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RESEARCH ISSUES IN EMBEDDED MPC DESIGN

. system embedded imin, f(zx)
data collection S o L ost g@x)<0
identification optimization h(zx) =0
A e
/ model predictive = inputs °“tpUt_5>
control (MPC)
controller
calibration process
online estimation

model adaptation

Focus of my talk:
e How to learn nonlinear and piecewise affine models from data
¢ How to adapt model parameters and estimate hidden model states

e How to speedup the calibration and approximation of the MPC law
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LEARNING PREDICTION MODELS FOR MPC



CONTROL-ORIENTED NONLINEAR MODELS

e Black-box models: purely data-driven. Use training data to fit a prediction
model that can explain them (need good data to get a good model)

*data &l prediction AR
model

e Physics-based models: use physical principles to create a prediction model
(fewer parameters to learn, better generalizes on unseen data)

T
= ky (W + Wegr — kepr) + =51 PSS
H e T | prediction | Y
= ka{keps ~ Wegr - We 4 Wy) - By — —
#2= halkap ~Wegr Wt W) - 72 model
Po=YP.-nyP)

e Gray-box (or physics-informed) models: mix of the two, can be quite effective

"All models are wrong, but some are useful."
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NONLINEAR SYS-ID BASED ON NEURAL NETWORKS

o Neural networks proposed for nonlinear system identification since the '90s

o NNARX models: use a feedforward neural network to approximate the
nonlinear difference equation y; =~ N (Y41, .+, Yt—n, s Ut—1,- - - Ut—n,)

e Neural state-space models:
- w/state data: fit a neural network model 41 ~ Ny (ze, ut), vt ~ Ny(zt)

- 1/O dataonly: set x; = value of an inner layer of the network

such as an autoencoder
Yrs -5 Ykentr Ykt w300 Ykns2
Q000000 Q000000
decoder| ' D / ; D
e Recurrent neural networks (RNNs): more Ly P
Tp— = Tppr Ty
. o g o
appropriate for open-loop prediction, but PANSR | P AN
B . encoder [/ E mep E
more difficult to train than feedforward NNs [ ooenns ‘ [ S
Yi1s t« Yrn U Y ---~T!/A—,nf|
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RECURRENT NEURAL NETWORKS |

e Recurrent Neural Network (RNN) model: . : ) v ,
Try1 =  fo(Tr, ur,0z) j
ve = fylor,0y) vj = Ajfj-1(vj—1) +b;
for fy = feedforward neural network
0 = (A1,b1,...,AL,bL)

(e.g.: general RNNs, LSTMs, RESNETS, physics-informed NN, ...)

e Training problem: given a dataset {ug, 4o, - .., un—1,yN—1} SOlIve

N—
; 1
elfl)lély (1'079m,0 N Z yk,fy Zl?k, ))

Lo, L1y, TN—1

s.t. Th+1 :fm(xlmukﬁel?)

e Mainissue: zj are hidden states, i.e., are unknowns of the problem
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TRAINING RNNS VIA EXTENDED KALMAN FILTERING



TRAINING RNNS BY EKF

Estimate both hidden states x;, and parameters 60, 6, by EKF based on model

Thtr = Jo(@k, uk, Oak) + Sk Ratio Var([ny]/ Var|[(x] related to
0, 0, learning-rate of training algorithm
[9(:+1)] _ [0: + g gdig
y(kt1) Y Inverse of initial matrix Py related to
Y = fy(mkaeyk) +Ck

£>-penalty on 6., 6,

RNN and its hidden state xj, can be estimated on line from a streaming dataset
{uk, yx }, and/or offline by processing multiple epochs of a given dataset

Can handle general smooth strongly convex loss fncs/regularization terms

Can add /;-penalty A H {Zj } H . to sparsify 6,, 0, by changing EKF update into

2(k|k) 2(k|k—1) 0
[01(“)} — [ez<kk1>]+M(k)e(k)—AP(kk 1) {signww(mm]
0y (k|k) 0y (klk—1) sign(6, (k|k—1))
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TRAINING RNNS BY EKF - EXAMPLES

o Dataset: magneto-rheological fluid damper
3499 1/0 data

e N=2000 data used for training, 1499 for testing the model

e Same data used in NNARX modeling demo of SYS-ID Toolbox for MATLAB

¢ RNN model: 4 hidden states, shallow
state-update and output functions
6 neurons, atan activation, /O feedthrough

MSE loss

!
0 5 10 15 20
training time [s])

e Compare with gradient descent (Adam)

Adam
——EKF

MATLAB+CasADi implementation (Machook Pro 14" M1 Max)

MSE loss

1
0 100 200 300 400 500
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TRAINING RNNS BY EKF - EXAMPLES

e Compare BFR! wrt NNARX model (SYS-ID TBX): = ff"da'“: o en on pmelserce)

EKF=92.82, Adam = 89.12, NNARX(6,2) = 88.18 (training) ~ *
EKF =89.78, Adam = 85.51, NNARX(6,2) = 85.15 (test) )

.. . 0 o

e Repeat training with ¢, -penalty 7 H {02} ’1 ) L |
) samples :

95 100

90 = 80 E

— N

X g5 b 60 O

=8 __BFR (test data) o0 o

E 80 H —— BFR (training data) 40 é

m percentage of zeros in 6,0, g

75 20 ©

70 : - 0o &

10 10 10 103

{1-regularization parameter 7

1Best fit rate BFR=100(1 — ‘h};__gﬂ'ﬁ ), averaged over 20 runs from different initial weights
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TRAINING RNNS VIA SEQUENTIAL LEAST SQUARES



TRAINING RNNS BY SEQUENTIAL LEAST-SQUARES

e RNN training problem = optimal control problem:
N-1
minOI,Hy,zo,wl,.“,wN,l 7‘(330’ 0z, Gy) + Z E(yka gk)
k=0
st Tpy1 = fo(ag, ug,0z)
Uk = fy(@r, ur,0y)

- 0,0y, 0 = manipulated variables, g, = output, y;, = reference, u;, = meas. dist.
- r(z0, 0s,0y) = input penalty, £(yx, §x ) = output penalty
- N = prediction horizon, control horizon = 1

o Linearized model: given a current guess 0, 0, xf;, . .., =% _,, approximate
Azgrr = (Vaofe)Azk + (Vo f2)' AG,
Ayp = (Va, fy) Az + (Ve f,) AD,
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http://arxiv.org/abs/2112.15348

TRAINING RNNS BY SEQUENTIAL LEAST-SQUARES

¢ Linearized dynamicresponse: Az, = My, Axy + Myg, Ab,

Mo, = I, Mo, =0
M(k:+1)ac = szz($27uk76g)Mkz
Mgi1yo, = Vafo(@k,un, 05)Mro, + Vo, fol(xh, ur, 05)

o Take 2"d-order expansion of the loss £ and regularization term r

¢ Solve least-squares problem to get increments Az, Af,, Af,

Update (1, 01, 01+ by applying either a

- line-search (LS) method based on Armijo rule
- oratrust-region method (Levenberg-Marquardt) (LM)

The resulting training method is a Generalized Gauss-Newton method
very good convergence properties
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TRAINING RNNS BY SEQUENTIAL LS AND ADMM

e Fluid-damper example: (4 states, shallow NNs w/ 4 neurons, I/O feedthrough)

NAILS AMSGrad
NAILM
EKF
AMSGrad -
MSE loss on training data,
mean value and range over 20
runs from different random
initial weights
TN Gagme (9 " taining tme (9
BFR training test
NAILS = GNN method with line search NAILS 94.41(0.27) | 89.35(2.63)
- . NAILM 94.07 (0.38) | 89.64 (2.30)
NAILM = GNN method with LM steps EKF 91.41(070) | 8717 3.06)
AMSGrad | 84.69(0.15) | 80.56 (0.18)
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TRAINING RNNS BY SEQUENTIAL LS AND ADMM

e We also want to handle non-smooth (and non-convex) regularization terms

ming, g, z, 7(Z0,0z,0y) + ZkN:_Ol Yk, fy(zr,0y)) + 9(02,0y)
s.t. Th+1 = fa:(xk>uk’ aw)

e ldea: use alternating direction method of multipliers (ADMM) by splitting

. N-1
mln@m,@yvloﬂ/zﬂ/y T('TO7 917 ey) + Zk:o K(yka fy (l‘k, Gy)) + g(’/:”’ I/y)
s.t. Th+1 = fa:(xk7uk7 950)

51=15]
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TRAINING RNNS BY SEQUENTIAL LS AND ADMM

o ADMM + Seq. LS = NAILS algorithm (Nonconvex ADMM lterations and Sequential LS)

t t

Op —v,+wy,
ot ot
0y Ver’UJy

2

] H {sequev&iqt) LS
2

proximal sEeP

updo&a dual vars

-t
zq )
N _ .
9;11 = argmingge,.e, V(z0,0:,0y) + § H [
t
L0y d
t+1
v _ t+1 t t+1 t
|:Vg+1 - prox%g(ém + We, ey + ’U)y)
w;ii o w¥+9;+1—l/;+1
t = Vv pt+1_t+1
wy | wy+9y 24

e Fluid-damper example: Lasso regularization g(v,, vy) = ||V |1 + 7 ||yl

100 -

80

60 [

— BFR (test data)

—— BFR (training data)
40 | —— percentage of zeros in GX,GY

BFR (%)

109 102 107

{1-regularization parameter 7
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TRAINING RNNS BY SEQUENTIAL LS AND ADMM

o Fluid-damper example: Lasso regularization g(v,, vy) = 0.2||vg||1 + 0.2||vy |1

training BFR BFR sparsity CPU #

algorithm training test % time epochs ~ same fit than
NAILS 91.00 (1.66) | 87.71(2.67) | 65.1(65) | 114s 250 ~

NAILM 91.32(1.19) | 87.80(1.86) | 64.1(7.4) | 11.7s 250 SGD/EKF but sparser
EKF 89.27(1.48) | 86.67(2.71) | 47.9(9.1) | 13.2s 50

AMSGrad | 9104(047) | 88.32(080) | 168(71) | 640s | 2000  Modelsand faster
Adam 9047 (0.34) | 87.79(044) | 83(3.5) | 639s | 2000  (CPU:Apple M1 Pro)
DiffGrad | 90.05(0.64) | 87.34(1.14) | 7.4(45) | 639s | 2000

e Fluid-damper example: group-Lasso regularization g(v)) = 7, >, ||7]|2
to zero entire rows and columns and reduce state-dimension automatically

100 T T T T

—_— T
< 9"% good choice: n, = 3
& I ——BFR (test data) (best fit on test data)
M L —BFR (training data)
final model order
0 . . . . ;
107 10 102 107 10° 10’

group-lasso regularization parameter 7,
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TRAINING RNNS - SILVERBOX BENCHMARK

e Silverbox benchmark (Duffin oscillator): 10 traces of ~8600 data used for
training, 40000 for testing (http: //www.nonlinearbenchmark. org)

output [V]

o RNN model: 8 states, 3 layers of 8 neurons, atan activation, no I/O feedthrough

o Initial-state encoder: NN with 2 layers of 4 neurons, fed by 8 past inputs + 8
past outputs, atan activation

e Total number of parameters ng, + ng, + ne,, =296+225+128=649
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TRAINING RNNS - SILVERBOX BENCHMARK

e |dentification results on test data 2:

identification method RMSE [mV] BFR [%]

ARX (ml) [1] 16.29 [4.40] 69.22 [73.79] [1] Ljung, Zhang, Lindskog, Juditski, 2004
NLARX (ms) [1] 8.42[4.20] 83.67[92.06] [2] Ljung, Andersson, Tiels, Schén, 2020
NLARX (mlc) [1 1.75[1.70] | 96.67[96.79]

NLARX (ms8c50) [1] 1.05[0.30] | 98.01[99.43] [3] Beintema, Toth, Schoukens, 2021
Recurrent LSTM model [2] 2.20 95.83

SS encoder [3] (ngy = 4) [1.40] [97.35]

NAILM 0.35 99.33

o NAILM training time = 400 s (MATLAB+CasADi on Apple M1 Max CPU)
78

e Repeat training with ¢;-regularization: + R

N \u.\l aLSTM
L4

()
st e T
5 10 20 40 80 160 320 640 1280
number of model parameters

o 3
o 2f
=
o1
.5

2Trained RNN: http://cse.lab.imtlucca.it/~bemporad/shared/silverbox/rnn888.zip

@)
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PIECEWISE AFFINE REGRESSION AND CLASSIFICATION



PWA REGRESSION PROBLEM

¢ Problem: Given input/output pairs {z(k),y(k)},k = 1,..., N and number s of
models, compute a piecewise affine (PWA) approximationy ~ f(z)

f(2)
Fiz(k)+g ifHz(k) < K, =
v(k) =14 :
Foz(k)+ g, ifHoz(k) < K
x z \ — [
o) = [0, = =[] —

e Quiterich literature on PWA identification

e Any ML technique can be applied that leads to PWA models, such as
(leaky-)ReLU-NNs, decision trees, softmax regression, KNN, ...
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PARC - PIECEWISE AFFINE REGRESSION AND CLASSIFICATION

e New Piecewise Affine Regression and Classification (PARC) algorithm

e Training dataset:
- feature vector z € R™ (categorical features one-hot encoded in {0, 1})
- target vector v, € R™¢ (numeric), va; € {wy;, ... ,wl:'} (categorical)
o PARC iteratively clusters training data in K sets and fits linear predictors:
1. fitve. = ajz + b; by ridge regression (=¢2-regularized least squares)
2. fitvg; = why, h. = argmax{al};;, 2 + bl};} by softmax regression

3. fit aconvex PWL separation function by softmax regression

D(2) = w Pz 447 j(2) = min {arg ) nlaaxK{wjz + ’yj}}
j=1,...,
e Datareassigned to clusters based on weighted fit/PWL separation criterion

e PARC is a block-coordinate descent algorithm = (local) convergence ensured
(C) 2023 A. Bemporad - Learning-based Methods for MPC 18/44



PARC - PIECEWISE AFFINE REGRESSION AND CLASSIFICATION

e Simple PWA regression example:

- 1000 samples of y = sin(4x1 — 5(x2 — 0.5)%) + 2z2 (use 80% for training)
- Look for PWA approximation over K = 10 polyhedral regions

Nonlinear function PARC (K = 10) N PARC (K = 10)

e Code download: P http://cse.lab.imtlucca.it/~bemporad/parc/
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PARC - CART & BUMPERS EXAMPLE

e Example: moving cart and bumpers +
heat transfer during bumps.

Spring and viscous forces are nonlinear.

e Categorical input F € {—F,0, F} and
categorical output ¢ € {green, ,red}

e Continuous-time system simulated for 2,000 s,
sample time = 0.5 s (=4000 training samples)

o Feature vector zy, = [yk, Uk, Tk, F] .

1
e Targetvector vy = [yYx+1, Ur+1, Thr1, i -” ”WWWHMWWWM

Hybrid model learned by PARC (K = 5 regions) '

time (s)
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PARC - CART & BUMPERS EXAMPLE

e Open-loop simulation on 500 s test data:
position [m]

4 4

2 2

0 0

40 40 !

30 30

20 20 H

T T

0 H } 0 H }

,1 | LU T
200 200 400
time time (s)

continuous-time system discrete-time PWA model

e Model fit is good enough for MPC design purposes (see next slide ...)
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PARC - CART & BUMPERS EXAMPLE

e MPC problem with prediction horizon N = 9:

MiNg,,. . Fy_,

s.t.

N-1

Z lex — 1| + 0.25|Fy|
k=0 o
F,e{-F,0,F}

PWA model equations

e MILP solution time: 0.37-1.9 s (CPLEX)

e Data-driven hybrid MPC controller can keep

temperaturein

zone

position [m]

A
3 1 3
i \/( 3
| — vV
1
temperature [°C|
40
30 7 - B
f
20§
- force switch
1 M
T T 1 11
| | ]
g‘”\ Il ‘}“ | “\,_1;
! |
| H i
. [l !
: % m 0 50 100

e Approximate explicit MPC: fit a decision tree on 10,000 samples
(accuracy: 99.7%). CPU time = 73--88 ps. Closed-loop trajectories very similar.

3 A. Bemporad - Learning-based Methods for MPC
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LEARNING OPTIMAL MPC CALIBRATION



MPC CALIBRATION PROBLEM

e The design depends on a vector x of MPC parameters

Parameters can be many things:
- MPC weights, prediction model coefficients, horizons
- Covariance matrices used in Kalman filters

- Tolerances used in numerical solvers

Define a performance index f over a closed-loop simulation or real experiment.
For example:

T
F@) =" lly(t) = r@)I?
t=0

(Eracking quality)

Auto-tuning = find the best combination of parameters by solving
the global optimization problem
min f(x)
(C) 2023 A. Bemporad - Learning-based Methods for MPC ’ 23/44



AUTO-TUNING - GLOBAL OPTIMIZATION ALGORITHMS

e Several derivative-free global optimization algorithms exist:

- Lipschitzian-based partitioning techniques:
e DIRECT (Dlvide in RECTangles)
e Multilevel Coordinate Search (MCS)

Response surface methods
o Kriging ,DACE
o Efficient global optimization (EGO)
e Bayesian optimization

Genetic algorithms (GA)

Particle swarm optimization (PSO)

o New method: radial basis function surrogates + inverse distance weighting

(GLIS) cse.lab.imtlucca.it/~bemporad/glis
‘\ ﬁ pip install glis
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AUTO-TUNING - GLIS

25

e Goal: solve the global optimization problem T;&

min, f(z) .
st. f<zx<u

g(x) <0
o Step #0: Get random initial samples z1, ...,z N, v
(Latin Hypercube Sampling) LI R R

o Step #1: given N samplesof f atxy,...,xy,build the surrogate function
¢ = radial basis function

Zﬂl ellz - zill2) Example: ¢(ed) =

(inverse quadratlc)

(ed)

Vector 3 solves f(z;) = f(x;)foralli =1,..., N (=linear system)

e CAVEAT: build and minimize f(xi) iteratively may easily miss global optimum!
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AUTO-TUNING - GLIS

25

e Step #2: construct the IDW exploration function

z2(x) = %AF tan~! (72?’:11%@)) E
orOifz € {z1,...,zn}
o llz—i]?
where U}z(l') = m

AF = observed range of f(z;)
e Step #3: optimize the acquisition function

TN41 = argmin f(x) — 02(x) 6= exploitation vs
st. £<x<u,g(x)<0 exploration tradeoff

to get new sample x 11

o lterate the procedure to get new samples xy 42, ..., TN,
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GLIS VS BAYESIAN OPTIMIZATION

200

100

1500

1000\

500

ackley | adjiman
0
—— -
X N >
10 20 30 40 50 60 5 10 15
branin 5000 camelsixhumps
4000
2000
0
5 10 15 20 25 5 10 15
hartman3 hartman6

styblinski-tang5

10 15 20 25
number of function evaluations

Learning-based Met

10 20 30 40 50 60
number of function evaluations

ds for MPC

problem n BO [s] GLIS [s]
ackley 2 2939 313
adjiman 2 3.29 0.68
branin 2 9.66 117
camelsixhumps 2 4.82 0.62
hartman3 3 26.27 335
hartman6 6 54.37 8.80
himmelblau 2 7.40 0.90
rosenbrock8 8 63.09 13.73
stepfunction2 4 11.72 1.81
styblinski-tang5 5 37.02 6.10

Results computed on 20 runs per test

BO = MATLAB's bayesopt fcn
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MPC AUTOTUNING EXAMPLE

e Linear MPC applied to cart-pole system: 14 parameters to tune

- sample time

- weights on outputs and input increments
- prediction and control horizons

- covariance matrices of Kalman filter

- absolute and relative tolerances of QP solver

T
Closed-loop performance score: J = / [p(t) — pree(t)| + 30| (2)|dt
0

MPC parameters tuned using 500 iterations of GLIS

Performance tested with simulated cart on two hardware platforms
(PC, Raspberry PI)
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MPC AUTOTUNING EXAMPLE

MPC optimized for desktop PC MPC optimized for Raspberry PI

10

ition (m)

Angle (deg)
% |
Angle (deg)
g

Force (N)
Force (N)

optimal sample time = 6 ms optimal sample time = 22 ms

e MPC parameters tuned by GLIS global optimizer (500 fcn evals)
e Auto-calibration can squeeze max performance out of the available hardware

e Bayesian optimization gives similar results, but with larger computation effort
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AUTO-TUNING: PROS AND CONS

e Pros:

sy Selection of calibration parameters x to test is fully automatic
ss Applicable to any calibration parameter (weights, horizons, solver tolerances, ...)

sl Rather arbitrary performance index f(x) (tracking performance, response time,
worst-case number of flops, ...)

e Cons:

i@ Need to quantify an objective function f(z)
i® No room for qualitative assessments of closed-loop performance

i@ Often have multiple objectives, not clear how to blend them in a single one
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ACTIVE PREFERENCE LEARNING

Objective function f(x) is not available (latent function)

We can only express a preference between two choices:

—1 ifx; “better” than x4 [f(z1) < f(z2)]
m(x1,29) =< 0  ifx; “asgoodas” zo [f(z1) = f(z2)]
1 if zo “better” than z; [f(x1) > f(x2)]

We want to find a global optimum z* (=“better” than any other x)

find 2* suchthat w(2*,2) <0, Vza e X, { <z <uw

Active preference learning: iteratively propose a new sample to compare

Key idea: learn a surrogate of the (latent) objective function from preferences
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ACTIVE PREFERENCE LEARNING ALGORITHM

latent function f(x)

e Fitasurrogate f(x) that respects the preferences expressed by the decision
maker at sampled points (by solving a QP)

e Minimize an acquisition function f(x) — 6z(x) to get anew sample 1

e Compare x 1 to the current “best” point and iterate
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SEMI-AUTOMATIC CALIBRATION BY PREFERENCE-BASED LEARNING

Use preference-based optimization (GLISp) algorithm for semi-automatic

tuning of MPC

Latent function = calibrator’s (unconscious) score
of closed-loop MPC performance

GLISp proposes a new combination z ;1 of MPC
parameters to test

By observing test results, the calibrator expresses a

preference, telling if x 11 is “better”, “similar”, or
“worse” than current best combination

Preference learning algorithm: update the
surrogate f(z) of the latent function, optimize the
acquisition function, ask preference, and iterate

3 A. Bemporad - Learning-based Methods for MPC
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assessment

control preference

parameters z
- preference-

. based learning

L algorithm
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PREFERENCE-BASED TUNING: MPC EXAMPLE

e Example: calibration of a simple MPC for lane-keeping (2 inputs, 3 outputs)

vcos(f + 0) I —" e ]

vsin(6 + 0) /

6 = Lvsin(6) L

e Multiple control objectives:

» o« » o«

“optimal obstacle avoidance”, “pleasant drive”, “CPU time small enough’, ...
not easy to quantify in a single function

e 5MPC parameters to tune:

- sampling time
- prediction and control horizons

- weights on input increments Av, Ad
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PREFERENCE-BASED TUNING: MPC EXAMPLE

e Preference query window:

T,=03325,N, =16,N_=17,log(q,, ) = 0.06,
109(d,)) = 2024, 0.0867 s
vehicle
obstacle
— 6 — chicle OA
£ s obstacle OA
S 3
[
0 50 100 150 200 250
80
E 70 Reference
§, 60
> 50
40
0 50 100 150 200 250
50
25
O\ ~———
w
-25
-50

0 50 100 150
x,[m]

200 250

(€) 2023 A. Bemporad - Learning-b

Methods for MPC

0.19,

T,=0.2435,N, =12,N_=17,l0g(q,,) =

l0g(d, ;) = 0.70, ., :0.0846's

abstacle
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PREFERENCE-BASED TUNING: MPC EXAMPLE

e Convergence after 50 GLISp iterations (=49 queries):

: — o Optimal MPC parameters:

—_ — obstacle

% 2r mmvehicle OA

I :], I I I I I I ] mm— obstacle OA,
T - 1:., o " =, - sample time =85 ms (CPU time = 80.8 ms)
75

prediction horizon = 16

ol \iﬁmg‘
ssﬁ ] - control horizon =5
50 T 1 1 T 7 H —
50 100 150 200 250 Welght on AU - 182

[ [ [ [ weight on A§ =8.28
., 10r
ram
TS

5‘0 1(; 1‘50 260

-20
0 0 250
x,[m]

e Note: no need to define a closed-loop performance index explicitly!

v [km/hr]
3

e Extended to handle also unknown constraints
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CORNER-CASE DETECTION PROBLEM

e Goal: detect undesired simulation scenarios (=corner-cases)

Let z = parameters defining the scenario, Xopp = operational design domain
z € Xopp C R"”

critical scenario = vector z* for which the closed-loop behavior is critical

Example:
- 1z = (initial distance between ego car and obstacle, obstacle acceleration, ...)

- Critical scenario: time-to-collision is too short, excessive jerk of ego car, ...

Key idea: use global optimizer GLIS to generate critical corner-cases

z* € argmin  f(x) f(z) = criticality of closed-loop simulation (or
veXopp experiment) determined by scenario z
st. f<z<u (the smaller f (), the more critical z is)
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CORNER-CASE DETECTION: CASE STUDY

e Problem: find critical scenarios in automated driving w/ obstacles

e MPC controller for lane-keeping and obstacle-avoidance based on simple
kinematic bicycle model

& ¢ =vcos(f +9)
Wy =vsin( + 9)
_ wsin(d)

L

(xg,wy) = fromk—wl«eei FOSEHOV\
e Black-box optimization problem: given k obstacles, solve
. SV,i SV,i @ _______
[glwlgu Z d:cf crltlcal dwf ,critical (3?)

s.t. other constraints
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CORNER-CASE DETECTION: CASE STUDY

e Cost function terms to minimize: for each obstacle #i define

min &2 (@) Tiotision min time of collision with #i
t€Tollision
SV, i i - . y g
dzfjcmical (z)=< L ~ Tision & Leoliision  collision with obher #j # #i
> di\;’i(x,t) ~ Teollision no collision
tE€Tsim
. SV,i i
tel%zllritiondwf (mv t) collision
SV,i 3
dwfl,critical () = § Wysare ~ Zotision& Leoliision
Z diyjll (137 t) ~ Zcoliision
tE€Tsim
Tiision = true if 3t € Tymsit. @wf_ ______
(d20 (w,t) < L) & (do' (2, t) < W) . Id<t>
, ) . -t
Teolision = true if Ih st Zigsion = true Im‘
SVl (scenes t
Ty
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CORNER-CASE DETECTION: CASE STUDY

e Logical scenario 1: GLIS identifies 64 collision cases within 100 simulations

wy

) z
iter T 0 ) 0 ) 0 w?
i Y1 Tf2 V2 Tr3 vz | ‘ -
51 15.00 | 30.00 | 44.14 | 10.00 | 49.10 | 47.39 | ____ A2 7?@ _ 7(;)! lane 2
79 28.09 | 30.00 | 70.29 | 10.00 | 7479 | 31.74 (0D ]
40 3430 | 30.00 | 60.59 | 10.00 | 77.80 | 35.97 | wwa T fone 1

red = optimal solution found by GLIS solver .
Ego car changes lane to avoid #1, but

cannot brake fast enough to avoid #2

e Logical scenario 2: GLIS identifies 9 collision cases within 100 simulations

_ . wy
tter x?cl 'u? te Wiond
28 12,57 | 4694 | 16.75 o
16 17.53 | 47.48 | 23.65 . _SV_ _7?___' ______
88 4454 | 4126 | 16.02 oo lane 1

(lff
Ego car changes lane to avoid #1, but cannot decelerate
in time for the sudden lane-change of #1

red = optimal solution found by GLIS solver
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ACTIVE LEARNING ALGORITHMS

How to select the training samples to train a good model?
(problem related to design of experiment )

Active learning (AL) algorithms select the feature vectors x;, to query for the
corresponding target y; while training based on the model learned so far

New AL algorithm: IDEAL (Inverse-Distance based Exploration for Active
Learning)

Code download: P http://cse.lab.imtlucca.it/~bemporad/ideal/
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ACTIVE-LEARNING METHOD "IDEAL" FOR REGRESSION

e First generate N random samples {z, } and acquire corresponding {yy. }

Fit model §(z) based on (z1,y1), - .., (zn, yN)

Similar to GLIS, acquire new sample by maximizing the acquisition function

T4 = argmaxeex, s2(@) +02(2)  s2(2) = L, vel@) (g — §(2))?

exploration/exploitation tradeoff IDW variance function

Fit new model §(x) based on (z1,y1), . . . —

(TN+1,UN+1) M

Iterate, until max # querable samples reached ., ./ )
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ACTIVE LEARNING EXAMPLE: EXPLICIT MPC

o We want to approximate the solution of the multiparametric QP problem

2*(z) = argmin, %Z’QZ +2'F'z zeR? —3<x;,<3
s.t. Az < b+ Sz be R
(<z<u z € R?
y(z) = [10...0]2z"(x)

o Goal: Actively learn §j(z) = NN with ReLU activation and (10,10,10) neurons

wpQP solution

RMSE - mpQP problem

6x107%

1x 1072
3% 1072
v AN 2% 10
ER . —3— :2’ N h GSI -
o = queried samples, < = initial random samples iGS=
QBC=
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CONCLUSIONS

e ML very useful to get control-oriented models (and control laws) from data
e ML cannot replace control engineering:

- Blindly applying deep NNs can lead to useless models for embedded control
- Approximating MPC laws by NN'’s can fail, often still need online optimization

- Model-free reinforcement learning can fail wrt model-based control design

e |gnoring ML tools would be a mistake (a lot to “learn” from machine learning)

e A wide spectrum of research opportunities
and new practices is open !
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