
October 12, 2023

Learning-based Methods
for Model Predictive Control

Alberto Bemporad

imt.lu/ab

imt.lu/ab

Model Predictive Control (MPC)

prediction
model

controller

set-points outputsinputs

measurements

r(t) u(t) y(t)

process

optimization
algorithm

• Main idea: At each sample step, use a (simplified) dynamical

(M)odel of the process to (P)redict its future evolution and

choose the “best” (C)ontrol action accordingly

(C) 2023 A. Bemporad - Learning-based Methods for MPC 2/42

t+1 t+1+k t+N+1

future

predicted outputs

manipulated inputs

t t+k t+N

uk

r(t)
yk

past

Model Predictive Control
• MPCproblem: find the best control sequence over a future horizon ofN steps

min
u0, . . . , uN−1

N−1∑
k=0

∥yk − r(t)∥2
2 + ρ∥uk − ur(t)∥2

2

s.t. xk+1 = f(xk, uk) prediction model
yk = g(xk)

umin ≤ uk ≤ umax constraints
ymin ≤ yk ≤ ymax

x0 = x(t) state feedback

numerical optimization problem

1 estimate current state x(t)

2 optimizewrt {u0, . . . , uN−1}

3 only apply optimal u0 as input u(t)

Repeat at all time steps t

(C) 2023 A. Bemporad - Learning-based Methods for MPC 3/42

t+1 t+1+k t+N+1

future

predicted outputs

manipulated inputs

t t+k t+N

uk

r(t)
yk

past

Model Predictive Control
• MPCproblem: find the best control sequence over a future horizon ofN steps

min
u0, . . . , uN−1

N−1∑
k=0

∥yk − r(t)∥2
2 + ρ∥uk − ur(t)∥2

2

s.t. xk+1 = f(xk, uk) prediction model
yk = g(xk)

umin ≤ uk ≤ umax constraints
ymin ≤ yk ≤ ymax

x0 = x(t) state feedback

numerical optimization problem

1 estimate current state x(t)

2 optimizewrt {u0, . . . , uN−1}

3 only apply optimal u0 as input u(t)

Repeat at all time steps t

(C) 2023 A. Bemporad - Learning-based Methods for MPC 3/42

(energytransition.org) (pixabay.com, aecdiagnostics.com)

MPC in industry

• Conceived in the 60’s (Rafal, Stevens, 1968) (Propoi, 1963)

• Used in the process industries since the 80’s (Qin, Badgewell, 2003)

• Nowmassively spreading to the automotive industry and other sectors

• MPC byGeneralMotors andODYS in high-volume production since 2018

(3+million vehicles worldwide) (Bemporad, Bernardini, Long, Verdejo, 2018)

First known mass production of MPC
in the automotive industry

 / 8
Model predictive control toolset 1

http://www.odys.it/odys-and-gm-bring-online-mpc-to-production

(C) 2023 A. Bemporad - Learning-based Methods for MPC 4/42

http://www.odys.it/odys-and-gm-bring-online-mpc-to-production

(energytransition.org) (pixabay.com, aecdiagnostics.com)

MPC in industry

• Conceived in the 60’s (Rafal, Stevens, 1968) (Propoi, 1963)

• Used in the process industries since the 80’s (Qin, Badgewell, 2003)

• Nowmassively spreading to the automotive industry and other sectors

• MPC byGeneralMotors andODYS in high-volume production since 2018

(3+million vehicles worldwide) (Bemporad, Bernardini, Long, Verdejo, 2018)

First known mass production of MPC
in the automotive industry

 / 8
Model predictive control toolset 1

http://www.odys.it/odys-and-gm-bring-online-mpc-to-production

(C) 2023 A. Bemporad - Learning-based Methods for MPC 4/42

http://www.odys.it/odys-and-gm-bring-online-mpc-to-production

Research issues in embedded MPC design

outputsinputs

process

system
identification

model predictive
control (MPC)

data collection embedded
optimization

online estimation
model adaptation

controller
calibration

Focus of my talk:

• How to learn nonlinear and piecewise affinemodels from data

and adaptmodel parameters and estimate hiddenmodel states

• How to ease the calibration of theMPC law

(C) 2023 A. Bemporad - Learning-based Methods for MPC 5/42

Learning prediction models for MPC

Control-oriented nonlinear models
• Black-boxmodels: purely data-driven. Use training data to fit a prediction

model that can explain them (need good data to get a goodmodel)

prediction
model

x y
data

• Physics-basedmodels: use physical principles to create a predictionmodel

(fewer parameters to learn, better generalizes on unseen data)

Boyle

Faraday

Newton

Gauss

Pascal

Maxwell

Galileo prediction
model

x y

• Gray-box (or physics-informed) models: mix of the two, can be quite effective

"All models are wrong, but some are useful."

(George E. P. Box)

(C) 2023 A. Bemporad - Learning-based Methods for MPC 6/42

Control-oriented nonlinear models
• Black-boxmodels: purely data-driven. Use training data to fit a prediction

model that can explain them (need good data to get a goodmodel)

prediction
model

x y
data

• Physics-basedmodels: use physical principles to create a predictionmodel

(fewer parameters to learn, better generalizes on unseen data)

Boyle

Faraday

Newton

Gauss

Pascal

Maxwell

Galileo prediction
model

x y

• Gray-box (or physics-informed) models: mix of the two, can be quite effective

"All models are wrong, but some are useful."

(George E. P. Box)

(C) 2023 A. Bemporad - Learning-based Methods for MPC 6/42

Control-oriented nonlinear models
• Black-boxmodels: purely data-driven. Use training data to fit a prediction

model that can explain them (need good data to get a goodmodel)

prediction
model

x y
data

• Physics-basedmodels: use physical principles to create a predictionmodel

(fewer parameters to learn, better generalizes on unseen data)

Boyle

Faraday

Newton

Gauss

Pascal

Maxwell

Galileo prediction
model

x y

• Gray-box (or physics-informed) models: mix of the two, can be quite effective

"All models are wrong, but some are useful."

(George E. P. Box)

(C) 2023 A. Bemporad - Learning-based Methods for MPC 6/42

Control-oriented nonlinear models
• Black-boxmodels: purely data-driven. Use training data to fit a prediction

model that can explain them (need good data to get a goodmodel)

prediction
model

x y
data

• Physics-basedmodels: use physical principles to create a predictionmodel

(fewer parameters to learn, better generalizes on unseen data)

Boyle

Faraday

Newton

Gauss

Pascal

Maxwell

Galileo prediction
model

x y

• Gray-box (or physics-informed) models: mix of the two, can be quite effective

"All models are wrong, but some are useful."

(George E. P. Box)(C) 2023 A. Bemporad - Learning-based Methods for MPC 6/42

encoder

decoder

state
update
map

yk, …, yk-n+1
uk, …, uk-m+1

yk-1, …, yk-n
uk-1, …, uk-m

uk

yk, …, yk-n+1 yk+1, …, yk-n+2

D D

E E

f

xk+1xk xk+1*

publicdomainvectors.org

Nonlinear SYS-ID based on Neural Networks

• Neural networks proposed for nonlinear system identification since the ’90s

(Narendra, Parthasarathy, 1990) (Hunt et al., 1992) (Suykens, Vandewalle, DeMoor, 1996)

• NNARXmodels: use a feedforward neural network to approximate the

nonlinear difference equation yt ≈ N (yt−1, . . . , yt−na
, ut−1, . . . , ut−nb

)

• Neural state-spacemodels:

– w/ state data: fit a neural networkmodel xt+1 ≈ Nx(xt, ut), yt ≈ Ny(xt)

– I/O data only: set xt = value of an inner layer of the network (Prasad, Bequette, 2003)

such as an autoencoder (Masti, Bemporad, 2021)

• Recurrent neural networks (RNNs): more

appropriate for open-loop prediction, but

more difficult to train than feedforward NNs

(C) 2023 A. Bemporad - Learning-based Methods for MPC 7/42

encoder

decoder

state
update
map

yk, …, yk-n+1
uk, …, uk-m+1

yk-1, …, yk-n
uk-1, …, uk-m

uk

yk, …, yk-n+1 yk+1, …, yk-n+2

D D

E E

f

xk+1xk xk+1*

publicdomainvectors.org

Nonlinear SYS-ID based on Neural Networks

• Neural networks proposed for nonlinear system identification since the ’90s

(Narendra, Parthasarathy, 1990) (Hunt et al., 1992) (Suykens, Vandewalle, DeMoor, 1996)

• NNARXmodels: use a feedforward neural network to approximate the

nonlinear difference equation yt ≈ N (yt−1, . . . , yt−na
, ut−1, . . . , ut−nb

)

• Neural state-spacemodels:

– w/ state data: fit a neural networkmodel xt+1 ≈ Nx(xt, ut), yt ≈ Ny(xt)

– I/O data only: set xt = value of an inner layer of the network (Prasad, Bequette, 2003)

such as an autoencoder (Masti, Bemporad, 2021)

• Recurrent neural networks (RNNs): more

appropriate for open-loop prediction, but

more difficult to train than feedforward NNs

(C) 2023 A. Bemporad - Learning-based Methods for MPC 7/42

encoder

decoder

state
update
map

yk, …, yk-n+1
uk, …, uk-m+1

yk-1, …, yk-n
uk-1, …, uk-m

uk

yk, …, yk-n+1 yk+1, …, yk-n+2

D D

E E

f

xk+1xk xk+1*

publicdomainvectors.org

Nonlinear SYS-ID based on Neural Networks

• Neural networks proposed for nonlinear system identification since the ’90s

(Narendra, Parthasarathy, 1990) (Hunt et al., 1992) (Suykens, Vandewalle, DeMoor, 1996)

• NNARXmodels: use a feedforward neural network to approximate the

nonlinear difference equation yt ≈ N (yt−1, . . . , yt−na
, ut−1, . . . , ut−nb

)

• Neural state-spacemodels:

– w/ state data: fit a neural networkmodel xt+1 ≈ Nx(xt, ut), yt ≈ Ny(xt)

– I/O data only: set xt = value of an inner layer of the network (Prasad, Bequette, 2003)

such as an autoencoder (Masti, Bemporad, 2021)

• Recurrent neural networks (RNNs): more

appropriate for open-loop prediction, but

more difficult to train than feedforward NNs

(C) 2023 A. Bemporad - Learning-based Methods for MPC 7/42

encoder

decoder

state
update
map

yk, …, yk-n+1
uk, …, uk-m+1

yk-1, …, yk-n
uk-1, …, uk-m

uk

yk, …, yk-n+1 yk+1, …, yk-n+2

D D

E E

f

xk+1xk xk+1*

publicdomainvectors.org

Nonlinear SYS-ID based on Neural Networks

• Neural networks proposed for nonlinear system identification since the ’90s

(Narendra, Parthasarathy, 1990) (Hunt et al., 1992) (Suykens, Vandewalle, DeMoor, 1996)

• NNARXmodels: use a feedforward neural network to approximate the

nonlinear difference equation yt ≈ N (yt−1, . . . , yt−na
, ut−1, . . . , ut−nb

)

• Neural state-spacemodels:

– w/ state data: fit a neural networkmodel xt+1 ≈ Nx(xt, ut), yt ≈ Ny(xt)

– I/O data only: set xt = value of an inner layer of the network (Prasad, Bequette, 2003)

such as an autoencoder (Masti, Bemporad, 2021)

• Recurrent neural networks (RNNs): more

appropriate for open-loop prediction, but

more difficult to train than feedforward NNs

(C) 2023 A. Bemporad - Learning-based Methods for MPC 7/42

Recurrent neural networks
• Recurrent Neural Network (RNN)model:

xk+1 = fx(xk, uk, θx)

yk = fy(xk, θy)

fx, fy = feedforward neural network

(e.g.: general RNNs, LSTMs, RESNETS, physics-informed NNs, …)

x

v1
v2

vL
y

vj = Ajfj−1(vj−1) + bj

θ = (A1, b1, . . . , AL, bL)

• Training problem: given a dataset {u0, y0, . . . , uN−1, yN−1} solve

min
θx, θy

x0, x1, . . . , xN−1

r(x0, θx, θy) +
1

N

N−1∑
k=0

ℓ(yk, fy(xk, θy))

s.t. xk+1 = fx(xk, uk, θx)

• Main issue: xk are hidden states, i.e., are unknowns of the problem

(C) 2023 A. Bemporad - Learning-based Methods for MPC 8/42

Training RNNs by EKF
(Puskorius, Feldkamp, 1994) (Wang, Huang, 2011) (Bemporad, 2023)

• Estimate both hidden states xk and parameters θx, θy by EKF based onmodel
xk+1 = fx(xk, uk, θxk) + ξk[

θx(k+1)

θy(k+1)

]
=

[
θxk
θyk

]
+ ηk

yk = fy(xk, θyk) + ζk

RatioVar[ηk]/Var[ζk] related to
learning-rate of training algorithm

Inverse of initial matrixP0 related to
ℓ2-penalty on θx, θy

• RNN and its hidden state xk can be estimated on line from a streaming dataset

{uk, yk}, and/or offline by processingmultiple epochs of a given dataset

• Can handle general smooth strongly convex loss fncs/regularization terms

• Can add ℓ1-penalty λ
∥∥∥[θx

θy

]∥∥∥
1
to sparsify θx, θy by changing EKF update into[

x̂(k|k)
θx(k|k)
θy(k|k)

]
=

[
x̂(k|k−1)
θx(k|k−1)
θy(k|k−1)

]
+M(k)e(k)−λP (k|k − 1)

[
0

sign(θx(k|k−1))
sign(θy(k|k−1))

]

(C) 2023 A. Bemporad - Learning-based Methods for MPC 9/42

Training RNNs by EKF
(Puskorius, Feldkamp, 1994) (Wang, Huang, 2011) (Bemporad, 2023)

• Estimate both hidden states xk and parameters θx, θy by EKF based onmodel
xk+1 = fx(xk, uk, θxk) + ξk[

θx(k+1)

θy(k+1)

]
=

[
θxk
θyk

]
+ ηk

yk = fy(xk, θyk) + ζk

RatioVar[ηk]/Var[ζk] related to
learning-rate of training algorithm

Inverse of initial matrixP0 related to
ℓ2-penalty on θx, θy

• RNN and its hidden state xk can be estimated on line from a streaming dataset

{uk, yk}, and/or offline by processingmultiple epochs of a given dataset

• Can handle general smooth strongly convex loss fncs/regularization terms

• Can add ℓ1-penalty λ
∥∥∥[θx

θy

]∥∥∥
1
to sparsify θx, θy by changing EKF update into[

x̂(k|k)
θx(k|k)
θy(k|k)

]
=

[
x̂(k|k−1)
θx(k|k−1)
θy(k|k−1)

]
+M(k)e(k)−λP (k|k − 1)

[
0

sign(θx(k|k−1))
sign(θy(k|k−1))

]

(C) 2023 A. Bemporad - Learning-based Methods for MPC 9/42

Training RNNs by EKF
(Puskorius, Feldkamp, 1994) (Wang, Huang, 2011) (Bemporad, 2023)

• Estimate both hidden states xk and parameters θx, θy by EKF based onmodel
xk+1 = fx(xk, uk, θxk) + ξk[

θx(k+1)

θy(k+1)

]
=

[
θxk
θyk

]
+ ηk

yk = fy(xk, θyk) + ζk

RatioVar[ηk]/Var[ζk] related to
learning-rate of training algorithm

Inverse of initial matrixP0 related to
ℓ2-penalty on θx, θy

• RNN and its hidden state xk can be estimated on line from a streaming dataset

{uk, yk}, and/or offline by processingmultiple epochs of a given dataset

• Can handle general smooth strongly convex loss fncs/regularization terms

• Can add ℓ1-penalty λ
∥∥∥[θx

θy

]∥∥∥
1
to sparsify θx, θy by changing EKF update into[

x̂(k|k)
θx(k|k)
θy(k|k)

]
=

[
x̂(k|k−1)
θx(k|k−1)
θy(k|k−1)

]
+M(k)e(k)−λP (k|k − 1)

[
0

sign(θx(k|k−1))
sign(θy(k|k−1))

]
(C) 2023 A. Bemporad - Learning-based Methods for MPC 9/42

Training RNNs by Sequential Least-Squares
(Bemporad, 2023)

• RNN training problem = optimal control problem:

minθx,θy,x0,x1,...,xN−1
r(x0, θx, θy) +

N−1∑
k=0

ℓ(yk, ŷk)

s.t. xk+1 = fx(xk, uk, θx)

ŷk = fy(xk, uk, θy)

– θx, θy, x0 =manipulated variables, ŷk = output, yk = reference, uk =meas. dist.

– r(x0, θx, θy) = input penalty, ℓ(yk, ŷk) = output penalty

– N = prediction horizon, control horizon = 1

• Linearizedmodel: given a current guess θhx , θ
h
y , x

h
0 , . . . , x

h
N−1, approximate

∆xk+1 = (∇xfx)
′∆xk + (∇θxfx)

′∆θx
∆yk = (∇xk

fy)
′∆xk + (∇θyfy)

′∆θy

(C) 2023 A. Bemporad - Learning-based Methods for MPC 10/42

Training RNNs by Sequential Least-Squares
• Linearized dynamic response:∆xk = Mkx∆x0 +Mkθx∆θx

M0x = I, M0θx = 0

M(k+1)x = ∇xfx(x
h
k , uk, θ

h
x)Mkx

M(k+1)θx = ∇xfx(x
h
k , uk, θ

h
x)Mkθx +∇θxfx(x

h
k , uk, θ

h
x)

• Take 2nd-order expansion of the loss ℓ and regularization term r

• Solve least-squares problem to get increments∆x0,∆θx,∆θy

• Update xh+1
0 , θh+1

x , θh+1
y by applying either a

– line-search (LS) method based on Armijo rule

– or a trust-regionmethod (Levenberg-Marquardt) (LM)

• The resulting trainingmethod is aGeneralized Gauss-Newtonmethod

very good convergence properties (Messerer, Baumgärtner, Diehl, 2021)

(C) 2023 A. Bemporad - Learning-based Methods for MPC 11/42

Training RNNs by Sequential Least-Squares
• Linearized dynamic response:∆xk = Mkx∆x0 +Mkθx∆θx

M0x = I, M0θx = 0

M(k+1)x = ∇xfx(x
h
k , uk, θ

h
x)Mkx

M(k+1)θx = ∇xfx(x
h
k , uk, θ

h
x)Mkθx +∇θxfx(x

h
k , uk, θ

h
x)

• Take 2nd-order expansion of the loss ℓ and regularization term r

• Solve least-squares problem to get increments∆x0,∆θx,∆θy

• Update xh+1
0 , θh+1

x , θh+1
y by applying either a

– line-search (LS) method based on Armijo rule

– or a trust-regionmethod (Levenberg-Marquardt) (LM)

• The resulting trainingmethod is aGeneralized Gauss-Newtonmethod

very good convergence properties (Messerer, Baumgärtner, Diehl, 2021)

(C) 2023 A. Bemporad - Learning-based Methods for MPC 11/42

Training RNNs by Sequential LS and ADMM
• Example: magneto-rheological fluid damper

N=2000 data used for training, 1499 for testing themodel

(Wang, Sano, Chen, Huang, 2009)

• RNNmodel: 4 states, shallowNNsw/ 4 neurons, I/O feedthrough

0 1 2 3 4 5 6 7 8 9 10

training time (s)

101

102

103

M
S
E

NAILS
NAILM
EKF
AMSGrad

20 40 60

training time (s)

AMSGrad

MSE loss on training data,
mean value and range over 20
runs from different random
initial weights

NAILS = GNN method with line search
NAILM = GNN method with LM steps

Best Fit Rate training test
NAILS 94.41 (0.27) 89.35 (2.63)
NAILM 94.07 (0.38) 89.64 (2.30)
EKF 91.41 (0.70) 87.17 (3.06)
AMSGrad 84.69 (0.15) 80.56 (0.18)

Two ends of the MR damper (RD-1097-01) provided
by Lord Corp. are physically connected to the shake
table and ground, respectively. The voltage of the MR
damper is fixed to 1.25V. The shake table generates
necessary vibrations dragging the piston rod of the
MR damper moving along its chamber. Since the
shake table weights about 60 lbs leading to a large
inertia, it has to be controlled under a closed-loop
operation. The proportional-derivative (PD) control-
ler in Figure 7 is implemented in Computer #1, and
reads the displacement by counting turns of
a circulating shaft and sends out currents to drive
the shake table at sampling period 0.001 s.
Simultaneously, Computer #2 reads the damping
force y(t) via a strain meter and the displacement
via an infrared sensor at sampling period 0.005 s.
After downsampling the measurements from
Computer #1 by a factor 5, we synchronise all
measurements from the two computers by comparing
the two displacement measurements. Eventually,
displacement measurements from Computer #2 are
discarded because they are relatively noisy. No
velocity sensor is available so that the velocity u(t)
is obtained by a numerical differentiation of the
displacement measurements from Computer #1.

The numerical differentiation can be implemented
by passing the displacement measurements through
a simple differentiation filter 1! q!1, i.e.
u(t)¼ d(t)! d(t! 1), where d(t) denotes the measured
displacement, or a more complex Savitzky–Golay
differentiation filter (Orfanidis 1996) to avoid ampli-
fying measurement noises. Here we adopt the former
in order to be consistent with our previous study in
vibration control (Terasawa, Sakai, Ohmori, and
Sano 2004); in fact, both filters are exploited and
resulting MR damper models have similar perfor-
mances. It is worth pointing out that the differentia-
tion filter does not physically exist in the experimental
setup so that the measured damping force and the
estimated inner signal are not affected by the choice
of filters.

Assumption A1 in x 2 requires the velocity to be
piecewise constant for p consecutive samples. We let
the desired displacement in Figure 7 take uniformly
distributed random values within the range [!1.5, 1.5]
centimetre and have a constant increment every 0.2 s.
As a result, the velocity is approximately piecewise
constant for every 40 samples (the sampling period h is
0.005 s). For example, Figure 8 shows some enlarged
parts of the measured displacement, the calculated

Figure 6. Experimental devices.

MR
damper

PD
controller

Shake table

Desired
displacement

+

Measured
displacement

−

Current Measured
damping force

Figure 7. A diagram of the experimental setup.

−10

0

10

V
el

oc
ity

 (c
m

/s
ec

)

−2

0

2

D
is

pl
ac

em
en

t (
cm

)

2.8 3 3.2 3.4 3.6 3.8 4 4.2

−50

0

50

Time (s)

2.8 3 3.2 3.4 3.6 3.8 4 4.2
Time (s)

2.8 3 3.2 3.4 3.6 3.8 4 4.2
Time (s)

D
am

pi
ng

 fo
rc

e
(N

)

Figure 8. Some enlarged parts of experimental data.

International Journal of Control 947

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f W

ar
w

ic
k]

 a
t 0

3:
36

 0
3

A
ug

us
t 2

01
7

(C) 2023 A. Bemporad - Learning-based Methods for MPC 12/42

Training RNNs by Sequential LS and ADMM
(Bemporad, 2023)

• We also want to handle non-smooth (and non-convex) regularization terms

minθx,θy,x0 r(x0, θx, θy) +
∑N−1

k=0 ℓ(yk, fy(xk, θy)) + g(θx, θy)

s.t. xk+1 = fx(xk, uk, θx)

• Idea: use the alternating directionmethod of multipliers (ADMM)[
xt+1
0

θt+1
x

θt+1
y

]
= argminx0,θx,θy V (x0, θx, θy) +

ρ
2

∥∥∥[θx−νt
x+wt

x

θy−νt
y+wt

y

]∥∥∥2
2

(sequential) LS[
νt+1
x

νt+1
y

]
= prox 1

ρ
g(θ

t+1
x + wt

x, θ
t+1
y + wt

y) proximal step[
wt+1

x

wt+1
y

]
=

[
wh

x+θt+1
x −νt+1

x

wh
y+θt+1

y −νt+1
y

]
update dual vars

NAILS - Nonconvex ADMM Iterations and sequential LS w/ Line-Search
NAILM - Nonconvex ADMM Iterations and sequential LS w/ Levenberg-Marquardt

(C) 2023 A. Bemporad - Learning-based Methods for MPC 13/42

Training RNNs by Sequential LS and ADMM
(Bemporad, 2023)

• We also want to handle non-smooth (and non-convex) regularization terms

minθx,θy,x0 r(x0, θx, θy) +
∑N−1

k=0 ℓ(yk, fy(xk, θy)) + g(θx, θy)

s.t. xk+1 = fx(xk, uk, θx)

• Idea: use the alternating directionmethod of multipliers (ADMM)[
xt+1
0

θt+1
x

θt+1
y

]
= argminx0,θx,θy V (x0, θx, θy) +

ρ
2

∥∥∥[θx−νt
x+wt

x

θy−νt
y+wt

y

]∥∥∥2
2

(sequential) LS[
νt+1
x

νt+1
y

]
= prox 1

ρ
g(θ

t+1
x + wt

x, θ
t+1
y + wt

y) proximal step[
wt+1

x

wt+1
y

]
=

[
wh

x+θt+1
x −νt+1

x

wh
y+θt+1

y −νt+1
y

]
update dual vars

NAILS - Nonconvex ADMM Iterations and sequential LS w/ Line-Search
NAILM - Nonconvex ADMM Iterations and sequential LS w/ Levenberg-Marquardt

(C) 2023 A. Bemporad - Learning-based Methods for MPC 13/42

Training RNNs by Sequential LS and ADMM
(Bemporad, 2023)

• Fluid-damper example: Lasso regularization g(νx, νy) = 0.2∥νx∥1 + 0.2∥νy∥1
training BFR BFR sparsity CPU #
algorithm training test % time epochs
NAILS 91.00 (1.66) 87.71 (2.67) 65.1 (6.5) 11.4 s 250
NAILM 91.32 (1.19) 87.80 (1.86) 64.1 (7.4) 11.7 s 250
EKF 89.27 (1.48) 86.67 (2.71) 47.9 (9.1) 13.2 s 50
AMSGrad 91.04 (0.47) 88.32 (0.80) 16.8 (7.1) 64.0 s 2000
Adam 90.47 (0.34) 87.79 (0.44) 8.3 (3.5) 63.9 s 2000
DiffGrad 90.05 (0.64) 87.34 (1.14) 7.4 (4.5) 63.9 s 2000

≈ same fit than
SGD/EKF but sparser
models and faster
(CPU: Apple M1 Pro)

• Fluid-damper example: group-Lasso regularization g(νgi) = τg
∑nx

i=1 ∥ν
g
i ∥2

to zero entire rows and columns and reduce state-dimension automatically

10-4 10-3 10-2 10-1 100 101

group-lasso regularization parameter =g

60

70

80

90

100

B
F
R

(%
)

0

2

4

6

8

-
n
a
l
m

o
d
el

or
d
er

BFR (test data)
BFR (training data)
final model order

good choice: nx = 3

(best fit on test data)

(C) 2023 A. Bemporad - Learning-based Methods for MPC 14/42

Training RNNs by Sequential LS and ADMM
(Bemporad, 2023)

• Fluid-damper example: Lasso regularization g(νx, νy) = 0.2∥νx∥1 + 0.2∥νy∥1
training BFR BFR sparsity CPU #
algorithm training test % time epochs
NAILS 91.00 (1.66) 87.71 (2.67) 65.1 (6.5) 11.4 s 250
NAILM 91.32 (1.19) 87.80 (1.86) 64.1 (7.4) 11.7 s 250
EKF 89.27 (1.48) 86.67 (2.71) 47.9 (9.1) 13.2 s 50
AMSGrad 91.04 (0.47) 88.32 (0.80) 16.8 (7.1) 64.0 s 2000
Adam 90.47 (0.34) 87.79 (0.44) 8.3 (3.5) 63.9 s 2000
DiffGrad 90.05 (0.64) 87.34 (1.14) 7.4 (4.5) 63.9 s 2000

≈ same fit than
SGD/EKF but sparser
models and faster
(CPU: Apple M1 Pro)

• Fluid-damper example: group-Lasso regularization g(νgi) = τg
∑nx

i=1 ∥ν
g
i ∥2

to zero entire rows and columns and reduce state-dimension automatically

10-4 10-3 10-2 10-1 100 101

group-lasso regularization parameter =g

60

70

80

90

100

B
F
R

(%
)

0

2

4

6

8

-
n
a
l
m

o
d
el

o
rd

er
BFR (test data)
BFR (training data)
final model order

good choice: nx = 3

(best fit on test data)

(C) 2023 A. Bemporad - Learning-based Methods for MPC 14/42

nonlinearbenchmark.org

Industrial Robot Benchmark
(Weigand, Götz, Ulmen, Ruskowski, 2022)

• KUKAKR300 R2500 ultra SE industrial robot,

full robot movement

• 6 inputs (torques), 6 outputs (joint angles), backlash

• Identification benchmark dataset (forwardmodel):

– Sample time: Ts = 100ms

– N = 39988 training samples

– Ntest = 3636 test samples

(C) 2023 A. Bemporad - Learning-based Methods for MPC 15/42

nonlinearbenchmark.org

?
?

Industrial Robot Benchmark: challenges

• Highly nonlinear dynamics.

Nonlinear modeling required

• Multi-input / multi-output, highly coupled system

• Data are slightly over-sampled, ∥yk − yk−1∥ is often very small,
need tominimize open-loop simulation error

• Limited information: easy to overfit training data and get poor testing results

• Large number of samples complicates numerical optimization

Finding a model that minimizes the simulation error is a

rather challenging task from a computational viewpoint

(C) 2023 A. Bemporad - Learning-based Methods for MPC 16/42

?
?

Industrial Robot Benchmark: challenges

• Highly nonlinear dynamics.

Nonlinear modeling required

• Multi-input / multi-output, highly coupled system

• Data are slightly over-sampled, ∥yk − yk−1∥ is often very small,
need tominimize open-loop simulation error

• Limited information: easy to overfit training data and get poor testing results

• Large number of samples complicates numerical optimization

Finding a model that minimizes the simulation error is a

rather challenging task from a computational viewpoint

(C) 2023 A. Bemporad - Learning-based Methods for MPC 16/42

Recurrent neural networks in residual form
(Bemporad, 2023 -NLSYS-ID BenchmarksWorkshop)

• Recurrent Neural Network (RNN)model in residual form:

xk+1 = Axk +Buk + fx(xk, uk, θ
i
x)

yk = Cxk + fy(xk, θ
i
y)

fx, fy = feedforward neural network

x

v1
v2

vL
y

vj = Ajfj−1(vj−1) + bj

θ = (A1, b1, . . . , AL, bL)

• Goal: minimize open-loop simulation error under elastic net regularization

min
A,B,C,θx,θy

1

N

N∑
k=1

∥yk − ŷk∥22 +
1

2
ρ(∥θx∥22 + ∥θy∥22) + τ(∥θx∥1 + ∥θy∥1)

s.t. model equations, x0 = 0

• ℓ1-regularization introduced to reduce #model coefficients (=simpler model)

(C) 2023 A. Bemporad - Learning-based Methods for MPC 17/42

Solution approach
(Bemporad, 2023 -NLSYS-ID BenchmarksWorkshop)

1. Standard-scale I/O data for numerical reasons ui ← ui−µi
u

σi
u

, yi ←
yi−µi

y

σi
y

i = 1, . . . , 6

2. Train (A,B,C) byN4SID (Overschee, DeMoor, 1994)with focus on simulation

3. Train simple RESNETmodel with shallowNNs:

xk+1 = Axk +Buk + fx(xk, uk, θx), yk = Cxk + fy(xk, θy)

• Optimization setup: in Python, using JAX and L-BFGS-B (Byrd, Lu, Nocedal, Zhu, 1995)

to handle ℓ1-regularization

(C) 2023 A. Bemporad - Learning-based Methods for MPC 18/42

Training RNN w/ ℓ1-penalties via L-BFGS-B

• To handle ℓ1-regularization, split θx = θ+x − θ−x and θy = θ+y − θ−y :

min
θ+x ,θ+y ,θ−x ,θ−y

1

N

N∑
k=1

∥yk − ŷk∥22 +
1

2
ρ

∥∥∥∥∥∥∥
 θ+x

θ+y

θ−x
θ−y

∥∥∥∥∥∥∥
2

2

+ τ

[
1

...
1

]′ θ+x
θ+y

θ−x
θ−y

s.t.model equations, x0 = 0

θ+x , θ
+
y , θ

−
x , θ−y ≥ 0

• Lemma: Weighting ∥θ+x ∥22 + ∥θ−x ∥22 + ∥θ+y ∥22 + ∥θ−y ∥22 is equivalent to
weighting ∥θ+x − θ−x ∥22 + ∥θ+y − θ−y ∥22 (proof is simple by contradiction)

• Note: weighting ∥θ+x ∥22 + ∥θ−x ∥22 + ∥θ+y ∥22 + ∥θ−y ∥22 is numerically better, as

ℓ2-regularization is strongly convex for ρ > 0

(C) 2023 A. Bemporad - Learning-based Methods for MPC 19/42

Industrial Robot Benchmark: Results
• Statex ∈ R12, fx, fy withnx

1 = 24 andny
1 = 12 neurons, respectively, ρ = 10−4

• Total number of training parameters: dim(θx) + dim(θy) = 990

𝜏

R2

(%)

p
er

ce
n
ta

ge
 o

f
ze

ro
s

R2 (test data)

R2 (training data)

% zeros in model

𝜏=0.0005 𝜏=0.04

(bestR2 in 5 runs)

• Model quality measured by averageR2-score on all outputs:

R2 =
1

ny

ny∑
i=1

100

(
1−

∑N
k=1(yk,i − ŷk,i|0)

2∑N
k=1(yk,i −

1
N

∑N
i=1 yk,i)

2

)

• Training time≈ 50min on a single core of an AppleM1Max CPU

(C) 2023 A. Bemporad - Learning-based Methods for MPC 20/42

Industrial Robot Benchmark: Results
• Statex ∈ R12, fx, fy withnx

1 = 24 andny
1 = 12 neurons, respectively, ρ = 10−4

• Total number of training parameters: dim(θx) + dim(θy) = 990

𝜏

R2

(%)

p
er

ce
n
ta

ge
 o

f
ze

ro
s

R2 (test data)

R2 (training data)

% zeros in model

𝜏=0.0005 𝜏=0.04

(bestR2 in 5 runs)

• Model quality measured by averageR2-score on all outputs:

R2 =
1

ny

ny∑
i=1

100

(
1−

∑N
k=1(yk,i − ŷk,i|0)

2∑N
k=1(yk,i −

1
N

∑N
i=1 yk,i)

2

)

• Training time≈ 50min on a single core of an AppleM1Max CPU

(C) 2023 A. Bemporad - Learning-based Methods for MPC 20/42

Industrial Robot Benchmark: Results

• Open-loop simulation errors (ρ = 10−4, τ = 0.0005, nx
1 = 24, ny

1 = 12):

R2 (training) R2 (test) R2 (training) R2 (test)
RNN model RNN model linear model linear model

y1 84.3099 74.3654 59.7335 59.9400
y2 73.3438 53.2403 48.6032 31.9400
y3 65.0838 47.0516 47.3231 24.1045
y4 47.9524 46.2464 25.0829 21.6542
y5 37.0665 34.3510 25.0987 24.8838
y6 66.9417 37.5726 29.8516 31.5943

average 62.4497 48.8046 39.2822 32.3528

• Moremodel parameters/smaller regularization leads to overfit training data

(C) 2023 A. Bemporad - Learning-based Methods for MPC 21/42

Industrial Robot Benchmark: Results

• Compute p-step ahead prediction ŷk+p|k , with hidden state xk|k estimated by

an Extended Kalman Filter based on identified RNNmodel

0 10 20 30 40 50
prediction step

30

40

50

60

70

80

90

100

av
er

ag
e

R2
 (%

)

RNN model: R2 (test data)
Linear model: R2 (test data)

• This is a more relevant indicator of model quality forMPC purposes than

open-loop simulation error ŷk|0 − yk

(C) 2023 A. Bemporad - Learning-based Methods for MPC 22/42

𝜏

R2

(%)

p
er

ce
n
ta

g
e

o
f
ze

ro
s

R2 (test data)

R2 (training data)

% zeros in model

𝜏=0.0005 𝜏=0.04

Industrial Robot Benchmark: Results

• CompareAdam (Kingma, Ba, 2014) vs L-BFGS-B1:

(τ = 0.04, ρ = 10−4, nx
1 = 24, ny

1 = 12)

best case average R2 average R2 CPU
method criterion (training) (test) # zeros time (s)
L-BFGS-B R2 (test) 58.13 46.49 375/990 3215
Adam 51.51 47.31 8/990 2511
L-BFGS-B # zeros 54.34 45.07 520/990 3172
Adam 50.41 41.99 27/990 2518

Adam: tuned with learning
rate exponentially decaying
from 0.01 after 1000 steps,
with decay rate 0.05.

• L-BFGS-B leads to sparsermodels than Adamwith similarR2-scores

1Best out of 5 runs, either based on theR2 on test data or # zeros in θx, θy

(C) 2023 A. Bemporad - Learning-based Methods for MPC 23/42

Piecewise affine regression and classification

PWA regression problem

• Problem: Given input/output pairs {x(k), y(k)}, k = 1, . . . , N and number s of

models, compute a piecewise affine (PWA) approximation y ≈ f(x)

v(k) =

F1z(k) + g1 ifH1z(k) ≤ K1

...

Fsz(k) + gs ifHsz(k) ≤ Ks

v(k) =
[
x(k+1)
y(k)

]
, z(k) =

[
x(k)
u(k)

]

f(z)

z

• Quite rich literature on PWA identification (Breiman, 1993) (Münz, Krebs, 2002)

(Ferrari-Trecate,Muselli, Liberati, Morari, 2003) (Juloski,Wieland, Heemels, 2004) (Roll, Bemporad, Ljung,

2004) (Bemporad, Garulli, Paoletti, Vicino, 2005) (Pillonetto, 2016) (Breschi, Piga, Bemporad, 2016)

• AnyML technique can be applied that leads to PWAmodels, such as

(leaky-)ReLU-NNs, decision trees, softmax regression,KNN, ...

(C) 2023 A. Bemporad - Learning-based Methods for MPC 24/42

PARC - Piecewise affine regression and classification
(Bemporad, 2022)

• New Piecewise Affine Regression and Classification (PARC) algorithm

• Training dataset:

– feature vector z ∈ Rn (categorical features one-hot encoded in {0, 1})

– target vector vc ∈ Rmc (numeric), vdi ∈ {w1
di, . . . , w

mi
di } (categorical)

• PARC iteratively clusters training data inK sets and fits linear predictors:

1. fit vc = ajz + bj by ridge regression (=ℓ2-regularized least squares)

2. fit vdi = wh∗
di , h∗ = argmax{ah

dihz + bhdi} by softmax regression

3. fit a convex PWL separation function by softmax regression

Φ(z) = ωj(z)z + γj(z), j(z) = min

{
arg max

j=1,...,K
{ωjz + γj}

}

• Data reassigned to clusters based onweighted fit/PWL separation criterion

• PARC is a block-coordinate descent algorithm⇒ (local) convergence ensured

(C) 2023 A. Bemporad - Learning-based Methods for MPC 25/42

PARC - Piecewise affine regression and classification
(Bemporad, 2022)

• New Piecewise Affine Regression and Classification (PARC) algorithm

• Training dataset:

– feature vector z ∈ Rn (categorical features one-hot encoded in {0, 1})

– target vector vc ∈ Rmc (numeric), vdi ∈ {w1
di, . . . , w

mi
di } (categorical)

• PARC iteratively clusters training data inK sets and fits linear predictors:

1. fit vc = ajz + bj by ridge regression (=ℓ2-regularized least squares)

2. fit vdi = wh∗
di , h∗ = argmax{ah

dihz + bhdi} by softmax regression

3. fit a convex PWL separation function by softmax regression

Φ(z) = ωj(z)z + γj(z), j(z) = min

{
arg max

j=1,...,K
{ωjz + γj}

}
• Data reassigned to clusters based onweighted fit/PWL separation criterion

• PARC is a block-coordinate descent algorithm⇒ (local) convergence ensured

(C) 2023 A. Bemporad - Learning-based Methods for MPC 25/42

PARC - Piecewise affine regression and classification
(Bemporad, 2022)

• New Piecewise Affine Regression and Classification (PARC) algorithm

• Training dataset:

– feature vector z ∈ Rn (categorical features one-hot encoded in {0, 1})

– target vector vc ∈ Rmc (numeric), vdi ∈ {w1
di, . . . , w

mi
di } (categorical)

• PARC iteratively clusters training data inK sets and fits linear predictors:

1. fit vc = ajz + bj by ridge regression (=ℓ2-regularized least squares)

2. fit vdi = wh∗
di , h∗ = argmax{ah

dihz + bhdi} by softmax regression

3. fit a convex PWL separation function by softmax regression

Φ(z) = ωj(z)z + γj(z), j(z) = min

{
arg max

j=1,...,K
{ωjz + γj}

}

• Data reassigned to clusters based onweighted fit/PWL separation criterion

• PARC is a block-coordinate descent algorithm⇒ (local) convergence ensured

(C) 2023 A. Bemporad - Learning-based Methods for MPC 25/42

PARC - Piecewise affine regression and classification
(Bemporad, 2022)

• New Piecewise Affine Regression and Classification (PARC) algorithm

• Training dataset:

– feature vector z ∈ Rn (categorical features one-hot encoded in {0, 1})

– target vector vc ∈ Rmc (numeric), vdi ∈ {w1
di, . . . , w

mi
di } (categorical)

• PARC iteratively clusters training data inK sets and fits linear predictors:

1. fit vc = ajz + bj by ridge regression (=ℓ2-regularized least squares)

2. fit vdi = wh∗
di , h∗ = argmax{ah

dihz + bhdi} by softmax regression

3. fit a convex PWL separation function by softmax regression

Φ(z) = ωj(z)z + γj(z), j(z) = min

{
arg max

j=1,...,K
{ωjz + γj}

}
• Data reassigned to clusters based onweighted fit/PWL separation criterion

• PARC is a block-coordinate descent algorithm⇒ (local) convergence ensured
(C) 2023 A. Bemporad - Learning-based Methods for MPC 25/42

PARC - Piecewise Affine Regression and Classification

• Simple PWA regression example:

– 1000 samples of y = sin(4x1 − 5(x2 − 0.5)2) + 2x2 (use 80% for training)

– Look for PWA approximation overK = 10 polyhedral regions

x1
0.0

0.2
0.4

0.6
0.8

1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

y

1.0
0.5

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Nonlinear function

x1
0.0

0.2
0.4

0.6
0.8

1.0

x2

0.0

0.2

0.4

0.6

0.8

1.0

y

1

0

1

2

3

PARC (K = 10)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

11 22

33

4455

66

77

88

99 1010

PARC (K = 10)

• Code: pip install pyparc github.com/bemporad/PyPARC

(C) 2023 A. Bemporad - Learning-based Methods for MPC 26/42

github.com/bemporad/PyPARC

p

MF T

a

a1 a2

k2

b2

k1

b1

T1 T2

0

2

4

position [m]

10

20

30

40

50 temperature [oC]

0 250 500 750 1000 1250 1500 1750 2000
time (s)

1

0

1
force switch

PARC - Cart & Bumpers Example

• Example: moving cart and bumpers +

heat transfer during bumps.

Spring and viscous forces are nonlinear.

• Categorical inputF ∈ {−F̄ , 0, F̄}

• Categorical output c ∈ {green, yellow, red}

• 4000 training samples

• Feature vector zk = [yk, ẏk, Tk, Fk]

• Target vector vk = [yk+1, ẏk+1, Tk+1, ck]

• Hybridmodel learned by PARC (K = 5 regions)

(C) 2023 A. Bemporad - Learning-based Methods for MPC 27/42

PARC - Cart & Bumpers Example
• Open-loop simulation on 500 s test data:

0

2

4
position [m]

10

20

30

40

50 temperature [oC]

0 200 400
time (s)

1

0

1
force switch

continuous-time system

0

2

4
position [m]

10

20

30

40

50 temperature [oC]

0 200 400
time (s)

1

0

1
force switch

discrete-time PWA model

• Model fit is good enough forMPC design purposes (see next slide ...)

(C) 2023 A. Bemporad - Learning-based Methods for MPC 28/42

p

MF T

a

a1 a2

k2

b2

k1

b1

T1 T2

1

2

3

position [m]

10

20

30

40

50 temperature [oC]

0 20 40 60 80 100
time (s)

1

0

1
force switch

PARC - Cart & Bumpers Example

• MPC problemwith prediction horizonN = 9:

minF0,...,FN−1

N−1∑
k=0

|ck − 1|+ 0.25|Fk|

s.t. Fk ∈ {−F̄ , 0, F̄}
PWAmodel equations

• MILP solution time: 0.37-1.9 s (CPLEX)

• Data-driven hybridMPC controller can keep

temperature in yellow zone

• Approximate explicitMPC: fit a decision tree on 10,000 samples

(accuracy: 99.7%). CPU time = 73÷88 µs. Closed-loop trajectories very similar.

(C) 2023 A. Bemporad - Learning-based Methods for MPC 29/42

p

MF T

a

a1 a2

k2

b2

k1

b1

T1 T2

1

2

3

position [m]

10

20

30

40

50 temperature [oC]

0 20 40 60 80 100
time (s)

1

0

1
force switch

PARC - Cart & Bumpers Example

• MPC problemwith prediction horizonN = 9:

minF0,...,FN−1

N−1∑
k=0

|ck − 1|+ 0.25|Fk|

s.t. Fk ∈ {−F̄ , 0, F̄}
PWAmodel equations

• MILP solution time: 0.37-1.9 s (CPLEX)

• Data-driven hybridMPC controller can keep

temperature in yellow zone

• Approximate explicitMPC: fit a decision tree on 10,000 samples

(accuracy: 99.7%). CPU time = 73÷88 µs. Closed-loop trajectories very similar.

(C) 2023 A. Bemporad - Learning-based Methods for MPC 29/42

Learning optimal MPC calibration

x1

x3

x2
x4

MPC calibration problem
• The design depends on a vector x ofMPCparameters

• Parameters can bemany things:
– MPCweights, predictionmodel coefficients, horizons

– Covariancematrices used in Kalman filters

– Tolerances used in numerical solvers

– …

• Define a performance index f over a closed-loop simulation or real experiment.

For example:

f(x) =

T∑
t=0

∥y(t)− r(t)∥2

(tracking quality)

• Auto-tuning = find the best combination of parameters by solving

the global optimization problem

min
x

f(x)

(C) 2023 A. Bemporad - Learning-based Methods for MPC 30/42

Auto-tuning - Global optimization algorithms
• Several derivative-free global optimization algorithms exist: (Rios, Sahidinis, 2013)

– Lipschitzian-based partitioning techniques:
• DIRECT (DIvide in RECTangles) (Jones, 2001)

• Multilevel Coordinate Search (MCS) (Huyer, Neumaier, 1999)

– Response surfacemethods
• Kriging (Matheron, 1967),DACE (Sacks et al., 1989)

• Efficient global optimization (EGO) (Jones, Schonlau,Welch, 1998)

• Bayesian optimization (Brochu, Cora, De Freitas, 2010)

– Genetic algorithms (GA) (Holland, 1975)

– Particle swarm optimization (PSO) (Kennedy, 2010)

– ...

• GLISmethod - radial basis function surrogates + inverse distanceweighting

(Bemporad, 2020) cse.lab.imtlucca.it/~bemporad/glis

pip install glis

(C) 2023 A. Bemporad - Learning-based Methods for MPC 31/42

cse.lab.imtlucca.it/~bemporad/glis

Auto-tuning - Global optimization algorithms
• Several derivative-free global optimization algorithms exist: (Rios, Sahidinis, 2013)

– Lipschitzian-based partitioning techniques:
• DIRECT (DIvide in RECTangles) (Jones, 2001)

• Multilevel Coordinate Search (MCS) (Huyer, Neumaier, 1999)

– Response surfacemethods
• Kriging (Matheron, 1967),DACE (Sacks et al., 1989)

• Efficient global optimization (EGO) (Jones, Schonlau,Welch, 1998)

• Bayesian optimization (Brochu, Cora, De Freitas, 2010)

– Genetic algorithms (GA) (Holland, 1975)

– Particle swarm optimization (PSO) (Kennedy, 2010)

– ...

• GLISmethod - radial basis function surrogates + inverse distanceweighting

(Bemporad, 2020) cse.lab.imtlucca.it/~bemporad/glis

pip install glis

(C) 2023 A. Bemporad - Learning-based Methods for MPC 31/42

cse.lab.imtlucca.it/~bemporad/glis

GLIS vs Bayesian Optimization

10 20 30 40 50 60
0

5

10
BO
GLIS

5 10 15 20 25
0

2

4 104

BO
GLIS

10 20 30 40 50 60
-200

0

200 BO
GLIS

5 10 15
-2

-1

0

1
BO
GLIS

5 10 15 20 25
0

100

200 BO
GLIS

5 10 15
0

2000

4000

6000
BO
GLIS

10 20 30 40 50
-4

-2

0
BO
GLIS

20 40 60 80
-4

-2

0
BO
GLIS

5 10 15 20
0

500

1000

1500
BO
GLIS

20 40 60 80
0

1

2

3 108

BO
GLIS

problem n BO [s] GLIS [s]

ackley 2 29.39 3.13

adjiman 2 3.29 0.68

branin 2 9.66 1.17

camelsixhumps 2 4.82 0.62

hartman3 3 26.27 3.35

hartman6 6 54.37 8.80

himmelblau 2 7.40 0.90

rosenbrock8 8 63.09 13.73

stepfunction2 4 11.72 1.81

styblinski-tang5 5 37.02 6.10

Results computed on 20 runs per test

BO = MATLAB's bayesopt fcn

• Comparable performance

• GLIS is computationally lighter

• GLIS is more flexible

(C) 2023 A. Bemporad - Learning-based Methods for MPC 32/42

Auto-tuning: Pros and Cons

• Pros:

 Selection of calibration parameters x to test is fully automatic

 Applicable to any calibration parameter (weights, horizons, solver tolerances, ...)

 Rather arbitrary performance index f(x) (tracking performance, response time,

worst-case number of flops, ...)

• Cons:

 Need to quantify an objective function f(x)

 No room for qualitative assessments of closed-loop performance

 Often havemultiple objectives, not clear how to blend them in a single one

(C) 2023 A. Bemporad - Learning-based Methods for MPC 33/42

Auto-tuning: Pros and Cons

• Pros:

 Selection of calibration parameters x to test is fully automatic

 Applicable to any calibration parameter (weights, horizons, solver tolerances, ...)

 Rather arbitrary performance index f(x) (tracking performance, response time,

worst-case number of flops, ...)

• Cons:

 Need to quantify an objective function f(x)

 No room for qualitative assessments of closed-loop performance

 Often havemultiple objectives, not clear how to blend them in a single one

(C) 2023 A. Bemporad - Learning-based Methods for MPC 33/42

Active preference learning
(Bemporad, Piga,Machine Learning, 2021)

• Objective function f(x) is not available (latent function)

• We can only express a preference between two choices:

π(x1, x2) =

−1 if x1 “better” than x2 [f(x1) < f(x2)]

0 if x1 “as good as” x2 [f(x1) = f(x2)]

1 if x2 “better” than x1 [f(x1) > f(x2)]

• Wewant to find a global optimum x⋆ (=“better” than any other x)

find x⋆ such that π(x⋆, x) ≤ 0, ∀x ∈ X , ℓ ≤ x ≤ u

• Active preference learning: iteratively propose a new sample to compare

• Key idea: learn a surrogate of the (latent) objective function from preferences

(C) 2023 A. Bemporad - Learning-based Methods for MPC 34/42

Active preference learning
(Bemporad, Piga,Machine Learning, 2021)

• Objective function f(x) is not available (latent function)

• We can only express a preference between two choices:

π(x1, x2) =

−1 if x1 “better” than x2 [f(x1) < f(x2)]

0 if x1 “as good as” x2 [f(x1) = f(x2)]

1 if x2 “better” than x1 [f(x1) > f(x2)]

• Wewant to find a global optimum x⋆ (=“better” than any other x)

find x⋆ such that π(x⋆, x) ≤ 0, ∀x ∈ X , ℓ ≤ x ≤ u

• Active preference learning: iteratively propose a new sample to compare

• Key idea: learn a surrogate of the (latent) objective function from preferences

(C) 2023 A. Bemporad - Learning-based Methods for MPC 34/42

Active preference learning algorithm
(Bemporad, Piga,Machine Learning, 2021)

surrogate function f(x)

exploration function z(x)

latent function f(x)

^

acquisition function a(x) = f(x)-z(x)^

xN+1

• Fit a surrogate f̂(x) that respects the preferences expressed by the decision

maker at sampled points (by solving aQP)

• Minimize an acquisition function f̂(x)− δz(x) to get a new sample xN+1

• Compare xN+1 to the current “best” point and iterate

GLISp -GLIS based on preferences (part of GLIS package)

(C) 2023 A. Bemporad - Learning-based Methods for MPC 35/42

Preference-based tuning: MPC example
(Zhu, Bemporad, Piga, 2021)

• Example: calibration of a simpleMPC for lane-keeping (2 inputs, 3 outputs)
ẋ = v cos(θ + δ)

ẏ = v sin(θ + δ)

θ̇ = 1
Lv sin(δ)

±

µ

L

v

x

y

• Multiple control objectives:

“optimal obstacle avoidance”, “pleasant drive”, “CPU time small enough”, …
not easy to quantify in a single function

• Latent function = calibrator’s (unconscious) score

• 5MPC parameters to tune:

– sampling time

– prediction and control horizons

– weights on input increments∆v,∆δ

(C) 2023 A. Bemporad - Learning-based Methods for MPC 36/42

Preference-based tuning: MPC example

• Preference query window:

0 50 100 150 200 250

0

3

6

 y
f [

m
]

vehicle
obstacle
vehicle OA
obstacle OA

0 50 100 150 200 250
40

50

60

70

80

 v
 [

km
/h

r]

Input
Reference

0 50 100 150 200 250
 x

f
 [m]

-50

-25

0

25

50

s [
°]

0 50 100 150 200 250

0

3

6

 y
f [

m
]

vehicle
obstacle
vehicle OA
obstacle OA

0 50 100 150 200 250
40

50

60

70

80

 v
 [

km
/h

r]

Input
Reference

0 50 100 150 200 250
 x

f
 [m]

-50

-25

0

25

50

s [
°]

T
s
 = 0.243 s, N

u
 = 12, N

p
 = 17, log(q

u11
) = 0.19,

log(q
u22

) = 0.70, t
comp

: 0.0846 s

T
s
 = 0.332 s, N

u
 = 16, N

p
 = 17, log(q

u11
) = 0.06,

log(q
u22

) = 2.02,t
comp

: 0.0867 s

(C) 2023 A. Bemporad - Learning-based Methods for MPC 37/42

Preference-based tuning: MPC example
• Convergence after 50 GLISp iterations (=49 queries):

0 50 100 150 200 250
-1
0
1
2
3
4

 y
f [

m
]

vehicle
obstacle
vehicle OA
obstacle OA

0 50 100 150 200 250

50
55
60
65
70
75

 v
 [

km
/h

r]

Input
Reference

0 50 100 150 200 250
 x

f
 [m]

-20

-10

0

10

20

s [
°]

Optimal MPC parameters:

– sample time = 85 ms (CPU time = 80.8 ms)

– prediction horizon = 16

– control horizon = 5

– weight on∆v = 1.82

– weight on∆δ = 8.28

• Note: no need to define a closed-loop performance index explicitly!

• Extended to handle also unknown constraints (Zhu, Piga, Bemporad, 2021)

(C) 2023 A. Bemporad - Learning-based Methods for MPC 38/42

Worst-case scenario detection

Worst-case scenario detection
(Zhu, Bemporad, Kneissl, Esen, 2023)

• Goal: detect undesired closed-loop scenarios (=corner-cases)

• Let x = parameters defining the scenario (e.g., initial conditions, disturbances, ...)

• Critical scenario = vector x∗ for which the closed-loop behavior is critical

SV

SV

1

1

• Critical scenario detection = find theworst combination x∗ of scenario

parameters by solving the global optimization problem

min
x

f(x)

(C) 2023 A. Bemporad - Learning-based Methods for MPC 39/42

Corner-case detection: Case study
• Problem: find critical scenarios in automated driving w/ obstacles

• MPC controller for lane-keeping and obstacle-avoidance based on simple

kinematic bicycle model (Zhu, Piga, Bemporad, 2021)

ẋf =v cos(θ + δ)

ẇf =v sin(θ + δ)

θ̇ =
v sin(δ)

L
(xf , wf) = front-wheel position

𝛿
𝜃

L

v

xf

wf

• Black-box optimization problem: given k obstacles, solve

min
ℓ≤x≤u

k∑
i=1

dSV,ixf ,critical
(x) + dSV,iwf ,critical

(x)

s.t. other constraints

SV

xf

wf

(C) 2023 A. Bemporad - Learning-based Methods for MPC 40/42

Corner-case detection: Case study
• Logical scenario 1: GLIS identifies 64 collision cases within 100 simulations

iter x

x0
f1 v0

1 x0
f2 v0

2 x0
f3 v0

3

51 15.00 30.00 44.14 10.00 49.10 47.39
79 28.09 30.00 70.29 10.00 74.79 31.74
40 34.30 30.00 60.59 10.00 77.80 35.97

red = optimal solution found by GLIS solver

1

2 3

SV
SV

SV SV SVSV

Ego car changes lane to avoid #1, but
cannot brake fast enough to avoid #2

• Logical scenario 2: GLIS identifies 9 collision cases within 100 simulations

iter x

x0
f1 v0

1 tc

28 12.57 46.94 16.75
16 17.53 47.48 23.65
88 44.54 41.26 16.02

red = optimal solution found by GLIS solver

SV

SV

1

1

Ego car changes lane to avoid #1, but cannot decelerate
in time for the sudden lane-change of #1

(C) 2023 A. Bemporad - Learning-based Methods for MPC 41/42

Corner-case detection: Case study
• Logical scenario 1: GLIS identifies 64 collision cases within 100 simulations

iter x

x0
f1 v0

1 x0
f2 v0

2 x0
f3 v0

3

51 15.00 30.00 44.14 10.00 49.10 47.39
79 28.09 30.00 70.29 10.00 74.79 31.74
40 34.30 30.00 60.59 10.00 77.80 35.97

red = optimal solution found by GLIS solver

1

2 3

SV
SV

SV SV SVSV

Ego car changes lane to avoid #1, but
cannot brake fast enough to avoid #2

• Logical scenario 2: GLIS identifies 9 collision cases within 100 simulations

iter x

x0
f1 v0

1 tc

28 12.57 46.94 16.75
16 17.53 47.48 23.65
88 44.54 41.26 16.02

red = optimal solution found by GLIS solver

SV

SV

1

1

Ego car changes lane to avoid #1, but cannot decelerate
in time for the sudden lane-change of #1

(C) 2023 A. Bemporad - Learning-based Methods for MPC 41/42

Conclusions

future

predicted outputs

manipulated inputs

past

Conclusions

• ML very useful to get control-orientedmodels (and control laws) from data

• ML cannot replace control engineering:

– Blindly applying deepNNs can lead to useless models for embedded control

– ApproximatingMPC laws byNN’s can fail, often still need online optimization

– Model-free reinforcement learning can fail wrt model-based control design

(=more sample-efficient, better performs tasks it wasn’t trained for)

• IgnoringML tools would be amistake (a lot to “learn” frommachine learning)

• Awide spectrum of research opportunities

and new practices is open !

(C) 2023 A. Bemporad - Learning-based Methods for MPC 42/42

