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MODEL PREDICTIVE CONTROL (MPC)

prediction optimization
model ¢ algorithm ¢
controller : :
/ process
set-points inputs =\ outputs
r(®) u(t) y(t)
T measurements |

e Mainidea: At each sample step, use a (simplified) dynamical
(M)odel of the process to (P)redict its future evolution and
choose the “best” (C)ontrol action accordingly
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MODEL PREDICTIVE CONTROL

e MPC problem: find the best control sequence over a future horizon of N steps
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xo = x(t) state feedback
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numerical optimization problem
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MODEL PREDICTIVE CONTROL

e MPC problem: find the best control sequence over a future horizon of N steps

N-1
min S llyk — r(®1F + pllux — w1 past.
UQy -+ s UN—1 k=0
st zpp1 = f(ap, uk) Fradtc&iovx model '/././4
yr = g(wk) |
P\t
Umin < Uk < Umax  conskraints T
Ymin < Yk < Ymax
xo = z(t) state feedback
numerical optimization problem il
It+1 t+1+k t+N+1
@ -estimate current state z(t) )
9 optimize wrt {uo, ..., un—1} /
9 only apply optimal ug as input u(¢)
Repeat at all time steps ¢
3/42
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MPC IN INDUSTRY

e Conceivedinthe 60’s

e Used inthe process industries since the 80’s

e Now massively spreading to the automotive industry and other sectors
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MPC IN INDUSTRY

e Conceivedinthe 60’s

e Used inthe process industries since the 80’s
e Now massively spreading to the automotive industry and other sectors

o MPC by General Motors and ODYS in high-volume production since 2018
(3+ million vehicles worldwide)

First known mass production of MPC

in the automotive industry

ODY'S

& Optimi

http://www.odys.it/odys-and-gm-bring-online-mpc-to-production
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RESEARCH ISSUES IN EMBEDDED MPC DESIGN

- =~ N .
. system embedded ‘min, £(z,%)
data collection . S Lo Dst gmx)<0
\ identification optimization : hiz,x) = 0
~ -

outputs
—

3 .
% / model predijctive | inputs
coptrol (MPC)

- e
< controller
‘\ calibration /’ - =~ \
— 7 “online estimation

— - L

\, model adaptation/ o
~ -

process

~

Focus of my talk:

e How to learn nonlinear and piecewise affine models from data
and adapt model parameters and estimate hidden model states

e How to ease the calibration of the MPC law
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LEARNING PREDICTION MODELS FOR MPC



CONTROL-ORIENTED NONLINEAR MODELS

e Black-box models: purely data-driven. Use training data to fit a prediction
model that can explain them (need good data to get a good model)

*data &l prediction AR
model
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CONTROL-ORIENTED NONLINEAR MODELS

e Black-box models: purely data-driven. Use training data to fit a prediction
model that can explain them (need good data to get a good model)

*data &l prediction AR
model

e Physics-based models: use physical principles to create a prediction model
(fewer parameters to learn, better generalizes on unseen data)

, . T
Pr =Ky (We + Wegr — kepr) + f’m
1

T | prediction | Y
oty el .,
B =holkp —Wegr ~We W) + o2 model
Po= 1P~ 1mP) )
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CONTROL-ORIENTED NONLINEAR MODELS

e Black-box models: purely data-driven. Use training data to fit a prediction
model that can explain them (need good data to get a good model)

-2

e Physics-based models: use physical principles to create a prediction model
(fewer parameters to learn, better generalizes on unseen data)

L i

=k(We + Wegr — kepr) + 7op1 .

pen T T | prediction | Y
= kb — Wegr — Wi+ Wy) + 2y

pr= Rt = Ve o model

Po= 1P~ 1mP)

e Gray-box (or physics-informed) models: mix of the two, can be quite effective
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CONTROL-ORIENTED NONLINEAR MODELS

e Black-box models: purely data-driven. Use training data to fit a prediction
model that can explain them (need good data to get a good model)

*data &l prediction AR
model

e Physics-based models: use physical principles to create a prediction model
(fewer parameters to learn, better generalizes on unseen data)

Gauss.

g1 e

, . T
Pr =Ky (We + Wegr — kepr) + f’m
1

Gali 4 Pa,"g. *:'

T | prediction | Y

. R
£ P2 = kalkepr = Wegr = We +Wy) + T:“ model
ﬁ 1 3 Pe=L(P.—nmP))
S | &4

Mawel 7 Newton

e Gray-box (or physics-informed) models: mix of the two, can be quite effective

"All models are wrong, but some are useful."
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NONLINEAR SYS-ID BASED ON NEURAL NETWORKS

o Neural networks proposed for nonlinear system identification since the '90s

o NNARX models: use a feedforward neural network to approximate the
nonlinear difference equation y; =~ N (Y41, .y Yt—n, s Ut—1,- - - Ut—n,)
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NONLINEAR SYS-ID BASED ON NEURAL NETWORKS

o Neural networks proposed for nonlinear system identification since the '90s

o NNARX models: use a feedforward neural network to approximate the
nonlinear difference equation y; =~ N (Y41, .y Yt—n, s Ut—1,- - - Ut—n,)

e Neural state-space models:

- w/ state data: fit a neural network model ;41 ~ Ny (z¢,ut), yr = Ny(xt)
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NONLINEAR SYS-ID BASED ON NEURAL NETWORKS

o Neural networks proposed for nonlinear system identification since the '90s

o NNARX models: use a feedforward neural network to approximate the
nonlinear difference equation y; =~ N (Y41, .y Yt—n, s Ut—1,- - - Ut—n,)

e Neural state-space models:
- w/state data: fit a neural network model 41 ~ Ny (ze, ut), v+ ~ Ny(zt)

- 1/O dataonly: set x; = value of an inner layer of the network

such as an autoencoder
Yrs -5 Ykentr Yk1s +20s Ypns2
0000000 0000000
decoder| ' D / D
oqod é 0000
Tp— 8—’IZ+1‘—’11¢\1
t QO state t
0000 update /OO0
encoder |/ E \ mep E
0000000 [elelelelelele)
Y1 t« Yrn U Yrs ---~T!/A—,n7|
Upy eevy Uppiy 7/42
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NONLINEAR SYS-ID BASED ON NEURAL NETWORKS

o Neural networks proposed for nonlinear system identification since the '90s

o NNARX models: use a feedforward neural network to approximate the

nonlinear difference equation y; ~ N (y;_1, - .

e Neural state-space models:
- w/state data: fit a neural network model 41 ~ Ny (ze, ut), v+ ~ Ny(zt)

e Recurrent neural networks (RNNs): more
appropriate for open-loop prediction, but
more difficult to train than feedforward NNs

- 1/O dataonly: set x; = value of an inner layer of the network

such as an autoencoder

- Learning-based Methods for MPC
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RECURRENT NEURAL NETWORKS

vy

e Recurrent Neural Network (RNN) model: v, )
z y
Try1 =  fo(Tr, ur,0z)
Y = fy(xka ey)

fo, fy = feedforward neural network v; = Ajfj—1(vj—1) + b;
(e.g.: general RNNs, LSTMs, RESNETS, physics-informed NN, ...) 6= (Anbr,... Az, br)
e Training problem: given a dataset {uo, 4o, ..., un—1,yn—1} SOlve

1 N-
Olfl,lély (x070ma0y N Z ykvfy Ikv ))
Loy L1y TN—1 N

s.t. Th+1 :fm(xlmukﬁel?)

e Mainissue: zj are hidden states, i.e., are unknowns of the problem
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TRAINING RNNS BY EKF

¢ Estimate both hidden states =), and parameters ¢, 8,, by EKF based on model

Thtr = Jo(@k, uk, Ook) + Sk Ratio Var([ny]/ Var|[(x] related to
0, 0, learning-rate of training algorithm
[9(:+1)] _ [0: + g gdig
y(kt1) Y Inverse of initial matrix Py related to
Y = fy(mkaeyk) +Ck

£5-penalty on 6., 6,

e RNN and its hidden state x;, can be estimated on line from a streaming dataset
{uk, yx }, and/or offline by processing multiple epochs of a given dataset
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¢ Estimate both hidden states =), and parameters ¢, 8,, by EKF based on model

Thtr = Jo(@k, uk, Ook) + Sk Ratio Var([ny]/ Var|[(x] related to
0, 0, learning-rate of training algorithm
[9(:+1)] _ [0: + g gdig
y(kt1) Y Inverse of initial matrix Py related to
Y = fy(mkaeyk) +Ck

£5-penalty on 6, 6,

e RNN and its hidden state x;, can be estimated on line from a streaming dataset
{uk, yx }, and/or offline by processing multiple epochs of a given dataset

e Can handle general smooth strongly convex loss fncs/regularization terms
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TRAINING RNNS BY EKF

Estimate both hidden states x;, and parameters 6., 6, by EKF based on model

Thtr = Jo(@k, uk, Ook) + Sk Ratio Var([ny]/ Var|[(x] related to
0, 0, learning-rate of training algorithm
[9(:+1)] _ [0: + g gdig
y(kt1) Y Inverse of initial matrix Py related to
Y = fy(mkaeyk) +Ck

£5-penalty on 6., 6,

RNN and its hidden state xj, can be estimated on line from a streaming dataset
{uk, yx }, and/or offline by processing multiple epochs of a given dataset

Can handle general smooth strongly convex loss fncs/regularization terms

Can add /;-penalty A H {Zj } H ) to sparsify 6,, 6, by changing EKF update into

2(k|k) 2(k|k—1) 0
[%(kk)} — [ez<kk1>]+M(k)e(k)—AP(kk 1) {signww(mm]
0y (k|k) 0y (klk—1) sign(6, (k|k—1))
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TRAINING RNNS BY SEQUENTIAL LEAST-SQUARES

e RNN training problem = optimal control problem:
N-1
minOI,Hy,zo,wl,.“,wN,l 7‘(330’ 0z, Gy) + Z E(yka gk)
k=0
st Tpy1 = fo(ag, ug,0z)
Uk = fy(@r, ur,0y)

- 0,0y, x0 = manipulated variables, g, = output, y;, = reference, u;, = meas. dist.
- r(z0, 0s,0y) = input penalty, £(yx, §x ) = output penalty
- N = prediction horizon, control horizon = 1

o Linearized model: given a current guess 0, 0, xf;, . .., =% _,, approximate
Azgrr = (Vofe)Azk + (Vo f2)' AG,
Ayr = (Va, fy) Az + (Ve f,) AD,
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TRAINING RNNS BY SEQUENTIAL LEAST-SQUARES

¢ Linearized dynamicresponse: Azy, = My, Axy + Mg, Ab,

Mo, = I, Mo, =0
M(k:+1)ac = szm($27uk7gq}:)Mkz
Mgiyo, = Vaefo(@h,un, 05)Mro, + Vo, fo(zr, ur, 0%)

o Take 2"d-order expansion of the loss ¢ and regularization term r

¢ Solve least-squares problem to get increments Az, Af,, Af,
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TRAINING RNNS BY SEQUENTIAL LEAST-SQUARES

¢ Linearized dynamicresponse: Azy, = My, Axy + Mg, Ab,

Mo, = I, Mo, =0
M(k:+1)ac = szz($27uk76g)Mkz
Mgiyo, = Vaefo(@h,un, 05)Mro, + Vo, fo(zr, ur, 0%)

o Take 2"d-order expansion of the loss ¢ and regularization term r

¢ Solve least-squares problem to get increments Az, Af,, Af,

Update (1, 021, 01+ by applying either a

- line-search (LS) method based on Armijo rule
- oratrust-region method (Levenberg-Marquardt) (LM)

The resulting training method is a Generalized Gauss-Newton method
very good convergence properties
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TRAINING RNNS BY SEQUENTIAL LS AND ADMM

e Example: magneto-rheological fluid damper
N=2000 data used for training, 1499 for testing the model

e RNN model: 4 states, shallow NNs w/ 4 neurons, I/O feedthrough

NAILS AMSGrad
NAILM
EKF

100 AMSGrad

MSE loss on training data,
mean value and range over 20
runs from different random

initial weights
t gt Abs) t time (s) L
Best Fit Rate training test
L NAILS 94.41(0.27) | 89.35(2.63)
NAILS = GNN method with line search NAILM 94.07 (0.38) | 89.64(2.30)
NAILM = GNN method with LM steps EKF 91.41(0.70) | 87.17(3.06)
AMSGrad | 84.69(0.15) | 80.56(0.18)

(€) 2023 A. Bemporad - Learning-based Methods for MPC 12/42



TRAINING RNNS BY SEQUENTIAL LS AND ADMM

e We also want to handle non-smooth (and non-convex) regularization terms

ming, g, z,  7(z0, 0, 0y) + ZkN:_ol Eyr, fy(n,0y)) + 9(02,0,)
s.t. Th+1 = fa:(xkvukn ew)
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TRAINING RNNS BY SEQUENTIAL LS AND ADMM

e We also want to handle non-smooth (and non-convex) regularization terms

ming, g, z,  7(z0, 0, 0y) + ZkN:_ol Eyr, fy(n,0y)) + 9(02,0,)
s.t. Th+1 = fa:(xkvukn ew)

e |dea: use the alternating direction method of multipliers (ADMM)

t41
To ) . o 0p—v!+w? 2
ot = argmingge,.0, V(z0,0:,0,) + § [9 ot ] H (sequential) LS
95+1 v Ty Y 2
Vit t+1 t pt+1 t
|:Vz+1 = prOX%g (077 + wy, ey + wy) FroxumaL sEeF
t4+1 ] h o pt+1_ t4+1
wy, wy+0,7T T —vy
t+1 = hoypt+1 41 update dual vars
|:wy i [wy +0y Yy :| F

NAILS - Nonconvex ADMM lterations and sequential LS w/ Line-Search
NAILM - Nonconvex ADMM lterations and sequential LS w/ Levenberg-Marquardt

Bemporad - Learning-based Methods for MPC 13/42



TRAINING RNNS BY SEQUENTIAL LS AND ADMM

e Fluid-damper example: Lasso regularization g(v,, 1) = 0.2||v||1 + 0.2||vy |1

training BFR BFR sparsity CPU #

algorithm training test % time epochs ~ same fit than
NAILS 91.00 (1.66) | 87.71(2.67) | 65.1(65) | 114s 250 ~

NAILM 91.32(1.19) | 87.80(1.86) | 64.1(7.4) | 11.7s 250 SGD/EKF but sparser
EKF 89.27(1.48) | 86.67(2.71) | 47.9(9.1) | 13.2s 50

AMSGrad | 9104(047) | 88.32(080) | 168(71) | 640s | 2000  Modelsand faster
Adam 9047 (0.34) | 87.79(044) | 83(3.5) | 639s | 2000  (CPU:Apple M1 Pro)
DiffGrad | 90.05(0.64) | 87.34(1.14) | 7.4(45) | 63.9s | 2000
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TRAINING RNNS BY SEQUENTIAL LS AND ADMM

e Fluid-damper example: Lasso regularization g(v,, 1) = 0.2||v||1 + 0.2||vy |1

training BFR BFR sparsity CPU #

algorithm training test % time epochs ~ same fit than
NAILS 91.00 (1.66) | 87.71(2.67) | 65.1(65) | 114s 250 ~

NAILM 91.32(1.19) | 87.80(1.86) | 64.1(7.4) | 11.7s 250 SGD/EKF but sparser
EKF 89.27(1.48) | 86.67(2.71) | 47.9(9.1) | 13.2s 50

AMSGrad | 9104(047) | 88.32(080) | 168(71) | 640s | 2000  Modelsand faster
Adam 9047 (0.34) | 87.79(044) | 83(3.5) | 639s | 2000  (CPU:Apple M1 Pro)
DiffGrad | 90.05(0.64) | 87.34(1.14) | 7.4(45) | 63.9s | 2000

e Fluid-damper example: group-Lasso regularization g(v)) = 7, >, ||7]|2
to zero entire rows and columns and reduce state-dimension automatically

100 7 T T

] ?
"°’\:’—}‘\ good choice: n, = 3

®F  _BFR (test data) : (best fit on test data)
—— BFR (training data)
final model order

BFR (%)

70 -

+

i

i

:

60 . . L .

1074 10 102 10! 10° 10"
group-lasso regularization parameter 7,
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INDUSTRIAL ROBOT BENCHMARK

¢ KUKA KR300 R2500 ultra SE industrial robot,
full robot movement

e 6inputs (torques), 6 outputs (joint angles), backlash

e |dentification benchmark dataset (forward model):

nonlinearbenchmark.org

- Sample time: Ts = 100 ms
- N =39988 training samples
- Niest = 3636 test samples
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INDUSTRIAL ROBOT BENCHMARK: CHALLENGES

—_— T e p—b
. . . p— P |p 2 E—

e Highly nonlinear dynamics. !
Nonlinear modeling required — ) = —
— O = —_—

o Multi-input / multi-output, highly coupled system

o Data are slightly over-sampled, ||y — yx—1]| is often very small,
need to minimize open-loop simulation error

e Limited information: easy to overfit training data and get poor testing results

e Large number of samples complicates numerical optimization
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INDUSTRIAL ROBOT BENCHMARK: CHALLENGES

— —
. . . ——— —-

o Highly nonlinear dynamics. , L
Nonlinear modeling required - —
— ———

—p

o Multi-input / multi-output, highly coupled system

o Data are slightly over-sampled, ||y — yx—1]| is often very small,
need to minimize open-loop simulation error

e Limited information: easy to overfit training data and get poor testing results

e Large number of samples complicates numerical optimization

Finding a model that minimizes the simulation error is a

rather challenging task from a computational viewpoint
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RECURRENT NEURAL NETWORKS IN RESIDUAL FORM

e Recurrent Neural Network (RNN) model in residual form:

T4l = Az + Bug + fz(:ljk, Uk, 0;) . v,
. x Y
ye = Car+ fy(zk,by)
fo, fy = feedforward neural network

vj = Ajfj-1(vj—1) +b;
0 =(A1,b1,...,AL,bL)

e Goal: minimize open-loop simulation error under elastic net regularization

N
. 1 2 1 2 2
o 7 20 I = 0+ SpCIIB +16418) + 710l + 16,10

s.t. model equations, zo =0

e /y-regularization introduced to reduce # model coefficients (=simpler model)
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SOLUTION APPROACH

1. Standard-scale I/O data for numerical reasons u; + £t y, « Yty

Ju

ot

i=1,...,6 '

2. Train (A, B, C') by N4SID with focus on simulation

3. Train simple RESNET model with shallow NNs:
Tpy1 = Axy, + Bug + fo(Tr, ug, 02), yr = Cap + fy(xk, by)

e Optimization setup: in Python, using JAX and L-BFGS-B
to handle ¢ -regularization

(C) 2023 A. Bemporad - Learning-based Methods for MPC 18/42



TRAINING RNN W/ ¢, -PENALTIES VIA L-BFGS-B

e Tohandle ¢,-regularization, split 0, = 6,f — 6, and 0, = 6," — 6,

2

N 0;» 17/ G:r,r

o2 1 0 0

min § e —gllz + 5o\ | 2 [ +7|: v

2 0 : 0

of 08 0.0, N i - i -
Gy 2 ey

s.t.model equations, zop =0

05,0,,0,,0, >0

o Lemma: Weighting [0, |5 + (|6, [13 + [0, I3 + 116,/ [|3 is equivalent to

weighting |67 — 0,7 (|3 + [0, — 6,113 (proof is simple by contradiction)

o Note: weighting [0} ||5 + (|6, 13 + 10,7 13 + 116, [|3 is numerically better, as
{o-regularization is strongly convex for p > 0
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INDUSTRIAL ROBOT BENCHMARK: RESULTS

e Statex € R, f,, f, withn{ = 24and n! = 12 neurons, respectively, p = 10*

o Total number of training parameters: dim(6,) + dim(#,) = 990
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INDUSTRIAL ROBOT BENCHMARK: RESULTS

e Statex € R, f,, f, withn{ = 24and n! = 12 neurons, respectively, p = 10*
e Total number of training parameters: dim(6,,) + dim(¢,)) = 990

—— R2(test data)
RZ 55 —— R2(training data)
% zeros in model

(best RZ in 5 runs)

1074 1072 0!

! 1073 T 1
7=0.0005 7=0.04

e Model quality measured by average R?-score on all outputs:

1 i D et Wryi = Dneyi )2
2 k=1\Yk, »i[0
_75 1 1—

R - 00(

N N
i=1 Zk:l(ykﬂ' - % Zi:1 Yk,i)>

e Training time ~ 50 min on a single core of an Apple M1 Max CPU
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INDUSTRIAL ROBOT BENCHMARK: RESULTS

e Open-loop simulation errors (p = 104, 7 = 0.0005, ny = 24, n?{ =12):

R2 (training) R2 (test) R2 (training) R2 (test)

RNN model RNN model | linear model linear model
Y1 84.3099 74.3654 59.7335 59.9400
Yo 73.3438 53.2403 48.6032 31.9400
Y3 65.0838 47.0516 47.3231 24.1045
m 479524 46.2464 25.0829 21.6542
ys 37.0665 34.3510 25.0987 24.8838
Y6 66.9417 37.5726 29.8516 31.5943
average 62.4497 48.8046 39.2822 32.3528

e More model parameters/smaller regularization leads to overfit training data
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INDUSTRIAL ROBOT BENCHMARK: RESULTS

e Compute p-step ahead prediction g, |, with hidden state x|, estimated by
an Extended Kalman Filter based on identified RNN model

100

—— RNN model: R2 (test data)
——— Linear model: R2 (test data)

90
80
70
60

average R2 (%)

50
40

30

0 10 20 30 40 50
prediction step

e Thisis a more relevant indicator of model quality for MPC purposes than
open-loop simulation error g0 — Y&

(C) 2023 A. Bemporad - Learning-based Methods for MPC 22/42



INDUSTRIAL ROBOT BENCHMARK: RESULTS

—— R(testdata)
— R?(training data) ¢ ]
—— %zerosinmodel

e Compare Adam vs L-BFGS-B!:
(1 =0.04,p=10"%n? =24,nY = 12)

ercent

best case | average R? | average R? CPU Adam: tuned with learning
method criterion (training) (test) # zeros | time(s) . .
[BFGSB | Ra (tes) 5813 2649 [ 37590 | 3215 'ate exponentially decaying
Adam 51.51 47.31 8/990 2511 from 0.01 after 1000 steps,
L-BFGS-B 7 zeros 54.34 45.07 | 520/990 3172 :
Adam 50.41 41.99 27/990 2518 with decay rate 0.0>.

e L-BFGS-B leads to sparser models than Adam with similar R2-scores

1Best out of 5 runs, either based on the R5 on test data or # zeros in 0, 0y
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PIECEWISE AFFINE REGRESSION AND CLASSIFICATION



PWA REGRESSION PROBLEM

¢ Problem: Given input/output pairs {z(k),y(k)},k = 1,..., N and number s of
models, compute a piecewise affine (PWA) approximationy ~ f(x)

f(z)
Fiz(k)+ g ifHiz(k) < Ky =

v(k) =4
Fiz(k)+gs ifHsz(k) < K

ot = [45]. =[] -

e Quiterich literature on PWA identification

e Any ML technique can be applied that leads to PWA models, such as
(leaky-)ReLU-NNs, decision trees, softmax regression, KNN, ...
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PARC - PIECEWISE AFFINE REGRESSION AND CLASSIFICATION

e New Piecewise Affine Regression and Classification (PARC) algorithm

e Training dataset:
- feature vector z € R™ (categorical features one-hot encoded in {0, 1})

- target vector v, € R™¢ (numeric),va; € {wy;, ... ,wlh:'} (categorical)
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e New Piecewise Affine Regression and Classification (PARC) algorithm

e Training dataset:
- feature vector z € R™ (categorical features one-hot encoded in {0, 1})

- target vector v, € R™¢ (numeric),va; € {wy;, ... ,wlh:'} (categorical)

o PARC iteratively clusters training data in K sets and fits linear predictors:
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PARC - PIECEWISE AFFINE REGRESSION AND CLASSIFICATION

e New Piecewise Affine Regression and Classification (PARC) algorithm

e Training dataset:
- feature vector z € R™ (categorical features one-hot encoded in {0, 1})
- target vector v, € R™¢ (numeric),va; € {wy;, ... ,wlh:'} (categorical)
o PARC iteratively clusters training data in K sets and fits linear predictors:
1. fitve. = ajz + b; by ridge regression (=¢2-regularized least squares)
2. fitvg; = whr, h. = argmax{al};;, 2 + bl};} by softmax regression

3. fit aconvex PWL separation function by softmax regression

D(2) = w Pz 4473 j(2) = min {arg ) nlaaxK{wjz + ’yj}}
J=1,...,
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PARC - PIECEWISE AFFINE REGRESSION AND CLASSIFICATION

e New Piecewise Affine Regression and Classification (PARC) algorithm

e Training dataset:
- feature vector z € R™ (categorical features one-hot encoded in {0, 1})
- target vector v, € R™¢ (numeric),va; € {wy;, ... ,wlh:'} (categorical)
o PARC iteratively clusters training data in K sets and fits linear predictors:
1. fitve. = ajz + b; by ridge regression (=¢2-regularized least squares)
2. fitvg; = whr, h. = argmax{al};;, 2 + bl};} by softmax regression

3. fit aconvex PWL separation function by softmax regression

D(2) = w Pz 4473 j(2) = min {arg ) nlaaxK{wjz + ’yj}}
j=1,...,
e Datareassigned to clusters based on weighted fit/PWL separation criterion

e PARC is a block-coordinate descent algorithm = (local) convergence ensured
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PARC - PIECEWISE AFFINE REGRESSION AND CLASSIFICATION

e Simple PWA regression example:

- 1000 samples of y = sin(4x1 — 5(x2 — 0.5)?) 4 222 (use 80% for training)
- Look for PWA approximation over K = 10 polyhedral regions

Nonlinear function PARC (K = 10) ) PARC (K = 10)

e Code: ﬁ pip install pyparc github.com/bemporad/PyPARC
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github.com/bemporad/PyPARC

PARC - CART & BUMPERS EXAMPLE

e Example: moving cart and bumpers +
heat transfer during bumps.

Spring and viscous forces are nonlinear.

e Categoricalinput FF € {—F,0, F'}

e Categorical output ¢ € {green, ,red}

e 4000 training samples

o Feature vector zy, = [yk, Uk, Tk, F]

e Targetvector vy, = [Yr+1, Uk+1, Thi1, Ci

0 250 500 750 1000 1250 1500 1750 2000
t

111111 (s)

e Hybrid model learned by PARC (K = 5 regions)
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PARC - CART & BUMPERS EXAMPLE

e Open-loop simulation on 500 s test data:
position [m]

4 4

2 2

0 0

40 40 !

30 30

20 20 i’\

T T

0 H } 0 H }

,1 | LU T
200 200 400
time time (s)

continuous-time system discrete-time PWA model

e Model fit is good enough for MPC design purposes (see next slide ...)
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PARC - CART & BUMPERS EXAMPLE

e MPC problem with prediction horizon N = 9:

N-1
ming,, .. Fy_, Z |k — 1| 4 0.25| Fy|
k=0
st. Fy € {—F,O,F}
PWA model equations
e MILP solution time: 0.37-1.9 s (CPLEX) A :
b force switch
1 ‘r-‘ i
¢ Data-driven hybrid MPC controller cankeep | || (‘/‘ f‘ “‘ fw MJL
temperaturein zone V‘ ‘!‘U \‘ ‘L\
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PARC - CART & BUMPERS EXAMPLE

e MPC problem with prediction horizon N = 9:

N-1
ming,, .. Fy_, Z |k — 1| 4 0.25| Fy|
k=0
s.t. Fj € {—F,O,F}
PWA model equations
e MILP solution time: 0.37-1.9 s (CPLEX) AR -
: force switch
1 ‘r-‘ M
e Data-driven hybrid MPC controller can keep Ll f‘/‘ f‘ “‘ t \V‘ JL
temperature in zone V‘ ‘!‘U ‘ “J

e Approximate explicit MPC: fit a decision tree on 10,000 samples
(accuracy: 99.7%). CPU time = 73--88 ps. Closed-loop trajectories very similar.
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MPC CALIBRATION PROBLEM

e The design depends on a vector x of MPC parameters

e Parameters can be many things:
- MPC weights, prediction model coefficients, horizons
- Covariance matrices used in Kalman filters

- Tolerances used in numerical solvers

o Define a performance index f over a closed-loop simulation or real experiment.
For example:

T
F@) =" lly(t) = r@)I?
t=0

(tracking quality)

e Auto-tuning = find the best combination of parameters by solving
the global optimization problem
min f(x)
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AUTO-TUNING - GLOBAL OPTIMIZATION ALGORITHMS

e Several derivative-free global optimization algorithms exist:

- Lipschitzian-based partitioning techniques:
e DIRECT (Dlvide in RECTangles)
e Multilevel Coordinate Search (MCS)

Response surface methods
o Kriging ,DACE
o Efficient global optimization (EGO)
e Bayesian optimization

Genetic algorithms (GA)

Particle swarm optimization (PSO)
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AUTO-TUNING - GLOBAL OPTIMIZATION ALGORITHMS

e Several derivative-free global optimization algorithms exist:

- Lipschitzian-based partitioning techniques:
e DIRECT (Dlvide in RECTangles)
e Multilevel Coordinate Search (MCS)

Response surface methods
o Kriging ,DACE
o Efficient global optimization (EGO)
e Bayesian optimization

Genetic algorithms (GA)

Particle swarm optimization (PSO)

e GLIS method - radial basis function surrogates + inverse distance weighting

cse.lab.imtlucca.it/~bemporad/glis
‘\ ﬁ pip install glis
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GLIS VS BAYESIAN OPTIMIZATION

ackley . adjiman
10 0
5 ——— 1
ol =SSN 2
10 20 30 40 50 60
branin
00 6000
4000
00 2000
0 0
5 10 15 20 25 5 10
o hartman3 hartman6
2
=
10
1500
1000 f\
500
of
5 10 15 20 20 40 60
2% 104 stepfunction2 styblinski-tang5
2 \\
0 E
5 10 15 20 25 10 20 30 40 50

number of function evaluations number of function evaluations

A. Bemporac

- Learning-based Methods for MPC

60

problem n BO [s] GLIS [s]
ackley 2 2939 313
adjiman 2 3.29 0.68
branin 2 9.66 117
camelsixhumps 2 4.82 0.62
hartman3 3 26.27 335
hartman6 6 54.37 8.80
himmelblau 2 7.40 0.90
rosenbrock8 8 63.09 13.73
stepfunction2 4 11.72 1.81
styblinski-tang5 5 37.02 6.10

Results computed on 20 runs per test
BO = MATLAB's bayesopt ftn

e Comparable performance
e GLISis computationally lighter
e GLISis more flexible
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AUTO-TUNING: PROS AND CONS

e Pros:

sy Selection of calibration parameters x to test is fully automatic
ss Applicable to any calibration parameter (weights, horizons, solver tolerances, ...)

s Rather arbitrary performance index f(x) (tracking performance, response time,
worst-case number of flops, ...)
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AUTO-TUNING: PROS AND CONS

e Pros:

sy Selection of calibration parameters x to test is fully automatic
ss Applicable to any calibration parameter (weights, horizons, solver tolerances, ...)

s Rather arbitrary performance index f(x) (tracking performance, response time,
worst-case number of flops, ...)

e Cons:

i@ Need to quantify an objective function f(z)
i® No room for qualitative assessments of closed-loop performance

i@ Often have multiple objectives, not clear how to blend them in a single one
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ACTIVE PREFERENCE LEARNING

o Objective function f(x) is not available (latent function)

e We can only express a preference between two choices:

—1 ifxz; “better” than zo [f(x1) < f(x2)]
m(x1,22) = ¢ 0  ifxy “asgoodas” zo [f(z1) = f(x2)]
1 ifxg “better” than x; [f(xz1) > f(x2)]
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ACTIVE PREFERENCE LEARNING

Objective function f(x) is not available (latent function)

We can only express a preference between two choices:

—1 ifxz; “better” than zo [f(x1) < f(x2)]
m(x1,22) = ¢ 0  ifxy “asgoodas” zo [f(z1) = f(x2)]
1 ifxg “better” than x; [f(xz1) > f(x2)]

We want to find a global optimum z* (=“better” than any other x)

find z* suchthat n(2*,2) <0,V e X, { <z <wu

e Active preference learning: iteratively propose a new sample to compare

e Key idea: learn a surrogate of the (latent) objective function from preferences
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ACTIVE PREFERENCE LEARNING ALGORITHM

latent function flx)

exploration function z(x)

e Fitasurrogate f(x) that respects the preferences expressed by the decision
maker at sampled points (by solving a QP)

e Minimize an acquisition function f(z) — 6z(z) to get a new sample z y 1
e Compare x 1 to the current “best” point and iterate

GLISp - GLIS based on preferences  (part of GLIS package)
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PREFERENCE-BASED TUNING: MPC EXAMPLE

e Example: calibration of a simple MPC for lane-keeping (2 inputs, 3 outputs)

'U\(S

vecos(f + 6) v 10
= wsin(f +9) L i
6 = Lvsin(6) <

e Multiple control objectives:

» o« NG

“optimal obstacle avoidance”, “pleasant drive”, “CPU time small enough’, ...
not easy to quantify in a single function

e Latent function = calibrator’s (unconscious) score

e 5MPC parameters to tune:

- sampling time
- prediction and control horizons
- weights on input increments Av, Ad
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PREFERENCE-BASED TUNING: MPC EXAMPLE

e Preference query window:

T,=0.3325, N, =16, N, =17, log(d,,) = 0.06, T,=0.2435,N, =12, N, =17, log(q,,) = 0.19,
109(d 5) = 2020 0.0867 'S 10g(d, ,,) = 0.70,t 1 0.0846's
obstacle obstacle
_ 6 — chicle OA _ 6 m— chicle OA
£ m— obstacle OA £ m— obstacle OA
=3 =3
> >
0 0
0 50 100
80
E 70
g 60
> 50
40
0 50 100 150 200 250 0 50 100 150 200 250
50 50
25 25 -
= = MPC closed-I...
P e e e — mo—/\/w—a/\(v\»-—
w w
-25 -25
-50 -50
0 50 100 150 200 250 0 50 100 150 200 250

X, [m] X, [m]
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PREFERENCE-BASED TUNING: MPC EXAMPLE

e Convergence after 50 GLISp iterations (=49 queries):

;, T T T —— vehicle Optlmal MPC paramEIGrs:
——obstacle

H '\ chicle OA

é I LLLL1 ==obstacle OA|

1 rrrri

sample time =85 ms (CPU time = 80.8 ms)

y, [m]

0 50 100 150 200 250

prediction horizon = 16

£ —noeence
£ ggﬁ ] - control horizon =5
50 T T I T | i =
50 100 150 200 250 Welght on AU - 182
[ [ [ [ weight on A§ =8.28
. 10 1
=0 I\‘/ 1
TS ]
20 . L L -
0 50 100 150 200 250

e Note: no need to define a closed-loop performance index explicitly!

e Extended to handle also unknown constraints
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WORST-CASE SCENARIO DETECTION

Goal: detect undesired closed-loop scenarios (=corner-cases)

Let x = parameters defining the scenario (e.g., initial conditions, disturbances, ...)

Critical scenario = vector z* for which the closed-loop behavior is critical

wy

sV

Ty

Critical scenario detection = find the worst combination 2* of scenario
parameters by solving the global optimization problem

min f(x)
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CORNER-CASE DETECTION: CASE STUDY

e Problem: find critical scenarios in automated driving w/ obstacles

o MPC controller for lane-keeping and obstacle-avoidance based on simple
kinematic bicycle model

¢ =vcos(f +9)

Wy =vsin( + 9)
_ wsin(9)
L

(xg,wy) = fromk—wl«eet FOSEHOV\
e Black-box optimization problem: given k obstacles, solve
. SV,i SV,i @ _______
[glwlgu Z d:cf crltlcal dwf ,critical (3?)

s.t. other constraints
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CORNER-CASE DETECTION: CASE STUDY

e Logical scenario 1: GLIS identifies 64 collision cases within 100 simulations

wy

) z
iter 0 0 ) 0 ) 0 w?
Tiy vy Ty vy Tig vy | e )
51 15.00 | 30.00 | 44.14 | 10.00 | 49.10 | 47.39 | ____& f‘@ _ 7(717)! lane 2
79 28.09 | 30.00 | 70.29 | 10.00 | 7479 | 31.74 (0D ]
40 3430 | 30.00 | 60.59 | 10.00 | 77.80 | 35.97 | wwa T fone 1

red = optimal solution found by GLIS solver .
Ego car changes lane to avoid #1, but

cannot brake fast enough to avoid #2
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CORNER-CASE DETECTION: CASE STUDY

e Logical scenario 1: GLIS identifies 64 collision cases within 100 simulations

wy

) z
iter T 0 ) 0 ) 0 w?
i Y1 Tf2 Y2 Tf3 vz | ‘ —
51 15.00 | 30.00 | 44.14 | 10.00 | 49.10 | 47.39 | ____& f‘;@ _ 7(717)! lane 2
79 28.09 | 30.00 | 70.29 | 10.00 | 7479 | 31.74 (0D ]
40 3430 | 30.00 | 60.59 | 10.00 | 77.80 | 35.97 | wwa T fone 1

red = optimal solution found by GLIS solver .
Ego car changes lane to avoid #1, but

cannot brake fast enough to avoid #2

e Logical scenario 2: GLIS identifies 9 collision cases within 100 simulations

_ . wy
tter x?cl 'u? te Wiond
28 12,57 | 4694 | 16.75 o
16 17.53 | 47.48 | 23.65 » _sv_ _%___' ______
88 4454 | 4126 | 16.02 oo lane 1

(lff
Ego car changes lane to avoid #1, but cannot decelerate
in time for the sudden lane-change of #1

red = optimal solution found by GLIS solver
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CONCLUSIONS

e ML very useful to get control-oriented models (and control laws) from data
e ML cannot replace control engineering:

- Blindly applying deep NNs can lead to useless models for embedded control
- Approximating MPC laws by NN's can fail, often still need online optimization

- Model-free reinforcement learning can fail wrt model-based control design
(=more sample-efficient, better performs tasks it wasn't trained for)

e |gnoring ML tools would be a mistake (a lot to “learn” from machine learning)

e A wide spectrum of research opportunities
and new practices is open !

past [ future
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