# QUASI-NEWTON METHODS FOR LEARNING Nonlinear State-Space Models

#### **Alberto Bemporad**

imt.lu/ab



8<sup>th</sup> Workshop on Nonlinear System Identification Benchmarks - April 25, 2024



• Focus: training control-oriented state-space models

Generalized Gauss-Newton (Sequential Least-Squares) methods

• Extended Kalman Filtering methods

• L-BFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shanno) methods

# LEARNING CONTROL-ORIENTED MODELS

"All models are wrong, but some are useful."



(George E. P. Box)

#### **CONTROL-ORIENTED MODELS**

- Complex model = complex controller (controller design and evaluation) Example: Model Predictive Control (MPC)
- Typically look for small-scale models (e.g., ≤ 10 states/inputs/outputs) with a limited number of coefficients (vs. Large Language Models: 2-300 B params)
- Limit nonlinearities as much as possible (e.g., avoid very deep neural networks)
- Need to get the **best model** within a **poor model class** from a rich dataset (= limited risk to overfit)
- Computation constraints: solve the learning problem using limited resources (=our laptop, no supercomputing infrastructures)

Solving system identification problems requires different algorithms than in typical machine learning tasks

### NONLINEAR SYS-ID BASED ON NEURAL NETWORKS

• Neural networks proposed for nonlinear system identification since the '90s

(Narendra, Parthasarathy, 1990) (Hunt et al., 1992) (Suykens, Vandewalle, De Moor, 1996)

- NNARX models: use a feedforward neural network to approximate the nonlinear difference equation  $y_t \approx \mathcal{N}(y_{t-1}, \dots, y_{t-n_a}, u_{t-1}, \dots, u_{t-n_b})$
- Neural state-space models:
  - w/ state data: fit a neural network model  $x_{t+1} \approx \mathcal{N}_x(x_t, u_t), \ y_t \approx \mathcal{N}_y(x_t)$
  - I/O data only: set x<sub>t</sub> = value of an inner layer of the network (Prasad, Bequette, 2003), such as an autoencoder (Masti, Bemporad, 2021)



• Often, the open-loop prediction error must be minimized to get good models

#### **RECURRENT NEURAL NETWORKS**

• Recurrent Neural Network (RNN) model:

$$egin{array}{rcl} x_{k+1} &=& f_x(x_k,u_k, heta_x) \ y_k &=& f_y(x_k, heta_y) \ f_x,f_y &=& {
m feed} {
m forward neural network} \end{array}$$



 $\theta = (A_1, b_1, \dots, A_L, b_L)$ 

- (e.g.: general RNNs, LSTMs, RESNETS, physics-informed NNs, ...)
- Training problem: given an I/O dataset  $\{u_0, y_0, \ldots, u_{N-1}, y_{N-1}\}$  solve

$$\min_{\substack{\theta_x, \theta_y \\ x_0, x_1, \dots, x_{N-1}}} r(x_0, \theta_x, \theta_y) + \frac{1}{N} \sum_{k=0}^{N-1} \ell(y_k, f_y(x_k, \theta_y))$$
  
s.t.  $x_{k+1} = f_x(x_k, u_k, \theta_x)$ 

• Main issue: xk are hidden states and hence also unknowns of the problem

#### **GRADIENT DESCENT METHODS FOR TRAINING RNNS**

• Problem condensing: substitute  $x_{k+1} = f_x(x_k, u_k, \theta_x)$  recursively and solve

$$\min_{\theta_x, \theta_y, x_0} r(x_0, \theta_x, \theta_y) + \frac{1}{N} \sum_{k=0}^{N-1} \ell(y_k, f_y(x_k, \theta_y)) = \lim_{\theta_x, \theta_y, x_0} V(\theta_x, \theta_y, x_0)$$

• Gradient descent (GD) methods: update  $\theta_x, \theta_y, x_0$  by setting

$$\begin{bmatrix} \theta_x^{t+1} \\ \theta_y^{t+1} \\ x_0^{t+1} \end{bmatrix} = \begin{bmatrix} \theta_x^t \\ \theta_y^t \\ x_0^t \end{bmatrix} - \alpha_t \nabla V(\theta_x^t, \theta_y^t, x_0^t)$$

**Example:** Adam uses adaptive moment estimation to set the learning rate  $\alpha_t$ 

(Kingma, Ba, 2015)

#### **GRADIENT DESCENT METHODS FOR TRAINING RNNS**

- Main issue with GD methods: slow convergence (in theory and in practice)
- Stochastic gradient descent (SGD) can be even less efficient with RNNs:
  - collect a high number of short independent experiments (often impossible)
  - create mini-batches by using multiple-shooting ideas (Forgione, Piga, 2020) (Bemporad, 2023)
- Newton's method: very fast (2<sup>nd</sup>-order) local convergence but difficult to implement, as we need the Hessian  $\nabla^2 V(\theta^t_x, \theta^t_y, x^t_0)$
- Quasi-Newton methods: good tradeoff between convergence speed (=solution quality) and numerical complexity, only the gradient  $\nabla V(\theta_x^t, \theta_y^t, x_0^t)$  is required

## **TRAINING RNNS VIA SEQUENTIAL LEAST SQUARES**

#### TRAINING RNNS BY SEQUENTIAL LEAST-SQUARES

(Bemporad, 2023)

• RNN training problem = **optimal control** problem:

$$\begin{array}{ll} \min_{\theta_x,\theta_y,x_0,x_1,\dots,x_{N-1}} & r(x_0,\theta_x,\theta_y) + \sum_{k=0}^{N-1} \ell(y_k,\hat{y}_k) \\ \text{s.t.} & x_{k+1} = f_x(x_k,u_k,\theta_x) \\ & \hat{y}_k = f_y(x_k,u_k,\theta_y) \end{array} & \begin{array}{l} \inf_{\theta_x,\theta_y,x_0} \\ \text{output} = \hat{y} \\ \text{reference} = y_k \\ \text{weas. dist.} = u_k \end{array}$$

- $r(x_0, \theta_x, \theta_y)$  = input penalty
- $\ell(y_k, \hat{y}_k)$  = output penalty
- prediction horizon = N steps, control horizon = 1 step
- Linearized model: given a current guess  $\theta_x^h, \theta_y^h, x_0^h, \dots, x_{N-1}^h$ , approximate

$$\begin{aligned} \Delta x_{k+1} &= (\nabla_x f_x)' \Delta x_k + (\nabla_{\theta_x} f_x)' \Delta \theta_x \\ \Delta y_k &= (\nabla_x f_y)' \Delta x_k + (\nabla_{\theta_y} f_y)' \Delta \theta_y \end{aligned}$$

#### TRAINING RNNS BY SEQUENTIAL LEAST-SQUARES

- Take  $2^{nd}$ -order expansion of the loss  $\ell$  and regularization term r
- Solve least-squares problem to get increments  $\Delta x_0$ ,  $\Delta \theta_x$ ,  $\Delta \theta_y$
- Update  $x_0^{h+1}$ ,  $\theta_x^{h+1}$ ,  $\theta_y^{h+1}$  by applying either a
  - line-search (LS) method based on Armijo rule
  - or a trust-region method (Levenberg-Marquardt) (LM)
- The resulting training method is a Generalized Gauss-Newton method very good convergence properties (Messerer, Baumgärtner, Diehl, 2021)
- No guarantee to converge to a global minimum (multiple runs may be required)

• Example: magneto-rheological fluid damper N=2000 data used for training, 1499 for testing the model

(Wang, Sano, Chen, Huang, 2009)



RNN model: 4 states, shallow NNs w/ 4 neurons, I/O feedthrough



NAILS = GNN method with **line search** NAILM = GNN method with **LM steps**  MSE loss on training data, mean value and range over 20 runs from different random initial weights

$$\mathsf{BFR} = 100 \big( 1 - \tfrac{\|Y - \hat{Y}\|_2}{\|Y - \bar{y}\|_2} \big)$$

| BFR (Best Fit Rate) | training     | test         |  |
|---------------------|--------------|--------------|--|
| NAILS               | 94.41 (0.27) | 89.35 (2.63) |  |
| NAILM               | 94.07 (0.38) | 89.64 (2.30) |  |
| AMSGrad             | 84.69 (0.15) | 80.56 (0.18) |  |
| EKF                 | 91.41 (0.70) | 87.17 (3.06) |  |

• We also want to handle non-smooth/non-convex regularization terms

$$\min_{\theta_x, \theta_y, x_0} \quad r(x_0, \theta_x, \theta_y) + \sum_{k=0}^{N-1} \ell(y_k, f_y(x_k, \theta_y)) + g(\theta_x, \theta_y)$$
  
s.t.  $x_{k+1} = f_x(x_k, u_k, \theta_x)$ 

E.g.:  $g(\theta_x, \theta_y) = \tau(\|\theta_x\|_1 + \|\theta_y\|_1)$  (Lasso regularization)

• Idea: use alternating direction method of multipliers (ADMM) by splitting

$$\min_{\theta_x, \theta_y, x_0, \nu_x, \nu_y} \quad r(x_0, \theta_x, \theta_y) + \sum_{k=0}^{N-1} \ell(y_k, f_y(x_k, \theta_y)) + g(\nu_x, \nu_y)$$
s.t. 
$$x_{k+1} = f_x(x_k, u_k, \theta_x)$$

$$\begin{bmatrix} \nu_x \\ \nu_y \end{bmatrix} = \begin{bmatrix} \theta_x \\ \theta_y \end{bmatrix}$$

ADMM + Seq. LS = NAILS algorithm (Nonconvex ADMM Iterations and Sequential LS)

$$\begin{bmatrix} x_0^{t+1} \\ \theta_x^{t+1} \\ \theta_y^{t+1} \end{bmatrix} = \arg\min_{x_0, \theta_x, \theta_y} V(x_0, \theta_x, \theta_y) + \frac{\rho}{2} \left\| \begin{bmatrix} \theta_x - \nu_x^t + w_x^t \\ \theta_y - \nu_y^t + w_y^t \end{bmatrix} \right\|_2^2 \quad \text{(sequential) LS}$$

$$\begin{bmatrix} \nu_x^{t+1} \\ \nu_y^{t+1} \end{bmatrix} = \operatorname{prox}_{\frac{1}{\rho}g}(\theta_x^{t+1} + w_x^t, \theta_y^{t+1} + w_y^t) \quad \text{proximal step}$$

$$\begin{bmatrix} w_x^{t+1} \\ w_y^{t+1} \end{bmatrix} = \begin{bmatrix} w_x^h + \theta_x^{t+1} - \nu_x^{t+1} \\ w_y^h + \theta_y^{t+1} - \nu_y^{t+1} \end{bmatrix} \quad \text{update dual varse}$$

- ADMM + Levenberg-Marquardt steps = NAILM algorithm
- Fluid-damper example: Lasso regularization  $g(\nu_x, \nu_y) = \tau(\|\nu_x\|_1 + \|\nu_y\|_1)$



(mean results over 20 runs from different initial weights)

• Fluid-damper example: Lasso regularization  $g(\nu_x, \nu_y) = 0.2(\|\nu_x\|_1 + \|\nu_y\|_1)$ 

| training  | BFR          | BFR          | sparsity   | CPU    | #      |
|-----------|--------------|--------------|------------|--------|--------|
| algorithm | training     | test         | %          | time   | epochs |
| NAILS     | 91.00 (1.66) | 87.71 (2.67) | 65.1 (6.5) | 11.4 s | 250    |
| NAILM     | 91.32 (1.19) | 87.80 (1.86) | 64.1 (7.4) | 11.7 s | 250    |
| AMSGrad   | 91.04 (0.47) | 88.32 (0.80) | 16.8 (7.1) | 64.0 s | 2000   |
| Adam      | 90.47 (0.34) | 87.79 (0.44) | 8.3 (3.5)  | 63.9 s | 2000   |
| DiffGrad  | 90.05 (0.64) | 87.34 (1.14) | 7.4 (4.5)  | 63.9 s | 2000   |
| EKF       | 89.27 (1.48) | 86.67 (2.71) | 47.9 (9.1) | 13.2 s | 50     |

 $\approx$  same fit than SGD/EKF but sparser models and faster (Apple M1 Pro)

• Fluid-damper example: group-Lasso regularization  $g(\nu_i^g) = \tau_g \sum_{i=1}^{n_x} \|\nu_i^g\|_2$  to zero entire rows/columns and reduce the state-dimension automatically



good choice:  $n_x = 3$ (best fit on test data)

#### **TRAINING RNNS - SILVERBOX BENCHMARK**

• Silverbox benchmark (Duffin oscillator): 10 traces ( $\approx$ 8600 samples each) used for training, 40000 for testing





(Schoukens, Ljung, 2019)

Data download: http://www.nonlinearbenchmark.org

#### **TRAINING RNNS - SILVERBOX BENCHMARK**

- + RNN model: 8 states, 3 layers of 8 neurons,  $\operatorname{atan}$  activation, no I/O feedthrough
- Initial-state: encode  $x_0$  as the output of a NN with  $\operatorname{atan}$  activation, 2 layers of 4 neurons, receiving 8 past inputs and 8 past outputs

$$\min_{\substack{\theta_{x_0}, \theta_x, \theta_y \\ \text{s.t.}}} r(\theta_{x_0}, \theta_x, \theta_y) + \sum_{j=1}^{M} \sum_{k=0}^{N-1} \ell(y_k^j, \hat{y}_k^j) \\ \text{s.t.} r_{k+1}^j = f_x(x_k^j, u_k^j, \theta_x), \ \hat{y}_k^j = f_y(x_k^j, u_k^j, \theta_y) \\ r_0^j = f_{x_0}(v^j, \theta_{x_0})$$
  $v = \begin{bmatrix} y_{-1} \\ \vdots \\ y_{-8} \\ u_{-1} \\ \vdots \\ u_{-8} \end{bmatrix}$ 

[cf. (Beintema, Toth, Schoukens, 2021)]

- $\ell_2$ -regularization:  $r(\theta_{x_0}, \theta_x, \theta_y) = \frac{0.01}{2}(\|\theta_x\|_2^2 + \|\theta_y\|_2^2) + \frac{0.1}{2}\|\theta_{x_0}\|_2^2$
- Total number of parameters  $n_{\theta_x} + n_{\theta_y} + n_{\theta_{x_0}} = 296 + 225 + 128 = 649$
- Training: use NAILM over 150 epochs

### **TRAINING RNNS - SILVERBOX BENCHMARK**

Identification results on test data <sup>1</sup>:

| identification method        | RMSE [mV]    | BFR [%]       |
|------------------------------|--------------|---------------|
| ARX (ml) [1]                 | 16.29 [4.40] | 69.22 [73.79] |
| NLARX (ms) [1]               | 8.42 [4.20]  | 83.67 [92.06] |
| NLARX (mlc) [1]              | 1.75 [1.70]  | 96.67 [96.79] |
| NLARX (ms8c50) [1]           | 1.05 [0.30]  | 98.01 [99.43] |
| Recurrent LSTM model [2]     | 2.20         | 95.83         |
| SS encoder [3] ( $n_x = 4$ ) | [1.40]       | [97.35]       |
| NAILM                        | 0.35         | 99.33         |

Ljung, Zhang, Lindskog, Juditski, 2004
 Ljung, Andersson, Tiels, Schön, 2020
 Beintema, Toth, Schoukens, 2021

$$\mathsf{RMSE} = \sqrt{\frac{1}{N} \sum_{k=1}^{N} (y_k - \hat{y}_k)^2}$$

- NAILM training time  $\approx$  400 s (MATLAB+CasADi on Apple M1 Max CPU)
- Repeat training with  $\ell_1$ -regularization:



<sup>1</sup>Trained RNN: http://cse.lab.imtlucca.it/~bemporad/shared/silverbox/rnn888.zip

# **EXTENDED KALMAN FILTER FOR TRAINING RNNS**

#### TRAINING RNNS BY EKF

• Iterating an Extended Kalman Filter (EKF) based on the following model

$$\begin{cases} x_{k+1} = f_x(x_k, u_k, \theta_{xk}) + \xi_k \\ \begin{bmatrix} \theta_{x(k+1)} \\ \theta_{y(k+1)} \end{bmatrix} = \begin{bmatrix} \theta_{xk} \\ \theta_{yk} \end{bmatrix} + \eta_k \\ y_k = f_y(x_k, \theta_{yk}) + \zeta_k \end{cases} \qquad \qquad Q = \operatorname{Var}[\eta_k] \\ R = \operatorname{Var}[\zeta_k] \\ P_0 = \operatorname{Var}\left[\begin{bmatrix} \theta_x \\ \theta_y \\ x_0 \end{bmatrix}\right]$$

is equivalent to applying Newton's method incrementally to solve the relaxed problem (Humpherys, Redd, West, 2012)

$$\min_{\substack{\theta_x, \theta_y \\ x_0, x_1, \dots, x_{N-1}}} \left\| \begin{bmatrix} \theta_x \\ \theta_y \end{bmatrix} \right\|_{P_0^{-1}}^2 + \sum_{k=0}^{N-1} \|y_k - f_y(x_k, \theta_y)\|_{R^{-1}}^2 + \sum_{k=0}^{N-2} \left\| \begin{bmatrix} x_{k+1} - f_x(x_k, u_k, \theta_x) \\ \theta_{k+1} - \theta_k \end{bmatrix} \right\|_{Q^{-1}}^2$$

• The ratio Q/R determines the learning-rate of the training algorithm

#### • Generalization: train via Moving Horizon Estimation (MHE)

(Løwenstein, Bernardini, Bemporad, Fagiano, 2023)

(C) 2024 A. Bemporad

#### TRAINING RNNS BY EKF

(Bemporad, 2023)

 $\ell(y_k, \hat{y}_k)$  by taking a local quadratic approximation of the loss around  $\hat{y}_k$ :

$$\begin{aligned} \hat{\ell}(y_k, \hat{y}) &\approx \quad \frac{1}{2} \Delta y' H(k) \Delta y + \phi'_k \Delta y + \text{const} \\ &= \quad \frac{1}{2} \left\| y_k - H^{-1}(k) \phi_k - \hat{y} \right\|_{H(k)}^2 + \text{const} \end{aligned} \quad \begin{aligned} \Delta y &= \hat{y} - \hat{y}_k, \ \phi_k = \frac{\partial \ell(y_k, \hat{y}_k)}{\partial \hat{y}} \\ H(k) &= \frac{\partial^2 \ell(y_k, \hat{y}_k)}{\partial \hat{y}_k^2} \end{aligned}$$

- Strongly convex smooth regularization  $r(x_0, \theta_x, \theta_y)$  can be handled similarly
- Can handle  $\ell_1$ -penalties  $\lambda \left\| \begin{bmatrix} \theta_x \\ \theta_y \end{bmatrix} \right\|_1$ , useful to sparsify  $\theta_x, \theta_y$  by changing the EKF update into

$$\begin{bmatrix} \hat{x}(k|k)\\ \theta_x(k|k)\\ \theta_y(k|k) \end{bmatrix} = \begin{bmatrix} \hat{x}(k|k-1)\\ \theta_x(k|k-1)\\ \theta_y(k|k-1) \end{bmatrix} + M(k)e(k) - \lambda P(k|k-1) \begin{bmatrix} 0\\ \operatorname{sign}(\theta_x(k|k-1))\\ \operatorname{sign}(\theta_y(k|k-1)) \end{bmatrix}$$

The model  $\theta_x, \theta_y$  can be learned offline by processing a given dataset multiple times, and also **adapted on line** from streaming data  $(u_k, y_k)$ 

ļ

#### **TRAINING RNNS BY EKF - EXAMPLES**

- Dataset: magneto-rheological fluid damper 3499 I/O data (Wang, Sano, Chen, Huang, 2009)
- N=2000 data used for training, 1499 for testing the model
- Same data used in NNARX modeling demo of SYS-ID Toolbox for MATLAB
- RNN model: 4 hidden states, shallow state-update and output functions
   6 neurons, atan activation, I/O feedthrough
- Compare with gradient descent (Adam)

MATLAB+CasADi implementation (Apple M1 Max CPU)





#### **TRAINING RNNS BY EKF - EXAMPLES**

• Compare BFR<sup>2</sup> wrt NNARX model (SYS-ID TBX):

EKF = **92.82**, Adam = **89.12**, NNARX(6,2) = **88.18** (training) EKF = **89.78**, Adam = **85.51**, NNARX(6,2) = **85.15** (test)

• Repeat training with  $\ell_1$ -penalty  $\tau \left\| \begin{bmatrix} \theta_x \\ \theta_y \end{bmatrix} \right\|_1$ 



<sup>2</sup>Best fit rate BFR= $100(1 - \frac{\|Y - \hat{Y}\|_2}{\|Y - \hat{y}\|_2})$ , averaged over 20 runs from different initial weights

Test data: open-loop simulation (on a model instance

EKF: 90.67%

1000

Narx\_6\_2: 85.15% measured

#### **TRAINING LSTMS BY EKF - EXAMPLES**

#### • Use EKF to train Long Short-Term Memory (LSTM) model

(Hochreiter, Schmidhuber, 1997) (Bonassi et al., 2020)

$$\begin{array}{lll} x_{a}(k+1) & = & \sigma_{G}(W_{F}u(k) + U_{f}x_{b}(k) + b_{f}) \odot x_{a}(k) \\ & & + \sigma_{G}(W_{I}u(k) + U_{I}x_{b}(k) + b_{I}) \odot \sigma_{C}(W_{C}u(k) + U_{C}x_{b}(k) + b_{C}) \\ x_{b}(k+1) & = & \sigma_{G}(W_{O}u(k) + U_{O}x_{b}(k) + b_{O}) \odot \sigma_{C}(x_{a}(k+1)) \\ y(k) & = & f_{y}(x_{b}(k), u(k), \theta_{y}) \end{array}$$

gate activation fcn  $\sigma_G(\alpha) = \frac{1}{1+e^{-\alpha}}$ , cell activation fcn  $\sigma_C(\alpha) = \tanh(\alpha)$ 

• Training results (mean and std over 20 runs):

|                    | BFR      | Adam         | EKF                 |
|--------------------|----------|--------------|---------------------|
| RNN                | training | 89.12 (1.83) | 92.82 (0.33)        |
| $n_{\theta} = 107$ | test     | 85.51 (2.89) | <b>89.78</b> (0.58) |
| LSTM               | training | 89.60 (1.34) | 92.63 (0.43)        |
| $n_{\theta} = 139$ | test     | 85.56 (2.68) | 88.97 (1.31)        |

• EKF training applicable to arbitrary classes of black/gray box recurrent models!

#### **TRAINING RNNS BY EKF - EXAMPLES**

Dataset: 2000 I/O data of linear system with binary outputs

$$\begin{aligned} x(k+1) &= \begin{bmatrix} .8 & .2 & -.1 \\ 0 & .9 & .1 \\ .1 & -.1 & .7 \end{bmatrix} x(k) + \begin{bmatrix} -1 \\ .5 \\ 1 \end{bmatrix} u(k) + \xi(k) & \text{Var}[\xi_i(k)] = \sigma^2 \\ y(k) &= \begin{cases} 1 & \text{if } [-2 \ 1.5 \ 0.5 ] x(k) - 2 + \zeta(k) \ge 0 \\ 0 & \text{otherwise} \end{cases} & \text{Var}[\zeta(k)] = \sigma^2 \end{aligned}$$

- N=1000 data used for training, 1000 for testing the model
- Train linear state-space model with 3 states and sigmoidal output function

$$f_1^y(y) = 1/(1 + e^{-A_1^y[x'(k) \ u(k)]' - b_1^y})$$

• Training loss: (modified) cross-entropy loss  $\ell_{CE\epsilon}(y(k), \hat{y}) = \sum_{i=1}^{n_y} -y_i(k) \log(\epsilon + \hat{y}_i) - (1 - y_i(k)) \log(1 + \epsilon - \hat{y}_i)$ 

|          | EKF accuracy [%] |          |  |  |
|----------|------------------|----------|--|--|
| $\sigma$ | test             | training |  |  |
| 0.000    | 98.02            | 97.91    |  |  |
| 0.001    | 95.33            | 98.66    |  |  |
| 0.010    | 97.99            | 98.52    |  |  |
| 0.100    | 94.56            | 95.44    |  |  |
| 0.200    | 93.71            | 92.22    |  |  |

# LINEAR AND NONLINEAR IDENTIFICATION VIA L-BFGS

#### SYSTEM IDENTIFICATION PROBLEM

• Class of dynamical models with  $n_x$  states,  $n_u$  inputs,  $n_y$  outputs:

 $\begin{array}{ll} x_{k+1} = Ax_k + Bu_k + f_x(x_k, u_k; \theta_x) & \quad \text{Special cases:} \\ \\ \hat{y}_k = Cx_k + Du_k + f_y(x_k, u_k; \theta_y) & \quad \text{Linear model, RNN, ...} \end{array}$ 

Loss function (open-loop prediction error + regularization)

- Condense the problem by eliminating the hidden states  $x_k$  and get

(nonconvex) nonlinear programming (NLP) problem

 $\min f(z) + r(z)$ 

### **NLP PROBLEM**

- If *f* and *r* differentiable: use any state-of-the-art unconstrained NLP solver, e.g., L-BFGS (Limited-memory Broyden–Fletcher–Goldfarb–Shanno) (Liu, Nocedal, 1989)
- The gradient  $\nabla f(z)$  can be computed efficiently by automatic differentiation
- However, sparsifying the model requires **non-smooth** regularizers:

$$r_1(z) = au \|z\|_1$$
  $r_g(z) = au_g \sum_{i=1}^m \|I_i z\|_2$   
 $\ell_1$ -regularization group-Lasso penalty

• Examples of group-Lasso penalties:

 $m = n_x$  and  $I_i$  selected to reduce the number of states  $m = n_u$  and  $I_i$  selected to reduce the number of inputs

#### HANDLING NON-SMOOTH REGULARIZATION TERMS

(Bemporad, 2024)

1. If  $r(x) = \sum_{i=1}^{n} r_i(x_i)$  and  $r_i : \mathbb{R} \to \mathbb{R}$  is convex and positive semidefinite, the  $\ell_1$ -regularized problem can be recast as a **bound-constrained NLP**:

 $\min_{x} f(x) + \tau \|x\|_{1} + r(x)$   $min_{x} f(x) + \tau \|x\|_{1} + r(x)$   $x^{*} = y^{*} - z^{*}$   $min_{x} f(y-z) + \tau [1 \dots 1] \begin{bmatrix} y \\ z \end{bmatrix} + r(y) + r(-z)$  well-regularized

Example:  $r(x) = \|x\|_2^2$  then  $r(y) + r(-z) = \|[\frac{y}{z}]\|_2^2$  augmented problem

2. If r(x) is convex and symmetric wrt each component  $x_i$  and increasing for  $x \ge 0$ , then we can solve instead

 $\min_{y,z\geq 0} f(y-z) + \tau[1\dots 1] + r(y+z)$ 

differentiable for y, z > 0if r(x) differentiable for x > 0

**Example**: r(x) = group-Lasso penalty + constraint  $y, z \ge \epsilon$  = machine precision

### **EXAMPLE: LINEAR SYSTEM IDENTIFICATION**

• Cascaded-Tanks benchmark: (Schoukens, Mattson, Wigren, Noël, 2016)

 $z = (A, B, C, D, x_0)$ , mean-squared error loss +  $\ell_2$ -regularization

|       | $R^2$ (training) |                    |             | $R^2$ (test) |       |        |         |
|-------|------------------|--------------------|-------------|--------------|-------|--------|---------|
| $n_x$ | lbfgs            | sippy <sup>3</sup> | matlab $^4$ | lbfgs        | sippy | MATLAB |         |
| 1     | 87.43            | 56.24              | 87.06       | 83.22        | 52.38 | 83.18  | (ssest) |
| 2     | 94.07            | 28.97              | 93.81       | 92.16        | 23.70 | 92.17  | (ssest) |
| 3     | 94.07            | 74.09              | 93.63       | 92.16        | 68.74 | 91.56  | (ssest) |
| 4     | 94.07            | 48.34              | 92.34       | 92.16        | 45.50 | 90.33  | (ssest) |
| 5     | 94.07            | 90.70              | 93.40       | 92.16        | 89.51 | 80.22  | (ssest) |
| 6     | 94.07            | 94.00              | 93.99       | 92.17        | 92.32 | 88.49  | (n4sid) |
| 7     | 94.07            | 92.47              | 93.82       | 92.17        | 90.81 | < 0    | (ssest) |
| 8     | 94.49            | < 0                | 94.00       | 89.49        | < 0   | < 0    | (n4sid) |
| 9     | 94.07            | < 0                | < 0         | 92.17        | < 0   | < 0    | (ssest) |
| 10    | 94.08            | 93.39              | < 0         | 92.17        | 92.35 | < 0    | (ssest) |



 $n_y = n_u = 1$ 

1024 training data 1024 test data (standard scaling)

CPU time: 2.4 s (lbfgs), 30 ms (sippy), 50 ms (n4sid/pred.), 0.3 s (n4sid/sim.), 0.5 s (ssest) [Apple M1 Max]

NLP with bounds solved in JAX/JAXOPT using the L-BFGS-B solver (Byrd, Lu, Nocedal, Zhu, 1995)



pip install jax-sysid

github.com/bemporad/jax-sysid

<sup>3</sup> (Armenise, Vaccari, Bacci Di Capaci, Pannocchia, 2018)

<sup>4</sup> (Ljung, SYS-ID Toolbox)

#### **EXAMPLE: LINEAR SYSTEM IDENTIFICATION**

• Synthetic data generated by the cascaded 2x2 linear system

$$\begin{aligned} x_{k+1} &= \begin{bmatrix} \begin{array}{ccccc} 0.96 & 0.26 & 0.04 & 0 & 0 & 0 \\ -0.26 & 0.70 & 0.26 & 0 & 0 & 0 \\ 0 & 0 & 0.93 & 0.32 & 0.07 & 0 \\ 0 & 0 & 0 & -0.32 & 0.61 & 0.32 & 0 \\ 0 & 0 & 0 & 0 & 0.90 & 0.38 \\ 0 & 0 & 0 & 0 & -0.38 & 0.52 \end{bmatrix} x_k + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0.20 \\ 0 & 0.38 \end{bmatrix} u_k + \xi_k \\ y_k &= \begin{bmatrix} x_1 \\ x_3 \end{bmatrix} + \eta_k \end{aligned}$$

 $\begin{aligned} \xi_{ki}, \eta_{kj} \in \mathcal{N}(0, 0.01) \\ \mathsf{N}=& 2000 \text{ training data} \\ \{(u_k, y_k)\} \end{aligned}$ 

• Group-lasso penalty for model-order reduction:

$$\min_{\substack{\theta_x, \theta_y, x_0}} \frac{1}{1000} \|z\|_2^2 + 10^{-16} \|z\|_1 + \tau_g \sum_{i=1}^{n_x} \left\| \begin{bmatrix} A_{i,:} \\ A_{i,:} \\ B_{i,:} \\ C_{i,i} \end{bmatrix} \right\|_2 + \frac{1}{N} \sum_{k=0}^{N-1} \|y_k - Cx_k\|_2^2$$
best results out of 10 runs CPU time  $\approx 3.85$  s per run [Apple M1 Max]

U.E. (A. 11)

(C) 2024 A. Bemporad

### **EXAMPLE: LINEAR SYSTEM IDENTIFICATION**

- Synthetic data generated by a random linear system with  $n_x = 3$  states,  $n_u = 10$  inputs,  $n_y = 1$  outputs, noise in  $\mathcal{N}(0, 0.01)$ , N = 10000 training data
- The last 5 columns of the B matrix are 1000x smaller than the first 5
- Group-lasso penalty for input selection:



- Can be useful to identify Hammerstein models using basis functions on  $\boldsymbol{u}$ 

(C) 2024 A. Bemporad

#### **EXAMPLE: QUASI-LPV MODEL OF SILVERBOX BENCHMARK**

• **Quasi-LPV** model structure (
$$n_x = 8$$
 states):

$$\begin{aligned} x_{k+1} &= (A_0 + A_1 p_k) x_k + (B_0 + B_1 p_k) u_k \\ y_k &= C x_k \end{aligned}$$

$$p_k$$
 = swish $(W_2 swish(W_1x_k + b_1) + b_2)$ 

- 
$$\ell_2$$
-regularization ( $\rho = 10^{-4}$ )

- warm start on first experiment (8,600 samples)
   500 Adam + 500 L-BFGS iterations
- 5000 L-BFGS iterations on full dataset (86,114 samples)
- CPU time  $\approx$  **265 s** [Apple M1 Max]
- RMSE on test data: 0.397 mV

 $(||A_0||_2 = 1.96, ||A_1||_2 = 0.35, ||B_0||_2 = 0.79, ||B_1||_2 = 0.09)$ 





sampl



(LTI model: 14.090 mV)

#### **INDUSTRIAL ROBOT BENCHMARK**

(Weigand, Götz, Ulmen, Ruskowski, 2022)

- KUKA KR300 R2500 ultra SE industrial robot, full robot movement
- 6 inputs (torques), 6 outputs (joint angles), w/ backlash, highly nonlinear and coupled, slightly over-sampled ( $||y_k - y_{k-1}||$  is often very small)
- Identification benchmark dataset (forward model):
  - Sample time:  $T_s = 100 \text{ ms}$
  - N = 39988 training samples
  - $N_{\rm test}$  = 3636 test samples
- Most challenging benchmark on nonlinearbenchmark.org



nonlinearbenchmark.org

#### **RECURRENT NEURAL NETWORKS IN RESIDUAL FORM**

(Bemporad, 2023 - NLSYS-ID Benchmarks Workshop)

• Recurrent Neural Network (RNN) model in residual form:

$$\begin{array}{rcl} x_{k+1} &=& Ax_k + Bu_k + f_x(x_k, u_k, \theta^i_x) \\ y_k &=& Cx_k + f_y(x_k, \theta^i_y) \\ f_x, f_y &=& {\rm feedforward\ neural\ network} \end{array}$$



 $v_j = A_j f_{j-1}(v_{j-1}) + b_j$ 

- $\theta = (A_1, b_1, \dots, A_L, b_L)$
- Goal: minimize open-loop simulation error under elastic net regularization

$$\min_{x_0, A, B, C, \theta_x, \theta_y} \frac{1}{N} \sum_{k=1}^N \|y_k - \hat{y}_k\|_2^2 + \frac{1}{2} \rho(\|\theta_x\|_2^2 + \|\theta_y\|_2^2) + \tau(\|\theta_x\|_1 + \|\theta_y\|_1)$$
  
s.t. model equations

•  $\ell_1$ -regularization introduced to reduce # model coefficients (=simpler model)

#### TRAINING RNN W/ $\ell_1$ -penalties - industrial robot

- Main issues with industrial robot benchmark:
  - many parameters to train, large dataset ⇒ complex NLP
  - high sensitivity wrt weights (dynamics gets easily unstable)
  - local minima (solution depends on initial guess)
  - cannot easily use **mini-batches**: open-loop simulation cost is not separable, long-term memory effects present due to small sample time
- More general residual networks +  $\ell_1$ /group-Lasso regularization possible



(Frascati, Bemporad, 2023)

#### **SOLUTION APPROACH**

(Bemporad, 2024)

- 1. Standard-scale I/O data for numerical reasons  $u_i \leftarrow \frac{u_i \mu_u^i}{\sigma_u^i}$ ,  $y_i \leftarrow \frac{y_i \mu_y^i}{\sigma_y^i}$  $i = 1, \dots, 6$
- 2. Train  $(A, B, C, x_0)$  by **jax-sysid** (1000 L-BFGS iters) w/o  $\ell_1$ -regularization ( $x \in \mathbb{R}^{12}$ ) (CPU time: 9.12 s) [Apple M1 Max]

For comparison: **n4sid** takes 36.21 s and gives lower  $\mathbb{R}^2$ -scores on training & test data in MATLAB sippy fails

3. Fix (A, B, C) and train simple RESNET model with shallow NNs:

 $x_{k+1} = Ax_k + Bu_k + f_x(x_k, u_k, \theta_x), \qquad y_k = Cx_k + f_y(x_k, \theta_y)$ 

• Optimization: to handle  $\tau \|\theta\|_1$ , use jax-sysid running 2000 Adam iters first (for warm-start) and then 2000 L-BGFS-B iters

#### **INDUSTRIAL ROBOT BENCHMARK: RESULTS**

- State  $x \in \mathbb{R}^{12}$ ,  $f_x$ ,  $f_y$  with 36 and 24 neurons, swish activation for  $\frac{x}{1+e^{-x}}$
- Total number of training parameters:  $\dim(\theta_x) + \dim(\theta_y) = 1590$



(best  $R^2$  in 30 runs)

• Model quality measured by average  $R^2$ -score on all outputs:

$$R^{2} = \frac{1}{n_{y}} \sum_{i=1}^{n_{y}} 100 \left( 1 - \frac{\sum_{k=1}^{N} (y_{k,i} - \hat{y}_{k,i|0})^{2}}{\sum_{k=1}^{N} (y_{k,i} - \frac{1}{N} \sum_{i=1}^{N} y_{k,i})^{2}} \right)$$

 Training time ≈ 12 min on a single core per run (3192 variables, 2000 Adam iterations + 2000 L-BFGS-B iterations, Apple M1 Max CPU)

(C) 2024 A. Bemporad

#### **INDUSTRIAL ROBOT BENCHMARK: RESULTS**

• **Open-loop simulation** errors ( $\rho = 0.01, \tau = 0.008$ ):

|         | $R^2$ (training) | $R^2$ (test) | $R^2$ (training) | $R^2$ (test) |           |
|---------|------------------|--------------|------------------|--------------|-----------|
|         | RNN model        | RNN model    | linear model     | linear model |           |
| average | 77.1493          | 57.1784      | 48.2789          | 43.8573      | jax-sysid |
|         |                  |              | 39.2822          | 32.0410      | n4sid     |

- More parameters/smaller regularization leads to overfitting training data
- Pure Adam vs LBFG-B+Adam vs OWL-QN (Andrew, Gao, 2007): ( $\tau = 0.008$ )

|          | adam  | fcn   | $\overline{R^2}$ | $\overline{R^2}$ | # zeros                | CPU      |
|----------|-------|-------|------------------|------------------|------------------------|----------|
| solver   | iters | evals | training         | test             | $(\theta_x, \theta_y)$ | time (s) |
| L-BFGS-B | 2000  | 2000  | 77.1493          | 57.1784          | 556/1590               | 309.87   |
| OWL-QN   | 2000  | 2000  | 74.7816          | 54.0531          | 736/1590               | 449.17   |
| Adam     | 6000  | 0     | 71.0687          | 54.3636          | 1/1590                 | 389.39   |

• Adam is unable to sparsify the model

#### **INDUSTRIAL ROBOT BENCHMARK: RESULTS**

• Compute *p*-step ahead prediction  $\hat{y}_{k+p|k}$ , with hidden state  $x_{k|k}$  estimated by an Extended Kalman Filter based on identified RNN model



- This is a more relevant indicator of model quality for MPC purposes than open-loop simulation error  $\hat{y}_{k|0}-y_k$ 

# CONCLUSIONS

#### CONCLUSIONS

Quasi-Newton methods for SYS-ID enabled by powerful autodiff libraries



- Extremely flexible (model structure, loss functions, regularization terms)
- Faster convergence/better models than with classical GD methods (like Adam)
- Output: Numerically very robust (even to get linear state-space models!)
- Non-convex problem: multiple runs often required from different initial guesses
- Open research topics:
  - ? How to get good-quality training data (active learning)
  - ? More efficient methods for non-smooth nonlinear optimization

