. $y \ge 0$

• If residual = 0 then the original QP is infeasible. Otherwise set

$$z^* = -\frac{1}{1+d'y^*}L^{-1}M'y^* - Q^{-1}c$$

ROBUST QP SOLVER BASED ON NNLS

(Bemporad, 2018)

• Solve QP via NNLS within proximal-point iterations

$$z_{k+1} = \arg \min_{z} \quad \frac{1}{2}z'Qz + c'z + \frac{\epsilon}{2}||z - z_{k}||_{2}^{2}$$

s.t. $Az \leq b$
 $Gx = g$

• Numerical robustness: $Q + \epsilon I$ can be arbitrarily well conditioned !

• Extended to solve MIQP problems (Naik, Bemporad, 2018)

©2020 A. Bemporad

MPC WITHOUT ON-LINE QP

- Can we implement constrained linear MPC without an on-line QP solver?
- If model / constraints are linear, and model / constraints / quadratic cost are time-invariant:

EXPLICIT MODEL PREDICTIVE CONTROL

Continuous & piecewise affine solution of strictly convex multiparametric QP

$$z^*(x) = \arg \min_z \quad \frac{1}{2}z'Qz + x'F'z$$

s.t. $Gz \le W + Sx$

(Bemporad, Morari, Dua, Pistikopoulos, 2002)

Corollary: linear MPC is continuous & piecewise affine !

$$z^* = \begin{bmatrix} \mathbf{u}_0 \\ u_1 \\ \vdots \\ u_{N-1}^* \end{bmatrix} \qquad \qquad u_0^*(x) = \begin{cases} F_1 x + g_1 & \text{if} \quad H_1 x \le K_1 \\ \vdots & \vdots \\ F_M x + g_M & \text{if} \quad H_M x \le K_M \end{cases}$$

 New mpQP solver based on NNLS available (Bemporad, 2015) and included in MPC Toolbox since R2014b (Bemporad, Morari, Ricker, 1998-today)

Is explicit MPC better than on-line QP (=implicit MPC)?

COMPLEXITY CERTIFICATION FOR ACTIVE-SET QP SOLVERS

• **Result**: The **number of iterations** to solve the QP via a dual active-set method is a **piecewise constant function** of the parameter *x*

• Examples (from MPC Toolbox):

(Cimini, Bemporad, 2017)

We can **exactly** quantify how many iterations (flops) the QP solver takes in the worst-case !

	inverted pendulum	DC motor	nonlinear demo	AFTI F16
Explicit MPC				
max flops	3382	1689	9184	16434
max memory (kB)	55	30	297	430
Implicit MPC				
max flops	3809	2082	7747	7807
sqrt	27	9	37	33
max memory (kB)	15	13	20	16

• QP certification algorithm currently used in industrial production projects ©2020 A. Bemporad

OUTLINE

- Model Predictive Control (MPC) (in a nutshell)
- MPC in the automotive industry
- Embedded quadratic programming (QP) solvers for MPC
- Calibration of embedded MPC controllers
- Trends in MPC technology (MPC and machine learning)

MPC CALIBRATION PROBLEM

- Controller depends on a vector x of parameters
- Parameters can be many things:
 - MPC weights, prediction model coefficients, horizons
 - Entries of covariance matrices in Kalman filter
 - Tolerances used in numerical solvers

• Define a **performance index** *f* over a closed-loop simulation or real experiment. For example:

• Auto-tuning = find the best combination of parameters by solving the global optimization problem

$$\min_{x} f(x)$$

...

GLOBAL OPTIMIZATION ALGORITHMS FOR AUTO-TUNING

What is a good optimization algorithm to solve $\min f(x)$?

• The algorithm should not require the gradient ∇f of f(x)(derivative-free or black-box optimization)

• The algorithm should not get stuck on local minima (global optimization)

• The algorithm should make the **fewest evaluations** of the cost function *f* (which is expensive to evaluate)

AUTO-TUNING - GLOBAL OPTIMIZATION ALGORITHMS

- Several derivative-free global optimization algorithms exist: (Rios, Sahidinis, 2013)
 - Lipschitzian-based partitioning techniques:
 - DIRECT (Divide in RECTangles) (Jones, 2001)
 - Multilevel Coordinate Search (MCS) (Huyer, Neumaier, 1999)
 - Response surface methods
 - Kriging (Matheron, 1967), DACE (Sacks et al., 1989)
 - Efficient global optimization (EGO) (Jones, Schonlau, Welch, 1998)
 - Bayesian optimization (Brochu, Cora, De Freitas, 2010)
 - Genetic algorithms (GA) (Holland, 1975)
 - Particle swarm optimization (PSO) (Kennedy, 2010)

- ...

• New method: radial basis function surrogates + inverse distance weighting

(GLIS) (Bemporad, 2020)

cse.lab.imtlucca.it/~bemporad/glis

AUTO-TUNING: MPC EXAMPLE

• We want to auto-tune the linear MPC controller

min
$$\sum_{k=0}^{50-1} (y_{k+1} - r(t))^2 + (W^{\Delta u}(u_k - u_{k-1}))^2$$

s.t.
$$x_{k+1} = Ax_k + Bu_k$$
$$y_c = Cx_k$$
$$-1.5 \le u_k \le 1.5$$
$$u_k \equiv u_{N_u}, \forall k = N_u, \dots, N-1$$

- Calibration parameters: $x = [\log_{10} W^{\Delta u}, N_u]$
- Range: $-5 \le x_1 \le 3$ and $1 \le x_2 \le 50$
- Closed-loop performance objective:

$$f(x) = \sum_{t=0}^{T} \underbrace{(y(t) - r(t))^2}_{\text{track well}} + \underbrace{\frac{1}{2}(u(t) - u(t-1))^2}_{\text{smooth control action}} + \underbrace{\frac{2N_u}{small QR}}_{\text{small QR}}$$

©2020 A. Bemporad

AUTO-TUNING: EXAMPLE

• Result: $x^{\star} = [-0.2341, 2.3007]$

$$W^{\Delta u} = 0.5833, N_u = 2$$

©2020 A. Bemporad

MPC AUTOTUNING EXAMPLE

• Linear MPC applied to cart-pole system: 14 parameters to tune

- sample time
- weights on outputs and input increments
- prediction and control horizons
- covariance matrices of Kalman filter
- absolute and relative tol of QP solver

- Closed-loop performance score: $J=\int_0^T |p(t)-p_{\rm ref}(t)|+30|\phi(t)|dt$

- MPC parameters tuned using 500 iterations of GLIS
- Performance tested with simulated cart on two hardware platforms (PC, Raspberry PI)

MPC AUTOTUNING EXAMPLE

- Auto-calibration can squeeze max performance out of the available hardware
- Bayesian Optimization gives similar results, but with larger computation effort

AUTO-TUNING: PROS AND CONS

- Pros:
 - \bullet Selection of calibration parameters x to test is fully automatic
 - Applicable to any calibration parameter (weights, horizons, solver tolerances, ...) (Piga, Forgione, Formentin, Bemporad, 2019) (Forgione, Piga, Bemporad, 2020)
 - **...** Rather arbitrary performance index f(x) (tracking performance, response time, worst-case number of flops, ...)
- Cons:
 - **•** Need to **quantify** an objective function f(x)
 - No room for qualitative assessments of closed-loop performance
 - Often have multiple objectives, not clear how to blend them in a single one
- Current research: preference-based optimization (GLISp), having human assessments in the loop (semi-automatic tuning)

(Bemporad, Piga, 2019) (Zhu, Bemporad, Piga, 2020)

cse.lab.imtlucca.it/~bemporad/glis

PREFERENCE-BASED LEARNING (=SEMI-AUTOMATIC TUNING)

- Latent function = calibrator's (unconscious) score
- The active preference learning algorithm proposes a new combination x_{N+1} of parameters to test
- By observing test results, the calibrator expresses a **preference**, telling if x_{N+1} is "better", "similar", or "worse" than current best combination
- Preference learning algorithm: update the surrogate $\hat{f}(x)$ of the latent function, optimize the acquisition function, ask preference, and iterate

PREFERENCE-BASED TUNING: MPC EXAMPLE

• Semi-automatic tuning of $x = [\log_{10} W^{\Delta u}, N_u]$ in linear MPC

 $\mathbf{2}$

min
$$\sum_{k=0}^{50-1} (y_{k+1} - r(t))^2 + (W^{\Delta u}(u_k - u_{k-1}))$$

s.t.
$$x_{k+1} = Ax_k + Bu_k$$
$$y_c = Cx_k$$
$$-1.5 \le u_k \le 1.5$$
$$u_k \equiv u_{N_u}, \forall k = N_u, \dots, N-1$$

- Same performance index to assess closed-loop quality, but unknown: only preferences are available
- Result: $W^{\Delta u} = 0.6888$, $N_u = 2$

OUTLINE

- Model Predictive Control (MPC) (in a nutshell)
- MPC in the automotive industry
- Embedded quadratic programming (QP) solvers for MPC
- Calibration of embedded MPC controllers
- Trends in MPC technology (MPC and machine learning)

WHERE IS CONTROL ENGINEERING HEADING TO?

• MPC and ML = main trends in control R&D in industry !

©2020 A. Bemporad

MACHINE LEARNING (ML)

- Massive set of techniques to extract mathematical models from data for classification, prediction, decision-making
- Good mathematical foundations from artificial intelligence, statistics, optimization
- Works very well in practice (despite training is most often a nonconvex optimization problem ...)
- Used in myriads of very diverse application domains
- Availability of excellent open-source software tools like scikit-learn, Keras/TensorFlow also explains success

ML FOR MPC

- How can ML be useful in MPC:
 - Identification = learn the prediction model from data

$$\begin{cases} x_{k+1} &= f(x_k, u_k) \\ y_k &= g(x_k) \end{cases}$$

1

- Control = learn the MPC control law from data
 - reinforcement learning (best for automatic calibration)
 - imitation learning (= approximate explicit MPC) (Lenz, Knepper, Saxena, 2015) (Karg, Lucia, 2018)
- Optimization = learn (partial) solutions offline for on-line optimization
 - binary variables solving parametric MIQP/LP, $\delta^* = \delta(x)$, then solve QP/LP online (Masti, Bemporad, 2019) (Masti, Pippia, Bemporad, De Schutter, 2020)
 - active set of parametric QP for warm start (Klauco, Kalúz, Kvasnica, 2019)
- Estimation = learn how to reconstruct unmeasured signals from data (e.g., states)

NLMPC BASED ON DEEP NEURAL NETWORKS

• Approach: use a (feedforward deep) neural network model for prediction

• MPC design workflow:

NONLINEAR MPC

• Nonlinear MPC: solve a sequence of LTV-MPC problems at each sample step

- Sequential QP solves the full nonlinear MPC problem, by using well assessed linear MPC/QP technologies
- One QP iteration is often sufficient (= linear time-varying MPC)
- The current state can be estimated, e.g., by extended Kalman filtering ©2020 A. Bemporad

ODYS EMBEDDED MPC TOOLSET

• **ODYS Embedded MPC** is a software toolchain for design and deployment of MPC solutions in industrial production

- Support for linear & nonlinear MPC and extended Kalman filtering
- Extremely flexible, all MPC parameters can be changed at runtime (models, cost function, horizons, constraints, ...)
- Integrated with ODYS QP Solver for max speed, low memory footprint, and robustness (also in single precision)
 odys.it/qp
- Library-free C code, MISRA-C 2012 compliant
- Currently used worldwide by several automotive OEMs in R&D and production
- Support for neural networks as prediction models (ODYS Deep Learning)

odys.it/embedded-mpc

MPC OF ETHYLENE OXIDATION PLANT

 Chemical process = oxidation of ethylene to ethylene oxide in a nonisothermal continuously stirred tank reactor (CSTR)

 $\begin{array}{l} C_2H_4 + \frac{1}{2}O_2 \to C_2H_4O \\ C_2H_4 + 3O_2 \to 2CO_2 + 2H_2O \\ C_2H_4O + \frac{5}{2}O_2 \to 2CO_2 + 2H_2O \end{array}$

• Nonlinear model (dimensionless variables): (Durand, Ellis, Christofides, 2016)

$$\begin{array}{rclrcl} \dot{x}_1 & = & u_1(1-x_1x_4) & \underbrace{\gamma_1}_{x_2} & \underbrace{\gamma_2}_{x_4} & \underbrace{\gamma_2}_{x$$

 x_1 = gas density x_2 = ethylene concentration x_3 = ethylene oxide concentration x_4 = temperature in reactor u_1 = feed volumetric flow rate

 u_2 = ethylene concentration in feed

• u_1 = manipulated variables, x_3 = controlled output, u_2 = measured disturbance

MPC OF ETHYLENE OXIDATION PLANT

• MPC settings:

sampling time	$T_s = 5 \mathrm{s}$	measured disturbance @t=200
prediction horizon	N = 10	
control horizon	$N_u = 3$	
constraints	$0.0704 \le u_1 \le 0.7042$	
cost function	$\sum_{k=0}^{N-1} (y_{k+1} - r_{k+1})^2$	$+\frac{1}{100}(u_{1,k}-u_{1,k-1})^2$

- We compare 3 different configurations:
 - NLMPC based on physical model
 - Switched linear MPC based on 3 linear models obtained by linearizing the nonlinear model at $C_2H_4O = \{0.03, 0.04, 0.05\}$
 - NLMPC based on black-box neural network model

NEURAL NETWORK MODEL OF ETHYLENE OXIDATION PLANT

• Train state-space neural-network model

$$x_{k+1} = \mathcal{N}(x_k, u_k)$$

1,000 training samples $\{u_k, x_k\}$ 2 layers (6 neurons, 6 neurons) 6 inputs, 4 outputs sigmoidal activation function

 \rightarrow 112 coefficients

- NN model trained by ODYS Deep Learning toolset (model fitting + Jacobians → neural model in C)
- Model validated on 200 samples. $x_{3,k+1}$ reproduced from x_k, u_k with max 0.4% error

MPC OF ETHYLENE OXIDATION PLANT - CLOSED-LOOP RESULTS

- Neural and model-based NLMPC have similar closed-loop performance
- Neural NLMPC requires no physical model

©2020 A. Bemporad

ON THE USE OF NEURAL NETWORKS FOR MPC

- Neural prediction models can speed up the MPC design a lot
- Experimental data:
 - need to cover the operating range well (as in linear SYS-ID)
 - no need to define linear operating ranges with NN's, it is a one-shot model-learning step
 - NN coefficients can be updated on-line (=adaptive NLMPC)
- Physical models may **better predict** unseen situations than black box models
- Physical modeling can help driving the choice of the nonlinear model structure to use (gray-box models)

16-028	JITAN	1.812546	14-10291	9.003
Caller &	0.99/19	2.3630	0.4538	0.545
3355	4.5882	0.5461	11-1451	70.74
8126	0.5032	0.1003	0.4579.	: 3.8
2.00	0.5316	0,1165	0.6835	16.0
71	0.6362	6.9663	0.4995	5

CONCLUSIONS

- Long history of success of MPC in the process industries
 - multivariable, linear/nonlinear/stochastic systems w/ constraints
 - intuitive to design and calibrate, easy to reconfigure
- MPC is now a viable technology in the **automotive industry** too:
 - 1. modern ECUs can solve MPC problems in real-time

- 3. increasingly tight requirements ask for advanced multivariable control solutions
- 4. production managers are willing to deploy MPC in the vehicle
- MPC based on deep neural models is probably the next step in MPC technology

