QUASI-NEWTON METHODS FOR LEARNING
NONLINEAR STATE-SPACE MODELS

Alberto Bemporad

imt.lu/ab

OOOOOO

TTTTT
CCCCC

8" Workshop on Nonlinear System Identification Benchmarks - April 25, 2024

imt.lu/ab

OUTLINE

Focus: training control-oriented state-space models

Generalized Gauss-Newton (Sequential Least-Squares) methods

Extended Kalman Filtering methods

L-BFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shanno) methods

(C) 2024 A. Bemporad 2/37

LEARNING CONTROL-ORIENTED MODELS

CONTROL-ORIENTED MODELS

e Complex model = complex controller (controller design and evaluation)
Example: Model Predictive Control (MPC)

e Typically look for small-scale models (e.g., < 10 states/inputs/outputs)
with a limited number of coefficients (vs. Large Language Models: 2-300 B params)

e Limit nonlinearities as much as possible (e.g., avoid very deep neural networks)

o Need to get the best model within a poor model class from a rich dataset
(= limited risk to overfit)

e Computation constraints: solve the learning problem using limited resources
(=our laptop, no supercomputing infrastructures)

Solving system identification problems requires different

algorithms than in typical machine learning tasks

(C) 2024 A. Bemporad 3/37

NONLINEAR SYS-ID BASED ON NEURAL NETWORKS

e Neural networks proposed for nonlinear system identification since the '90s

o NNARX models: use a feedforward neural network to approximate the
nonlinear difference equation y; &~ N (Ys—1, -« s Yt—n, s Ut—1,- - - > Ut—ny)

e Neural state-space models:

Yrs ++o5 Yrent1 Yt 3o Yens2
- w/state data: fit a neural network model e SRS
Teil %Na:(llft,ut)y Y zNy(l‘t) decoder| * D /’ 5 D
OO'OO o OOPO
Tp— 8 — T T
- 1/O dataonly: set x; = value of an inner layer 6000~ Ui, 6000
encoder [/ E \ o E
of the network ’ 6000000 ‘ 0000000
such as an autoencoder N S LI
Upeoys wees W Upy wovy Upoms

o Often, the open-loop prediction error must be minimized to get good models

4/37

RECURRENT NEURAL NETWORKS

e Recurrent Neural Network (RNN) model: &)
x Yy
Ter1r = fo(Tr, u, 0z)
Yo = Jfy(@r,0y)
far fy feedforward neural network vj =A;fj-1(vj-1) +b;
(e.g.. general RNNs, LSTMs, RESNETS, physics-informed NN, ...) 6= (b, 4z, br)

e Training problem: given an I/O dataset {ug, yo, - - ., un—1,yn—1} Solve

N-1
. 1
i (w0, 02 0y) + - ; ks fy (@, 0y)

Lo, L1y, TN—1

s.t. Th41 :fz(xkvukvei)

e Mainissue: zj are hidden states and hence also unknowns of the problem

(C) 2024 A. Bemporad

5/37

GRADIENT DESCENT METHODS FOR TRAINING RNNS

e Problem condensing: substitute zx4+1 = f.(2k, ug, 0..) recursively and solve

N—-1
mln T(l‘o,ew,e N Z e ykvfy xkv)) - min V(9I79y71’0)

02,0y ,x0 0z,0y,20

¢ Gradient descent (GD) methods: update 6., 6, zo by setting

gL Tt 0t
0t | = 0‘ —atVV(Qi 95 :r())

t
To

Example: Adam uses adaptive moment estimation to set the learning rate oy

(C) 2024 A. Bemporad 6/37

GRADIENT DESCENT METHODS FOR TRAINING RNNS

e Main issue with GD methods: slow convergence (in theory and in practice)

e Stochastic gradient descent (SGD) can be even less efficient with RNNs:

- collect a high number of short independent experiments (often impossible)

- create mini-batches by using multiple-shooting ideas

o Newton’s method: very fast (2"4-order) local convergence but difficult to
implement, as we need the Hessian V2V (6%, 6! | zf)

xr Yy

¢ Quasi-Newton methods: good tradeoff between convergence speed (=solution
quality) and numerical complexity, only the gradient VV (6%, 0! , z¥)) is required

Yy

(C) 2024 A. Bemporad 7/37

TRAINING RNNS VIA SEQUENTIAL LEAST SQUARES

TRAINING RNNS BY SEQUENTIAL LEAST-SQUARES

e RNN training problem = optimal control problem:

N-1
) R wpwl's = 0, 0,,z0
min r(xg,0z,0,) + Y4
0x,0y,20,21,..,TN -1 (00 y)];) (yk, yk) ol = g
st xpr1 = fo(Tr, ug, 0z) reference = yy,
Gk = fy(@h, uk, 0y) wews. &t = uy
- r(xo, 0z,0y) = input penalty
- 4(yx, §r) = output penalty
- prediction horizon = N steps, control horizon = 1 step
o Linearized model: given a current guess 0, 07, 2y,, x}, _, approximate
Arpyr = (Vofe) Awy + (Vo f2) A0,
Ayp = (Vafy) Az + (ngfy)’AQy

(C) 2024 A. Bemporad 8/37

TRAINING RNNS BY SEQUENTIAL LEAST-SQUARES

o Take 2"d-order expansion of the loss ¢ and regularization term r

Solve least-squares problem to get increments Axg, A6, Af,

Update x5, 92+1, 01 by applying either a

- line-search (LS) method based on Armijo rule

- oratrust-region method (Levenberg-Marquardt) (LM)

The resulting training method is a Generalized Gauss-Newton method
very good convergence properties

No guarantee to converge to a global minimum (multiple runs may be required)

(C) 2024 A. Bemporad 9/37

TRAINING RNNS BY SEQUENTIAL LS AND ADMM

e Example: magneto-rheological fluid damper
N=2000 data used for training, 1499 for testing the model

e RNN model: 4 states, shallow NNs w/ 4 neurons, I/O feedthrough

NAILS AMSGrad
NAILM
EKF

Auiscrad MSE loss on training data,
mean value and range over 20
runs from different random

initial weights
- Y=y
BFR=100(1 — V=Tl
cor toining time (5) training time (5
BFR (Best Fit Rate) training test
T NAILS 94.41 (0.27) 89.35(2.63)
NAILS = GNN method with line search NAILM 94.07 (0.38) | 89.64(2.30)
NAILM = GNN method with LM steps AMSGrad 84.69(0.15) | 80.56(0.18)
EKF 91.41 (0.70) 87.17 (3.06)

(C) 2024 A. Bemporad 10/37

TRAINING RNNS BY SEQUENTIAL LS AND ADMM

o We also want to handle non-smooth/non-convex regularization terms

mingm79y7x0 7'(130, 9;57 Qy) —+ Zivz_ol E(ykn fy($k, Gy)) + 9(9:1:3 95/)
s.t. Tk+1 = fw(xkvulﬁ ew)

E.g: g(0s,0,) = 7(||0z]l1 + [|18y11) (Lasso regularization)

¢ |dea: use alternating direction method of multipliers (ADMM) by splitting

minezﬁvaoﬂ/zﬂ/y T(x07 9(137 9?/) + Zfevziol ‘g(yl“ fy(-rku ay)) + ‘g(]/x7 Vy)
s.t. Th41 :fm(xkaukvoz)

1= 5]

(C) 2024 A. Bemporad 11/37

TRAINING RNNS BY SEQUENTIAL LS AND ADMM

e ADMM + Seq. LS = NAILS algorithm (Nonconvex ADMM lterations and Sequential LS)

o+

0. t+4+1

9'.‘/t+1 J
pit
pitl

|:w;+1

i1
Wy

arg ming, o,.0, V (2o, 0z,0,) + 5

t+1 t g t+1 ¢
prox%g(ez + wy, 0" + wy)

|

w;”+911’+171/;+1
w2+9yt+171j;+1

[

0, —vt t 2
Vm+wf} H (sequeu&ial) LS
2

t
0y uy+wy

Fraximat sEeP

updaka dual vars

o ADMM + Levenberg-Marquardt steps = NAILM algorithm

e Fluid-damper example: Lasso regularization g(v,, vy) = 7(||v|l1 + |7yll1)

100

80

60

BFR (%)

— BFR (test data)
—— BFR (training data)
40 | —— percentage of zeros in Gx,ﬁy

(C) 2024 A. Bemporad

{1-regularization parameter 7

10°

100

80

60

40

20

0

(mean results over 20 runs
from different initial weights)

percentage of zeros

12/37

TRAINING RNNS BY SEQUENTIAL LS AND ADMM

e Fluid-damper example: Lasso regularization g(v,, vy) = 0.2(||v |1 + |vyll1)

training BFR BFR sparsity CPU #

algorithm training test % time epochs ~ same fit than
NAILS 91.00 (1.66) | 87.71(2.67) | 65.1(65) | 114s 250 ~

NAILM 91.32(1.19) | 87.80(1.86) | 64.1(7.4) | 11.7s 250 SGD/EKF but sparser
AMSGrad | 91.04(0.47) | 88.32(0.80) | 16.8(7.1) | 64.0s | 2000

Adam 9047(034) | 8779044y | 83(35) | 6395 | 2000 Modelsand faster
DiffGrad | 90.05 (0. 64) 8734(114) | 74(45) | 639s | 2000 (Apple M1Pro)

EKF 89.27(1.48) | 86.67(2.71) | 47.9(9.1) | 13.2s 50

e Fluid-damper example: group-Lasso regularization g(v{) = 7, >, |[//]]2
to zero entire rows/columns and reduce the state-dimension automatically

100 7 T T T

90\:/:/% good choice: n, = 3

®T __BFR (test data) (best fit on test data)
—— BFR (training data)
final model order

60 . . ;
107 10° 1072 107! 10° 10"
group-lasso regularization parameter 7,

BFR (%)

70 [

(C) 2024 A. Bemporad 13/37

TRAINING RNNS - SILVERBOX BENCHMARK

(Wigren, Schoukens, 2013)

e Silverbox benchmark (Duffin oscillator): 10 traces (~8600 samples each) used
for training, 40000 for testing

output [V]

AEER

trpining [dat

(a)
u * 1 y

4
10 S ms?+ ds + ky

fay®
(b)

(Schoukens, Ljung, 2019)

test data

. .
0 2 4 6 8 10 12
sample %104

Data download: nttp://www.nonlinearbenchmark.org

(C) 2024 A. Bemporad 14/37

http://www.nonlinearbenchmark.org

TRAINING RNNS - SILVERBOX BENCHMARK

¢ RNN model: 8 states, 3 layers of 8 neurons, atan activation, no I/O feedthrough

¢ [nitial-state: encode x as the output of a NN with atan activation, 2 layers of 4
neurons, receiving 8 past inputs and 8 past outputs

M N-1 y-1

ming, 0,0, 7(0z:02,0y) + Z Z 0yl 43) :
4 o i=Lk=0 o v=|u}

st 2y = fal@g, ug, 02), G = fy(ay, uy, 0y))
1'(7] = fﬂCo (Uj'/ 91’0) uig

[cf.]
o (y-regularization: r(0,,, 05, 0y) = %21 (162]13 + 164 113) + %2102 113
e Total number of parameters ng, + ng, + ng,, = 296 + 225 + 128 = 649

e Training: use NAILM over 150 epochs

(C) 2024 A. Bemporad 15/37

TRAINING RNNS - SILVERBOX BENCHMARK

e |dentification results on test data ®:

identification method RMSE [mV] BFR [%]

ARX (ml) [1] 16.29 [4.40] | 69.22[73.79] [1] Ljung, Zhang, Lindskog, Juditski, 2004
NLARX (ms) [1] 8.42[4.20] 83.67[92.06] [2] Ljung, Andersson, Tiels, Schén, 2020
NLARX (mlc) [1 1.75[1.70] | 96.67[96.79] _

NLARX (ms8c50) [1.05[0.30] | 98.01[99.43] [3] Beintema, Toth, Schoukens, 2021
Recurrent LSTM model [2] 2.20 95.83 ~

SS encoder [3] (ny, = 4) [1.40] [97.35] RMSE = i PIEY

NAILM 0.35 99.33 N ;(y")

e NAILM training time = 400 s (MATLAB+CasADi on Apple M1 Max CPU)

8
¢ Repeat training with ¢, -regularization: % *; . 3
é 3 NARM gLSTM
= ¢ o
& 1p ()
05F \

5 10 20 40 80 160 320 640 1280
number of model parameters

ITrained RNN: http://cse.lab.imtlucca.it/~bemporad/shared/silverbox/rnn888.zip
16/37

(C) 2024 A. Bemporad

http://cse.lab.imtlucca.it/~bemporad/shared/silverbox/rnn888.zip

EXTENDED KALMAN FILTER FOR TRAINING RNNS

TRAINING RNNS BY EKF

e |terating an Extended Kalman Filter (EKF) based on the following model

Thr1 = fo(Tr, Uk, 01) + &k Q = Var[n]
|:030(k:+1) :| _ |:ezk T R = Var[(k]
Putery o Py =Var [[5;]]
= fy(zr, Oyr) + Ck 0

Yk
is equivalent to applying Newton’s method incrementally to solve the relaxed
problem

g1~ fo(Tr,up,02) 2
Ok4+1—0k Q-1

0 9 N—-1 N-—-2
min |[o ||| D e fa o, 01+ D |
azvey zo) k=0 k=0
Zo; 1y, TN—1

e Theratio Q/ R determines the learning-rate of the training algorithm

e Generalization: train via Moving Horizon Estimation (MHE)

(C) 2024 A. Bemporad 17/37

TRAINING RNNS BY EKF

e EKF can be generalized to handle general strongly convex and smooth losses
£(yx, Ui) by taking a local quadratic approximation of the loss around gy:

Uy, §) =~ 3AYH(K)Ay + ¢fAy + const Ay =1 — Gk, g = Z0x)
_ ~l12 2 i
= 5|l = BT (R)dr = 3|[yy) +const H(k) = S5

e Strongly convex smooth regularization (o, 6, 6,) can be handled similarly

e Canhandle /;-penalties \ H [ZT} H , useful to sparsify 0, 6, by changing the
vl
EKF update into

#(klk) #(klk—1) 0
[ew(kk)} [%(klk—l)]JrM(k)e(k:))\P(k:k —-1) {signwm(kk—l»]
0y (k|k) 0y (k|k—1) sign(6, (k|k—1))
I—

The model 0, 8, can be learned offline by processing a given dataset multiple

times, and also adapted on line from streaming data (u, yx)

(C) 2024 A. Bemporad 18/37

TRAINING RNNS BY EKF - EXAMPLES

o Dataset: magneto-rheological fluid damper
3499 1/0 data

e N=2000 data used for training, 1499 for testing the model

e Same data used in NNARX modeling demo of SYS-ID Toolbox for MATLAB

Adam
——EKF

e RNN model: 4 hidden states, shallow
state-update and output functions
6 neurons, atan activation, /O feedthrough

MSE loss

0 5 10 15 20
training time [s])

e Compare with gradient descent (Adam)

Adam

MATLAB+CasADi implementation (Apple M1 Max CPU)

MSE loss

1
0 100 200 300 400 500

(C) 2024 A. Bemporad epoch 19/37

TRAINING RNNS BY EKF - EXAMPLES

e Compare BFR? wrt NNARX model (SYS-ID TBX): = e emep smuzmon en pmecelnsiance

I A MR
. ! I N LRI T
EKF=92.82, Adam = 89.12, NNARX(6,2) = 88.18 (training) /| h I | BN \‘ (
EKF=89.78, Adam = 85.51, NNARX(6,2) = 85.15 (test) THH T || \:ﬁﬁi o268 15
R
ZO\\ \"” ““ | 1101 l
. ““M’U ‘W““ || |
of F Y ARA BB (RY
. RepeattrainingwithEl-penaltyrH {gj} ‘ L U Wl
’ ” samples " =
95 100 %
90 8 i
ey ——BFR (test data) E
E 80 || —— BFR (training data) o if
m percentage of zeros in 6,,0, _:_
75 20 >
70 - - 0o =
10° 10° 10 10°

{1-regularization parameter T

2Best fit rate BFR=100(1 — ‘\llg’:)ﬂ,\‘llj), averaged over 20 runs from different initial weights

(C) 2024 A. Bemporad 20/37

TRAINING LSTMS BY EKF - EXAMPLES

e Use EKF to train Long Short-Term Memory (LSTM) model

za(k+1) = og(Wru(k)+Uszp(k) +bs) © za(k)
+og(Wru(k) + Urzy(k) + br) © oc(Weou(k) + Ucwy (k) + be)
zp(k+1) = og(Woulk)+Uoxy(k) +bo) © oc(za(k + 1))
y(k) = fy(xp(k),u(k),0y)
gate activation ftn o () = ==, cell activation ftn o' () = tanh(c)
e Training results (mean and std over 20 runs):
BFR Adam EKF

RNN training | 89.12(1.83) | 92.82(0.33)
ng = 107 | test 85.51 (2.89) | 89.78(0.58)
LSTM training | 89.60(1.34) | 92.63(0.43)
ng = 139 | test 85.56(2.68) | 88.97(1.31)

e EKF training applicable to arbitrary classes of black/gray box recurrent models!

(C) 2024 A. Bemporad 21/37

TRAINING RNNS BY EKF - EXAMPLES

e Dataset: 2000 I/O data of linear system with binary outputs

e(h+1) = [q00 0 Ja®)+ []utk) ety | Varle(h)] = o2
sy = {3 AL 2

e N=1000 data used for training, 1000 for testing the model

Lo X EKF accuracy [%]
¢ Train linear state-space model with 3 states o test | training

and sigmoidal output function

0000 | 98.02 | 97.91
0001 | 9533 | 9866
—AV[a (K Y

) =1/(1 + e~ Al R uk]'=bt) 0010 | 97.99 | 9852
0100 | 9456 | 9544
0200 | 9371 | 9222

e Training loss: (modified) cross-entropy loss
Ny

Core(y(k), 9) = Z —yi(k)log(e + §i) — (1 — yi(k)) log(1 + € — ;)

(C) 2024 A. Bemporad 22/37

LINEAR AND NONLINEAR IDENTIFICATION VIA L-BFGS

SYSTEM IDENTIFICATION PROBLEM

e Class of dynamical models with n, states, n,, inputs, n,, outputs:

Te+1 = Azk + Bug + fo(zk, uk; 02) Special cases:

gr = Czy + Dui + fy (xk,uk; ey) Linear model, RNN, ..

e Loss function (open-loop prediction error + regularization)

L N z=[9]

an—1 T(2) + 57 D €y, Caie + Dui + fy (2k, uns 0)) A0)
k=0 B()

Brrr = Awy + Bur + fa(wn, uri 02) o-|U
k=0,...,N—2 0

oy

o Condense the problem by eliminating the hidden states x;, and get

min f(z)+r(z) (nonconvex) nonlinear programming (NLP) problem

(C) 2024 A. Bemporad 23/37

NLP PROBLEM

o If f and r differentiable: use any state-of-the-art unconstrained NLP solver,
e.g., L-BFGS (Limited-memory Broyden—Fletcher-Goldfarb—Shanno)

e The gradient V f(z) can be computed efficiently by automatic differentiation

e However, sparsifying the model requires non-smooth regularizers:

ri(z) =7 ||z],; rg(2) =74 2211 1iz]|2

£1-reqularization grouP—Lasso PemeEj

e Examples of group-Lasso penalties:

m = n, and I; selected to reduce the number of states
m = n,, and I; selected to reduce the number of inputs

(C) 2024 A. Bemporad 24/37

HANDLING NON-SMOOTH REGULARIZATION TERMS

1 Ifr(z) = 3" ri(z;) and r; : R — Ris convex and positive semidefinite, the
{1 -regularized problem can be recast as a bound-constrained NLP:

min f(z)+7||z|1+r(z) yrglzno f(y_Z)-i-T[l 1] [Z]+7-(y)+r(fz)

ell-reqularized
Example: 7(z) = [[]3 thenr(y) + r(—2) = [|[£][3 ~°

ziz augmented Frobkem

2. If r(x) is convex and symmetric wrt each component z; and increasing for
x > 0, then we can solve instead

. differentiable for y,z >0
min —z)+7(l ... 1|4+r(y+=z
y,220 fy=2)+] Fr(y+2) if r(z) differentiable for = >0

Example: (z) = group-Lasso penalty + constraint i, 2 > ¢ = machine precision

(C) 2024 A. Bemporad 25/37

EXAMPLE: LINEAR SYSTEM IDENTIFICATIO

e Cascaded-Tanks benchmark:

z = (A, B,C, D, xy), mean-squared error loss + {5-regularization ,
R? (training) R2 (test) ~W

Ng 1lbfgs sippy3 MATLAB * 1lbfgs sippy MATLAB s

1 87.43 56.24 87.06 83.22 52.38 8318 (ssest) ‘.
2| 9407 2897 93.81 92.16 23.70 9217 (ssest) : i
3| 9407 74.09 93.63 92.16 68.74 9156 (ssest)

4| 9407 4834 9234 92.16 4550 90.33 (ssest) Ny =ny =1
5 | 9407 90.70 93.40 92.16 89.51 80.22 (ssest)

6 | 9407 94.00 93.99 9217 9232 8849 (n4sid) 1024 training data
7| 9407 92.47 93.82 9217 90.81 <0 (ssest)

8 | 9449 <0 94.00 89.49 <0 <0 (n4sid) 1024 test data

9 94.07 <0 <0 92.17 <0 <0 (ssest) (Standard Stalmg)
10 | 94.08 93.39 <0 9217 92.35 <0 (ssest)

CPU time: 2.4 5 (Ibfgs), 30 ms (sippy), 50 ms (n4sid/pred.), 0.3 s (ndsid/sim.), 0.5s (ssest) [Apple M1 Max]
NLP with bounds solved in JAX/JAXOPT using the L-BFGS-B solver

P pip install jax-sysid github.com/bemporad/jax-sysid

porad 26/37

github.com/bemporad/jax-sysid

EXAMPLE: LINEAR SYSTEM IDENTIFICATION

e Synthetic data generated by the cascaded 2x2 linear system
EkisMk; € N(0,0.01)

0.96 0.26 0.04 0 0 0 0o o0
—0.26 0.70 0.26 0 0 0 0 0 .
0 0 0.93 0.32 0.07 0 0.07 0 =
Tk+1 = 0 0 —0.320.61 0.32 0 W"’[o 32 0 :|“k+§k N ZOOOtrammgdata
0 0 0 0 0.90 0.38 0 0.10
0 0 0 0 —0.380.52 0 0.38 {(uk,yk)}
x
Yk = 28 | + 7k

o Group-lasso penalty for model-order reduction:

A

Ng N-1
; 1
1016 A = _ 2
i, oozl + 10 Iell 70 301 5 ||+ 37 2 e = ol
7 c. 5 k=0
100
80
60 best results out of 10 runs
a0 —— R2(training data) (CPU time == 3.85 s per run
201+ o final model order n, [Apple M1 Max]
1072 107t 10° 10t Tg

27/37

EXAMPLE: LINEAR SYSTEM IDENTIFICATION

e Synthetic data generated by a random linear system with n, = 3 states,
n,, = 10inputs, n, = 1 outputs, noise in A/(0,0.01), N = 10000 training data

e Thelast 5 columns of the B matrix are 1000x smaller than the first 5

o Group-lasso penalty for input selection:

i 10Sel3 1070 =]y 7y 3 [l + Z lyx — Cril3
Yo

i=1
100 4]
80
60 best results out of 10 runs
40{, —— R2(training data) (CPU time ~ 3.71 s per run
201 e final #inputs [Apple M1 Max]

e Can be useful to identify Hammerstein models using basis functions on «
(C) 2024 A. Bemporad 28/37

EXAMPLE: QUASI-LPV MODEL OF SILVERBOX BENCHMARK

e Quasi-LPV model structure (n, = 8 states): outpt [V

Tr+1 = (Ao~ Aipr)zk + (Bo + Bipk)uk
ye = Cuxg
P = SWiSh(WQ SWiSh(Wll’k + bl) + b2)

SWlSh(I) = H_%

e Training setup: St et

- Lo-regularization (p = 10™*)

- warm start on ﬂrstexper|lmentl(8,600 samples) o p, (test data)
500 Adam + 500 L-BFGS iterations

0.4

- 5000 L-BFGS iterations on full dataset Zz
(86,114 samples) o1
- (PUtime ~ 265's [Apple M1 Max] O oo 10600 15000 20000 25000 30500 35000 4000
sample
e RMSE on test data: 0.397 mV (LTI model: 14.090 mV)

(Il Aoll2 = 1.96,]|A1||2 = 0.35, || Bol|2 = 0.79, || B1 |2 = 0.09)

(C) 2024 A. Bemporad 29/37

INDUSTRIAL ROBOT BENCHMARK

o KUKA KR300 R2500 ultra SE industrial robot,
full robot movement

e 6inputs (torques), 6 outputs (joint angles), w/ backlash,
highly nonlinear and coupled, slightly over-sampled
([lyx — yx—1]| is often very small)

e Identification benchmark dataset (forward model):

nonlinearbenchmark.org

- Sample time: Ts = 100 ms
- N =39988 training samples
- Niest = 3636 test samples

e Most challenging benchmark onnonlinearbenchmark.org

(C) 2024 A. Bemporad 30/37

nonlinearbenchmark.org
nonlinearbenchmark.org

RECURRENT NEURAL NETWORKS IN RESIDUAL FORM

e Recurrent Neural Network (RNN) model in residual form:

Tri1 = Azp+ Buk + folr, uk, 05) : - ¢

faos fy feedforward neural network

v; = Ajfj—1(vj—1) +b;
0 =(A1,b1,...,AL,bL)

e Goal: minimize open-loop simulation error under elastic net regularization

N
. 1 2, 1 2 2
o B0, 20 0l 01015+ 118) 470l +)

s.t. model equations

e /y-regularization introduced to reduce # model coefficients (=simpler model)

(C) 2024 A. Bemporad 31/37

TRAINING RNN W/ ¢ -PENALTIES - INDUSTRIAL ROBOT

e Mainissues with industrial robot benchmark:

- many parameters to train, large dataset = complex NLP
- high sensitivity wrt weights (dynamics gets easily unstable)
- local minima (solution depends on initial guess)

- cannot easily use mini-batches: open-loop simulation cost is not separable,
long-term memory effects present due to small sample time

e More general residual networks + ¢, /group-Lasso regularization possible

Ly, Uy,

32/37

SOLUTION APPROACH

i i
Wi My Yi—Hy
ol Yi < ol

1. Standard-scale I/O data for numerical reasons u; <+
i=1,...,6

2. Train (A, B, C, z) by jax-sysid (1000 L-BFGS iters) w/o ¢; -regularization
(z € R1?) (CPUtime: 9.125) [Apple M1 Max]

For comparison: ndsid takes 36.21 s and gives lower 22-scores on training & test data in MATLAB
sippy fails

3. Fix (4, B, C) and train simple RESNET model with shallow NNs:
Tpy1 = Axy, + Bup + fo(Tr, ug, 02), yr = Cay + fy(zk,0y)

e Optimization: to handle 7|6]|1, use jax-sysid running 2000 Adam iters first (for
warm-start) and then 2000 L-BGFS-B iters

(C) 2024 A. Bemporad 33/37

INDUSTRIAL ROBOT BENCHMARK: RESULTS

e Stater € R'?, f,, f, with 36 and 24 neurons, swish activation fcn e

e Total number of training parameters: dim(6,,) + dim(6,)) = 1590

100

— R2(test data)
—— R2((training data)
% zeros in model

o
S

percentage of zeros

(best B2 in 30 runs)

1
17=0.008 .
:
1074 1073 1072 107t 10°
T

¢ Model quality measured by average R?-score on all outputs:

R? = i zy: 100 1= chvzl(yk,i - ﬁk,i\0)2
Ty

i=1 Zgﬂ(ykﬂ' - % Zivﬂ Yk.i)?

e Training time &~ 12 min on a single core per run
(3192 variables, 2000 Adam iterations + 2000 L-BFGS-B iterations, Apple M1 Max CPU)

(C) 2024 A. Bemporad 34/37

INDUSTRIAL ROBOT BENCHMARK: RESULTS

e Open-loop simulation errors (p = 0.01, 7 = 0.008):

R? (training) R2 (test) R? (training) R2 (test)
RNN model RNN model | linear model linear model
average 77.1493 57.1784 48.2789 43.8573 jax-sysid

e More parameters/smaller regularization leads to overfitting training data

e Pure Adam vs LBFG-B+Adam vs OWL-QN 2 (7 = 0.008)
adam fcn R? R2 # zeros CPU
solver iters | evals | training test (0x,0y) | time(s)

L-BFGS-B | 2000 | 2000 | 77.1493 | 57.1784 | 556/1590 | 309.87
OWL-QN 2000 | 2000 | 74.7816 | 54.0531 | 736/1590 | 449.17
Adam 6000 0 | 71.0687 | 54.3636 1/1590 | 389.39

e Adam is unable to sparsify the model

(C) 2024 A. Bemporad 35/37

INDUSTRIAL ROBOT BENCHMARK: RESULTS

e Compute p-step ahead prediction g, |, with hidden state z;,;, estimated by
an Extended Kalman Filter based on identified RNN model

100
90

R? %
(%) %

40
30

—— RNN model (test data)

—— Linear model (test data)

0 10 20 30 40 50
prediction step

e Thisis a more relevant indicator of model quality for MPC purposes than
open-loop simulation error g0 — Yk

(C) 2024 A. Bemporad 36/37

CONCLUSIONS

CONCLUSIONS

¢ Quasi-Newton methods for SYS-ID enabled by powerful autodiff libraries
oM opyorch F & casADi @9 Zygote

© Extremely flexible (model structure, loss functions, regularization terms)
© Faster convergence/better models than with classical GD methods (like Adam)
© Numerically very robust (even to get linear state-space models!)

Non-convex problem: multiple runs often required from different initial guesses

e Open research topics:

? How to get good-quality training data (active learning)

? More efficient methods for non-smooth nonlinear optimization

B 2023 Erc Advanced Grant "coMPACT"
Starting soon ... (postdoc positions available)

(C) 2024 A. Bemporad 37/37

