
8th Workshop onNonlinear System Identification Benchmarks - April 25, 2024

Quasi-Newton Methods for Learning
Nonlinear State-Space Models

Alberto Bemporad

imt.lu/ab

imt.lu/ab

Outline

• Focus: training control-oriented state-spacemodels

• Generalized Gauss-Newton (Sequential Least-Squares) methods

• Extended Kalman Filteringmethods

• L-BFGS (Limited-memory Broyden–Fletcher–Goldfarb–Shanno) methods

(C) 2024 A. Bemporad 2/37

"All models are wrong, but some are useful."

(George E. P. Box)

Learning control-oriented models

Control-oriented models

• Complexmodel = complex controller (controller design and evaluation)

Example: Model Predictive Control (MPC)

• Typically look for small-scalemodels (e.g.,≤ 10 states/inputs/outputs)

with a limited number of coefficients (vs. Large Language Models: 2-300 B params)

• Limit nonlinearities asmuch as possible (e.g., avoid very deep neural networks)

• Need to get the best modelwithin a poormodel class from a rich dataset

(= limited risk to overfit)

• Computation constraints: solve the learning problem using limited resources

(=our laptop, no supercomputing infrastructures)

Solving system identification problems requires different

algorithms than in typical machine learning tasks

(C) 2024 A. Bemporad 3/37

encoder

decoder

state
update
map

yk, …, yk-n+1
uk, …, uk-m+1

yk-1, …, yk-n
uk-1, …, uk-m

uk

yk, …, yk-n+1 yk+1, …, yk-n+2

D D

E E

f

xk+1xk xk+1*

publicdomainvectors.org

Nonlinear SYS-ID based on Neural Networks

• Neural networks proposed for nonlinear system identification since the ’90s

(Narendra, Parthasarathy, 1990) (Hunt et al., 1992) (Suykens, Vandewalle, DeMoor, 1996)

• NNARXmodels: use a feedforward neural network to approximate the

nonlinear difference equation yt ≈ N (yt−1, . . . , yt−na , ut−1, . . . , ut−nb
)

• Neural state-spacemodels:

– w/ state data: fit a neural networkmodel

xt+1 ≈ Nx(xt, ut), yt ≈ Ny(xt)

– I/O data only: set xt = value of an inner layer

of the network (Prasad, Bequette, 2003),

such as an autoencoder (Masti, Bemporad, 2021)

• Often, the open-loop prediction errormust beminimized to get goodmodels

(C) 2024 A. Bemporad 4/37

Recurrent neural networks
• Recurrent Neural Network (RNN)model:

xk+1 = fx(xk, uk, θx)

yk = fy(xk, θy)

fx, fy = feedforward neural network

(e.g.: general RNNs, LSTMs, RESNETS, physics-informed NNs, …)

x

v1
v2

vL
y

vj = Ajfj−1(vj−1) + bj

θ = (A1, b1, . . . , AL, bL)

• Training problem: given an I/O dataset {u0, y0, . . . , uN−1, yN−1} solve

min
θx, θy

x0, x1, . . . , xN−1

r(x0, θx, θy) +
1

N

N−1∑
k=0

ℓ(yk, fy(xk, θy))

s.t. xk+1 = fx(xk, uk, θx)

• Main issue: xk are hidden states and hence also unknowns of the problem

(C) 2024 A. Bemporad 5/37

Gradient descent methods for training RNNs

• Problem condensing: substitute xk+1 = fx(xk, uk, θx) recursively and solve

min
θx,θy,x0

V (θx, θy, x0)min
θx,θy,x0

r(x0, θx, θy) +
1

N

N−1∑
k=0

ℓ(yk, fy(xk, θy)) =

• Gradient descent (GD) methods: update θx, θy, x0 by setting[
θt+1
x

θt+1
y

xt+1
0

]
=

[
θt
x

θt
y

xt
0

]
− αt∇V (θtx, θ

t
y, x

t
0)

Example: Adam uses adaptivemoment estimation to set the learning rateαt

(Kingma, Ba, 2015)

(C) 2024 A. Bemporad 6/37

Gradient descent methods for training RNNs

• Main issuewith GDmethods: slow convergence (in theory and in practice)

• Stochastic gradient descent (SGD) can be even less efficient with RNNs:

– collect a high number of short independent experiments (often impossible)

– createmini-batches by usingmultiple-shooting ideas

(Forgione, Piga, 2020) (Bemporad, 2023)

• Newton’s method: very fast (2nd-order) local convergence but difficult to

implement, as we need theHessian∇2V (θtx, θ
t
y, x

t
0)

• Quasi-Newtonmethods: good tradeoff between convergence speed (=solution

quality) and numerical complexity, only the gradient∇V (θtx, θ
t
y, x

t
0) is required

(C) 2024 A. Bemporad 7/37

Training RNNs via Sequential Least Squares

Training RNNs by Sequential Least-Squares
(Bemporad, 2023)

• RNN training problem = optimal control problem:

min
θx,θy,x0,x1,...,xN−1

r(x0, θx, θy) +
N−1∑
k=0

ℓ(yk, ŷk)

s.t. xk+1 = fx(xk, uk, θx)

ŷk = fy(xk, uk, θy)

inputs = θx, θy, x0

output = ŷ

reference = yk

meas. dist. = uk

– r(x0, θx, θy) = input penalty

– ℓ(yk, ŷk) = output penalty

– prediction horizon =N steps, control horizon = 1 step

• Linearizedmodel: given a current guess θhx , θ
h
y , x

h
0 , . . . , x

h
N−1, approximate

∆xk+1 = (∇xfx)
′∆xk + (∇θxfx)

′∆θx
∆yk = (∇xfy)

′∆xk + (∇θyfy)
′∆θy

(C) 2024 A. Bemporad 8/37

Training RNNs by Sequential Least-Squares

• Take 2nd-order expansion of the loss ℓ and regularization term r

• Solve least-squares problem to get increments∆x0,∆θx,∆θy

• Update xh+1
0 , θh+1

x , θh+1
y by applying either a

– line-search (LS) method based on Armijo rule

– or a trust-regionmethod (Levenberg-Marquardt) (LM)

• The resulting trainingmethod is aGeneralized Gauss-Newtonmethod

very good convergence properties (Messerer, Baumgärtner, Diehl, 2021)

• No guarantee to converge to a global minimum (multiple runsmay be required)

(C) 2024 A. Bemporad 9/37

Training RNNs by Sequential LS and ADMM
• Example: magneto-rheological fluid damper

N=2000 data used for training, 1499 for testing themodel

(Wang, Sano, Chen, Huang, 2009)

• RNNmodel: 4 states, shallowNNsw/ 4 neurons, I/O feedthrough

0 1 2 3 4 5 6 7 8 9 10

training time (s)

101

102

103

M
S
E

NAILS
NAILM
EKF
AMSGrad

20 40 60

training time (s)

AMSGrad

MSE loss on training data,
mean value and range over 20
runs from different random
initial weights

BFR = 100(1− ∥Y−Ŷ ∥2

∥Y−ȳ∥2
)

NAILS = GNN method with line search
NAILM = GNN method with LM steps

BFR (Best Fit Rate) training test
NAILS 94.41 (0.27) 89.35 (2.63)
NAILM 94.07 (0.38) 89.64 (2.30)
AMSGrad 84.69 (0.15) 80.56 (0.18)
EKF 91.41 (0.70) 87.17 (3.06)

Two ends of the MR damper (RD-1097-01) provided
by Lord Corp. are physically connected to the shake
table and ground, respectively. The voltage of the MR
damper is fixed to 1.25V. The shake table generates
necessary vibrations dragging the piston rod of the
MR damper moving along its chamber. Since the
shake table weights about 60 lbs leading to a large
inertia, it has to be controlled under a closed-loop
operation. The proportional-derivative (PD) control-
ler in Figure 7 is implemented in Computer #1, and
reads the displacement by counting turns of
a circulating shaft and sends out currents to drive
the shake table at sampling period 0.001 s.
Simultaneously, Computer #2 reads the damping
force y(t) via a strain meter and the displacement
via an infrared sensor at sampling period 0.005 s.
After downsampling the measurements from
Computer #1 by a factor 5, we synchronise all
measurements from the two computers by comparing
the two displacement measurements. Eventually,
displacement measurements from Computer #2 are
discarded because they are relatively noisy. No
velocity sensor is available so that the velocity u(t)
is obtained by a numerical differentiation of the
displacement measurements from Computer #1.

The numerical differentiation can be implemented
by passing the displacement measurements through
a simple differentiation filter 1! q!1, i.e.
u(t)¼ d(t)! d(t! 1), where d(t) denotes the measured
displacement, or a more complex Savitzky–Golay
differentiation filter (Orfanidis 1996) to avoid ampli-
fying measurement noises. Here we adopt the former
in order to be consistent with our previous study in
vibration control (Terasawa, Sakai, Ohmori, and
Sano 2004); in fact, both filters are exploited and
resulting MR damper models have similar perfor-
mances. It is worth pointing out that the differentia-
tion filter does not physically exist in the experimental
setup so that the measured damping force and the
estimated inner signal are not affected by the choice
of filters.

Assumption A1 in x 2 requires the velocity to be
piecewise constant for p consecutive samples. We let
the desired displacement in Figure 7 take uniformly
distributed random values within the range [!1.5, 1.5]
centimetre and have a constant increment every 0.2 s.
As a result, the velocity is approximately piecewise
constant for every 40 samples (the sampling period h is
0.005 s). For example, Figure 8 shows some enlarged
parts of the measured displacement, the calculated

Figure 6. Experimental devices.

MR
damper

PD
controller

Shake table

Desired
displacement

+

Measured
displacement

−

Current Measured
damping force

Figure 7. A diagram of the experimental setup.

−10

0

10

V
el

oc
ity

 (c
m

/s
ec

)

−2

0

2

D
is

pl
ac

em
en

t (
cm

)

2.8 3 3.2 3.4 3.6 3.8 4 4.2

−50

0

50

Time (s)

2.8 3 3.2 3.4 3.6 3.8 4 4.2
Time (s)

2.8 3 3.2 3.4 3.6 3.8 4 4.2
Time (s)

D
am

pi
ng

 fo
rc

e
(N

)

Figure 8. Some enlarged parts of experimental data.

International Journal of Control 947

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f W

ar
w

ic
k]

 a
t 0

3:
36

 0
3

A
ug

us
t 2

01
7

(C) 2024 A. Bemporad 10/37

Training RNNs by Sequential LS and ADMM

• We also want to handle non-smooth/non-convex regularization terms

minθx,θy,x0
r(x0, θx, θy) +

∑N−1
k=0 ℓ(yk, fy(xk, θy)) + g(θx, θy)

s.t. xk+1 = fx(xk, uk, θx)

E.g.: g(θx, θy) = τ(∥θx∥1 + ∥θy∥1) (Lasso regularization)

• Idea: use alternating directionmethod ofmultipliers (ADMM) by splitting

minθx,θy,x0,νx,νy r(x0, θx, θy) +
∑N−1

k=0 ℓ(yk, fy(xk, θy)) + g(νx, νy)

s.t. xk+1 = fx(xk, uk, θx)

[νx
νy] =

[
θx
θy

]

(C) 2024 A. Bemporad 11/37

Training RNNs by Sequential LS and ADMM
• ADMM+ Seq. LS =NAILS algorithm (Nonconvex ADMM Iterations and Sequential LS)[

xt+1
0

θx
t+1

θy
t+1

]
= argminx0,θx,θy V (x0, θx, θy) +

ρ
2

∥∥∥[θx−νt
x+wt

x

θy−νt
y+wt

y

]∥∥∥2
2

(sequential) LS[
νt+1
x

νt+1
y

]
= prox 1

ρ
g(θx

t+1 + wt
x, θy

t+1 + wt
y) proximal step[

wt+1
x

wt+1
y

]
=

[
wh

x+θx
t+1−νt+1

x

wh
y+θy

t+1−νt+1
y

]
update dual vars

• ADMM+ Levenberg-Marquardt steps =NAILM algorithm

• Fluid-damper example: Lasso regularization g(νx, νy) = τ(∥νx∥1 + ∥νy∥1)

10 -3 10 -2 10 -1 100 101

`1-regularization parameter =

0

20

40

60

80

100

B
F
R

(%
)

0

20

40

60

80

100

p
er

ce
n
ta

ge
of

ze
ro

s

BFR (test data)
BFR (training data)
percentage of zeros in 3x,3y

(mean results over 20 runs
from different initial weights)

(C) 2024 A. Bemporad 12/37

Training RNNs by Sequential LS and ADMM
• Fluid-damper example: Lasso regularization g(νx, νy) = 0.2(∥νx∥1 + ∥νy∥1)

training BFR BFR sparsity CPU #
algorithm training test % time epochs
NAILS 91.00 (1.66) 87.71 (2.67) 65.1 (6.5) 11.4 s 250
NAILM 91.32 (1.19) 87.80 (1.86) 64.1 (7.4) 11.7 s 250
AMSGrad 91.04 (0.47) 88.32 (0.80) 16.8 (7.1) 64.0 s 2000
Adam 90.47 (0.34) 87.79 (0.44) 8.3 (3.5) 63.9 s 2000
DiffGrad 90.05 (0.64) 87.34 (1.14) 7.4 (4.5) 63.9 s 2000
EKF 89.27 (1.48) 86.67 (2.71) 47.9 (9.1) 13.2 s 50

≈ same fit than
SGD/EKF but sparser
models and faster
(Apple M1 Pro)

• Fluid-damper example: group-Lasso regularization g(νgi) = τg
∑nx

i=1 ∥ν
g
i ∥2

to zero entire rows/columns and reduce the state-dimension automatically

10-4 10-3 10-2 10-1 100 101

group-lasso regularization parameter =g

60

70

80

90

100

B
F
R

(%
)

0

2

4

6

8

-
n
al

m
o
d
el

o
rd

er

BFR (test data)
BFR (training data)
final model order

good choice: nx = 3

(best fit on test data)

(C) 2024 A. Bemporad 13/37

Training RNNs - Silverbox benchmark
(Wigren, Schoukens, 2013)

• Silverbox benchmark (Duffin oscillator): 10 traces (≈8600 samples each) used
for training, 40000 for testing

0 2 4 6 8 10 12

#104

-0.2

0

0.2

output [V]

test data training data

0 2 4 6 8 10 12
sample #104

-0.1

0

0.1

input [V]

test data training data
(Schoukens, Ljung, 2019)

Data download: http://www.nonlinearbenchmark.org

(C) 2024 A. Bemporad 14/37

http://www.nonlinearbenchmark.org

Training RNNs - Silverbox benchmark
(Bemporad, 2023)

• RNNmodel: 8 states, 3 layers of 8 neurons, atan activation, no I/O feedthrough

• Initial-state: encode x0 as the output of a NNwith atan activation, 2 layers of 4

neurons, receiving 8 past inputs and 8 past outputs

minθx0
,θx,θy r(θx0 , θx, θy) +

M∑
j=1

N−1∑
k=0

ℓ(yjk, ŷ
j
k)

s.t. xj
k+1 = fx(x

j
k, u

j
k, θx), ŷ

j
k = fy(x

j
k, u

j
k, θy)

xj
0 = fx0(v

j , θx0)

v =


y−1

...
y−8
u−1

...
u−8


[cf. (Beintema, Toth, Schoukens, 2021)]

• ℓ2-regularization: r(θx0
, θx, θy) =

0.01
2 (∥θx∥22 + ∥θy∥22) + 0.1

2 ∥θx0
∥22

• Total number of parameters nθx + nθy + nθx0
= 296 + 225 + 128 = 649

• Training: use NAILM over 150 epochs

(C) 2024 A. Bemporad 15/37

5 10 20 40 80 160 320 640 1280
number of model parameters

0.5

1

2
3

10
15
20

R
M

S
E

(m
v
)

NAILM

ml

ms

mlc
ms8c50

LSTM

Training RNNs - Silverbox benchmark

• Identification results on test data 1:

identification method RMSE [mV] BFR [%]
ARX (ml) [1] 16.29 [4.40] 69.22 [73.79]
NLARX (ms) [1] 8.42 [4.20] 83.67 [92.06]
NLARX (mlc) [1] 1.75 [1.70] 96.67 [96.79]
NLARX (ms8c50) [1] 1.05 [0.30] 98.01 [99.43]
Recurrent LSTM model [2] 2.20 95.83
SS encoder [3] (nx = 4) [1.40] [97.35]
NAILM 0.35 99.33

[1] Ljung, Zhang, Lindskog, Juditski, 2004

[2] Ljung, Andersson, Tiels, Schön, 2020

[3] Beintema, Toth, Schoukens, 2021

RMSE =

√√√√ 1

N

N∑
k=1

(yk − ŷk)2

• NAILM training time≈ 400 s (MATLAB+CasADi on Apple M1 Max CPU)

• Repeat training with ℓ1-regularization:

1Trained RNN: http://cse.lab.imtlucca.it/~bemporad/shared/silverbox/rnn888.zip

(C) 2024 A. Bemporad 16/37

http://cse.lab.imtlucca.it/~bemporad/shared/silverbox/rnn888.zip

Extended Kalman Filter for training RNNs

Training RNNs by EKF
(Puskorius, Feldkamp, 1994) (Wang, Huang, 2011) (Bemporad, 2023)

• Iterating an Extended Kalman Filter (EKF) based on the followingmodel


xk+1 = fx(xk, uk, θxk) + ξk[

θx(k+1)

θy(k+1)

]
=

[
θxk

θyk

]
+ ηk

yk = fy(xk, θyk) + ζk

Q = Var[ηk]

R = Var[ζk]

P0 = Var
[[θx

θy
x0

]]

is equivalent to applying Newton’s method incrementally to solve the relaxed
problem (Humpherys, Redd,West, 2012)

min
θx, θy

x0, x1, . . . , xN−1

∥∥∥[θx
θy
x0

]∥∥∥2
P−1
0

+

N−1∑
k=0

∥yk−fy(xk, θy)∥2R−1+

N−2∑
k=0

∥∥∥[xk+1−fx(xk,uk,θx)

θk+1−θk

]∥∥∥2
Q−1

• The ratioQ/R determines the learning-rate of the training algorithm

• Generalization: train viaMoving Horizon Estimation (MHE)
(Løwenstein, Bernardini, Bemporad, Fagiano, 2023)

(C) 2024 A. Bemporad 17/37

Training RNNs by EKF
(Bemporad, 2023)

• EKF can be generalized to handle general strongly convex and smooth losses

ℓ(yk, ŷk) by taking a local quadratic approximation of the loss around ŷk:

ℓ(yk, ŷ) ≈ 1
2
∆y′H(k)∆y + ϕ′

k∆y + const ∆y = ŷ − ŷk, ϕk = ∂ℓ(yk,ŷk)
∂ŷ

= 1
2

∥∥yk −H−1(k)ϕk − ŷ
∥∥2
H(k)

+ const H(k) = ∂2ℓ(yk,ŷk)

∂ŷ2
k

• Strongly convex smooth regularization r(x0, θx, θy) can be handled similarly

• Can handle ℓ1-penalties λ
∥∥∥[θx

θy

]∥∥∥
1
, useful to sparsify θx, θy by changing the

EKF update into[
x̂(k|k)
θx(k|k)
θy(k|k)

]
=

[
x̂(k|k−1)
θx(k|k−1)
θy(k|k−1)

]
+M(k)e(k)−λP (k|k − 1)

[
0

sign(θx(k|k−1))
sign(θy(k|k−1))

]

Themodel θx, θy can be learned offline by processing a given datasetmultiple

times, and also adapted on line from streaming data (uk, yk)

(C) 2024 A. Bemporad 18/37

0 5 10 15 20

training time [s])

101

102

103

104

M
S
E

lo
ss

Adam
EKF

0 100 200 300 400 500

epoch

101

102

103

104

M
S
E

lo
ss

Adam
EKF

Training RNNs by EKF - Examples

• Dataset: magneto-rheological fluid damper

3499 I/O data (Wang, Sano, Chen, Huang, 2009)

• N=2000 data used for training, 1499 for testing themodel

• Same data used in NNARXmodeling demo of SYS-ID Toolbox forMATLAB

• RNNmodel: 4 hidden states, shallow

state-update and output functions

6 neurons, atan activation, I/O feedthrough

• Compare with gradient descent (Adam)

MATLAB+CasADi implementation (Apple M1 Max CPU)

Two ends of the MR damper (RD-1097-01) provided
by Lord Corp. are physically connected to the shake
table and ground, respectively. The voltage of the MR
damper is fixed to 1.25V. The shake table generates
necessary vibrations dragging the piston rod of the
MR damper moving along its chamber. Since the
shake table weights about 60 lbs leading to a large
inertia, it has to be controlled under a closed-loop
operation. The proportional-derivative (PD) control-
ler in Figure 7 is implemented in Computer #1, and
reads the displacement by counting turns of
a circulating shaft and sends out currents to drive
the shake table at sampling period 0.001 s.
Simultaneously, Computer #2 reads the damping
force y(t) via a strain meter and the displacement
via an infrared sensor at sampling period 0.005 s.
After downsampling the measurements from
Computer #1 by a factor 5, we synchronise all
measurements from the two computers by comparing
the two displacement measurements. Eventually,
displacement measurements from Computer #2 are
discarded because they are relatively noisy. No
velocity sensor is available so that the velocity u(t)
is obtained by a numerical differentiation of the
displacement measurements from Computer #1.

The numerical differentiation can be implemented
by passing the displacement measurements through
a simple differentiation filter 1! q!1, i.e.
u(t)¼ d(t)! d(t! 1), where d(t) denotes the measured
displacement, or a more complex Savitzky–Golay
differentiation filter (Orfanidis 1996) to avoid ampli-
fying measurement noises. Here we adopt the former
in order to be consistent with our previous study in
vibration control (Terasawa, Sakai, Ohmori, and
Sano 2004); in fact, both filters are exploited and
resulting MR damper models have similar perfor-
mances. It is worth pointing out that the differentia-
tion filter does not physically exist in the experimental
setup so that the measured damping force and the
estimated inner signal are not affected by the choice
of filters.

Assumption A1 in x 2 requires the velocity to be
piecewise constant for p consecutive samples. We let
the desired displacement in Figure 7 take uniformly
distributed random values within the range [!1.5, 1.5]
centimetre and have a constant increment every 0.2 s.
As a result, the velocity is approximately piecewise
constant for every 40 samples (the sampling period h is
0.005 s). For example, Figure 8 shows some enlarged
parts of the measured displacement, the calculated

Figure 6. Experimental devices.

MR
damper

PD
controller

Shake table

Desired
displacement

+

Measured
displacement

−

Current Measured
damping force

Figure 7. A diagram of the experimental setup.

−10

0

10

V
el

oc
ity

 (c
m

/s
ec

)

−2

0

2

D
is

pl
ac

em
en

t (
cm

)

2.8 3 3.2 3.4 3.6 3.8 4 4.2

−50

0

50

Time (s)

2.8 3 3.2 3.4 3.6 3.8 4 4.2
Time (s)

2.8 3 3.2 3.4 3.6 3.8 4 4.2
Time (s)

D
am

pi
ng

 fo
rc

e
(N

)

Figure 8. Some enlarged parts of experimental data.

International Journal of Control 947

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f W

ar
w

ic
k]

 a
t 0

3:
36

 0
3

A
ug

us
t 2

01
7

(C) 2024 A. Bemporad 19/37

0 500 1000 1500

samples

-80

-60

-40

-20

0

20

40

60

80
Test data: open-loop simulation (on a model instance)

EKF: 90.67%
Narx_6_2: 85.15%
measured

Training RNNs by EKF - Examples

• Compare BFR2 wrt NNARXmodel (SYS-ID TBX):

EKF = 92.82, Adam = 89.12, NNARX(6,2) = 88.18 (training)
EKF = 89.78, Adam = 85.51, NNARX(6,2) = 85.15 (test)

• Repeat training with ℓ1-penalty τ
∥∥∥[θx

θy

]∥∥∥
1

10 -6 10 -5 10 -4 10 -3

`1-regularization parameter =

70

75

80

85

90

95

B
F
R

(%
)

0

20

40

60

80

100

p
er

ce
n
ta

g
e

o
f
ze

ro
s

BFR (test data)

BFR (training data)

percentage of zeros in 3x,3y

2Best fit rate BFR=100(1− ∥Y −Ŷ ∥2
∥Y −ȳ∥2

), averaged over 20 runs from different initial weights

(C) 2024 A. Bemporad 20/37

Training LSTMs by EKF - Examples

• Use EKF to train Long Short-TermMemory (LSTM) model

(Hochreiter, Schmidhuber, 1997) (Bonassi et al., 2020)

xa(k + 1) = σG(WFu(k) + Ufxb(k) + bf)⊙ xa(k)

+σG(WIu(k) + UIxb(k) + bI)⊙ σC(WCu(k) + UCxb(k) + bC)

xb(k + 1) = σG(WOu(k) + UOxb(k) + bO)⊙ σC(xa(k + 1))

y(k) = fy(xb(k), u(k), θy)

gate activation fcn σG(α) =
1

1+e−α , cell activation fcn σC(α) = tanh(α)

• Training results (mean and std over 20 runs):

BFR Adam EKF
RNN training 89.12 (1.83) 92.82 (0.33)
nθ = 107 test 85.51 (2.89) 89.78 (0.58)
LSTM training 89.60 (1.34) 92.63 (0.43)
nθ = 139 test 85.56 (2.68) 88.97 (1.31)

• EKF training applicable to arbitrary classes of black/gray box recurrentmodels!

(C) 2024 A. Bemporad 21/37

EKF accuracy [%]
σ test training

0.000 98.02 97.91
0.001 95.33 98.66
0.010 97.99 98.52
0.100 94.56 95.44
0.200 93.71 92.22

Training RNNs by EKF - Examples
• Dataset: 2000 I/O data of linear systemwith binary outputs

x(k + 1) =
[
.8 .2 −.1
0 .9 .1
.1 −.1 .7

]
x(k) +

[−1
.5
1

]
u(k) + ξ(k) Var[ξi(k)] = σ2

y(k) =

{
1 if [−2 1.5 0.5]x(k)− 2 + ζ(k) ≥ 0

0 otherwise
Var[ζ(k)] = σ2

• N=1000 data used for training, 1000 for testing themodel

• Train linear state-spacemodelwith 3 states

and sigmoidal output function

fy
1 (y) = 1/(1 + e−Ay

1 [x
′(k) u(k)]′−by1)

• Training loss: (modified) cross-entropy loss

ℓCEϵ(y(k), ŷ) =

ny∑
i=1

−yi(k) log(ϵ+ ŷi)− (1− yi(k)) log(1 + ϵ− ŷi)

(C) 2024 A. Bemporad 22/37

Linear and nonlinear identification via L-BFGS

System identification problem
• Class of dynamical models with nx states, nu inputs, ny outputs:

xk+1 = Axk +Buk + fx(xk, uk; θx) Special cases:
ŷk = Cxk +Duk + fy(xk, uk; θy) linear model, RNN, ...

• Loss function (open-loop prediction error + regularization)

minz,x1,...,xN−1 r(z) +
1

N

N−1∑
k=0

ℓ(yk, Cxk +Duk + fy(xk, uk; θy))

s.t. xk+1 = Axk +Buk + fx(xk, uk; θx)

k = 0, . . . , N − 2

z=[x0
Θ]

Θ=


A(:)
B(:)
C(:)
D(:)
θx
θy



• Condense the problem by eliminating the hidden states xk and get

min
z

f(z)+r(z) (nonconvex) nonlinear programming (NLP) problem

(C) 2024 A. Bemporad 23/37

NLP problem

• If f and r differentiable: use any state-of-the-art unconstrainedNLP solver,

e.g., L-BFGS (Limited-memory Broyden–Fletcher–Goldfarb–Shanno) (Liu, Nocedal, 1989)

• The gradient∇f(z) can be computed efficiently by automatic differentiation

• However, sparsifying themodel requires non-smooth regularizers:

r1(z) = τ ∥z∥1 rg(z) = τg
∑m

i=1 ∥Iiz∥2
ℓ1-regularization group-Lasso penalty

• Examples of group-Lasso penalties:

m = nx and Ii selected to reduce the number of states

m = nu and Ii selected to reduce the number of inputs

(C) 2024 A. Bemporad 24/37

Handling non-smooth regularization terms
(Bemporad, 2024)

1. If r(x) =
∑n

i=1 ri(xi) and ri : R→ R is convex and positive semidefinite, the

ℓ1-regularized problem can be recast as a bound-constrainedNLP:

min
x

f(x)+τ∥x∥1+r(x)

x∗ = y∗ − z∗

min
y,z≥0

f(y−z)+τ [1 . . . 1] [yz]+r(y)+r(−z)

Example: r(x) = ∥x∥22 then r(y) + r(−z) = ∥[yz]∥
2
2

well-regularized
augmented problem

2. If r(x) is convex and symmetric wrt each component xi and increasing for

x ≥ 0, then we can solve instead

min
y,z≥0

f(y−z)+τ [1 . . . 1]+r(y+z)
differentiable for y, z > 0

if r(x) differentiable for x > 0

Example: r(x) = group-Lasso penalty + constraint y, z ≥ ϵ =machine precision

(C) 2024 A. Bemporad 25/37

ny = nu = 1

1024 training data
1024 test data
(standard scaling)

Example: Linear system identification
• Cascaded-Tanks benchmark: (Schoukens, Mattson,Wigren, Noël, 2016)

z = (A,B,C,D, x0), mean-squared error loss + ℓ2-regularization

R2 (training) R2 (test)
nx lbfgs sippy3 MATLAB 4 lbfgs sippy MATLAB
1 87.43 56.24 87.06 83.22 52.38 83.18 (ssest)
2 94.07 28.97 93.81 92.16 23.70 92.17 (ssest)
3 94.07 74.09 93.63 92.16 68.74 91.56 (ssest)
4 94.07 48.34 92.34 92.16 45.50 90.33 (ssest)
5 94.07 90.70 93.40 92.16 89.51 80.22 (ssest)
6 94.07 94.00 93.99 92.17 92.32 88.49 (n4sid)
7 94.07 92.47 93.82 92.17 90.81 < 0 (ssest)
8 94.49 < 0 94.00 89.49 < 0 < 0 (n4sid)
9 94.07 < 0 < 0 92.17 < 0 < 0 (ssest)
10 94.08 93.39 < 0 92.17 92.35 < 0 (ssest)

CPU time: 2.4 s (lbfgs), 30 ms (sippy), 50 ms (n4sid/pred.), 0.3 s (n4sid/sim.), 0.5 s (ssest) [Apple M1 Max]

NLP with bounds solved in JAX/JAXOPT using the L-BFGS-B solver (Byrd, Lu, Nocedal, Zhu, 1995)

pip install jax-sysid github.com/bemporad/jax-sysid

3 (Armenise, Vaccari, Bacci Di Capaci, Pannocchia, 2018)
4 (Ljung, SYS-ID Toolbox)

(C) 2024 A. Bemporad 26/37

github.com/bemporad/jax-sysid

Example: Linear system identification
• Synthetic data generated by the cascaded 2x2 linear system

xk+1 =


0.96 0.26 0.04 0 0 0
−0.26 0.70 0.26 0 0 0

0 0 0.93 0.32 0.07 0
0 0 −0.32 0.61 0.32 0
0 0 0 0 0.90 0.38
0 0 0 0 −0.38 0.52

xk +

 0 0
0 0

0.07 0
0.32 0
0 0.10
0 0.38

uk+ξk

yk =
[x1
x3

]
+ηk

ξki, ηkj ∈ N (0, 0.01)

N=2000 training data
{(uk, yk)}

• Group-lasso penalty formodel-order reduction:

min
θx,θy,x0

1

1000
∥z∥22 + 10−16∥z∥1 + τg

nx∑
i=1

∥∥∥∥∥∥∥
A′

i,:

A:,i

B′
i,:

C:,i


∥∥∥∥∥∥∥
2

+
1

N

N−1∑
k=0

∥yk − Cxk∥22

𝜏g

R2 (training data)

final model order nx

best results out of 10 runs
CPU time≈ 3.85 s per run
[Apple M1 Max]

(C) 2024 A. Bemporad 27/37

Example: Linear system identification
• Synthetic data generated by a random linear systemwith nx = 3 states,

nu = 10 inputs, ny = 1 outputs, noise inN (0, 0.01),N = 10000 training data

• The last 5 columns of theB matrix are 1000x smaller than the first 5

• Group-lasso penalty for input selection:

min
θx,θy,x0

10−8∥z∥22 + 10−16∥z∥1 + τg

nu∑
i=1

∥B:,i∥2 +
1

N

N−1∑
k=0

∥yk − Cxk∥22

𝜏g

R2 (training data)

final #inputs

best results out of 10 runs
CPU time≈ 3.71 s per run
[Apple M1 Max]

• Can be useful to identifyHammersteinmodels using basis functions on u

(C) 2024 A. Bemporad 28/37

0 2 4 6 8 10 12

#104

-0.2

0

0.2

output [V]

test data training data

0 2 4 6 8 10 12
sample #104

-0.1

0

0.1

input [V]

test data training data

pk
 (test data)

sample

Example: quasi-LPV model of Silverbox benchmark
(Bemporad, this talk)

• Quasi-LPVmodel structure (nx = 8 states):

xk+1 = (A0 +A1pk)xk + (B0 +B1pk)uk

yk = Cxk

pk = swish(W2 swish(W1xk + b1) + b2)

swish(x) = x
1+e−x

• Training setup:

– ℓ2-regularization (ρ = 10−4)

– warm start on first experiment (8,600 samples)
500 Adam + 500 L-BFGS iterations

– 5000 L-BFGS iterations on full dataset
(86,114 samples)

– CPU time≈ 265 s [Apple M1 Max]

• RMSE on test data: 0.397mV (LTI model: 14.090mV)

(∥A0∥2 = 1.96, ∥A1∥2 = 0.35, ∥B0∥2 = 0.79, ∥B1∥2 = 0.09)

(C) 2024 A. Bemporad 29/37

nonlinearbenchmark.org

Industrial Robot Benchmark
(Weigand, Götz, Ulmen, Ruskowski, 2022)

• KUKAKR300 R2500 ultra SE industrial robot,

full robot movement

• 6 inputs (torques), 6 outputs (joint angles), w/ backlash,

highly nonlinear and coupled, slightly over-sampled

(∥yk − yk−1∥ is often very small)

• Identification benchmark dataset (forwardmodel):

– Sample time: Ts = 100ms

– N = 39988 training samples

– Ntest = 3636 test samples

• Most challenging benchmark on nonlinearbenchmark.org

(C) 2024 A. Bemporad 30/37

nonlinearbenchmark.org
nonlinearbenchmark.org

Recurrent neural networks in residual form
(Bemporad, 2023 -NLSYS-ID BenchmarksWorkshop)

• Recurrent Neural Network (RNN)model in residual form:

xk+1 = Axk +Buk + fx(xk, uk, θ
i
x)

yk = Cxk + fy(xk, θ
i
y)

fx, fy = feedforward neural network

x

v1
v2

vL
y

vj = Ajfj−1(vj−1) + bj

θ = (A1, b1, . . . , AL, bL)

• Goal: minimize open-loop simulation error under elastic net regularization

min
x0,A,B,C,θx,θy

1

N

N∑
k=1

∥yk − ŷk∥22 +
1

2
ρ(∥θx∥22 + ∥θy∥22) + τ(∥θx∥1 + ∥θy∥1)

s.t. model equations

• ℓ1-regularization introduced to reduce #model coefficients (=simpler model)

(C) 2024 A. Bemporad 31/37

xk, uk

W WNL

W xk+1

W WNL

+ + + + +

Training RNN w/ ℓ1-penalties - Industrial Robot

• Main issueswith industrial robot benchmark:

– many parameters to train, large dataset⇒ complex NLP

– high sensitivitywrt weights (dynamics gets easily unstable)

– local minima (solution depends on initial guess)

– cannot easily usemini-batches: open-loop simulation cost is not separable,

long-termmemory effects present due to small sample time

• More general residual networks + ℓ1/group-Lasso regularization possible

(Frascati, Bemporad, 2023)

(C) 2024 A. Bemporad 32/37

Solution approach
(Bemporad, 2024)

1. Standard-scale I/O data for numerical reasons ui ← ui−µi
u

σi
u

, yi ←
yi−µi

y

σi
y

i = 1, . . . , 6

2. Train (A,B,C, x0) by jax-sysid (1000 L-BFGS iters) w/o ℓ1-regularization
(x ∈ R12) (CPU time: 9.12 s) [AppleM1Max]

For comparison: n4sid takes 36.21 s and gives lowerR2-scores on training & test data in MATLAB
sippy fails

3. Fix (A,B,C) and train simple RESNETmodel with shallowNNs:

xk+1 = Axk +Buk + fx(xk, uk, θx), yk = Cxk + fy(xk, θy)

• Optimization: to handle τ∥θ∥1, use jax-sysid running 2000Adam iters first (for

warm-start) and then 2000 L-BGFS-B iters

(C) 2024 A. Bemporad 33/37

Industrial Robot Benchmark: Results
• State x ∈ R12, fx, fy with 36 and 24 neurons, swish activation fcn

x
1+e−x

• Total number of training parameters: dim(θx) + dim(θy) = 1590

𝜏

R2

(%)

p
er

ce
n
ta

ge
 o

f
ze

ro
s

R2 (test data)

R2 (training data)

% zeros in model

𝜏=0.008

(bestR2 in 30 runs)

• Model quality measured by averageR2-score on all outputs:

R2 =
1

ny

ny∑
i=1

100

(
1−

∑N
k=1(yk,i − ŷk,i|0)

2∑N
k=1(yk,i −

1
N

∑N
i=1 yk,i)

2

)

• Training time≈ 12min on a single core per run

(3192 variables, 2000 Adam iterations + 2000 L-BFGS-B iterations, Apple M1 Max CPU)

(C) 2024 A. Bemporad 34/37

Industrial Robot Benchmark: Results
• Open-loop simulation errors (ρ = 0.01, τ = 0.008):

R2 (training) R2 (test) R2 (training) R2 (test)
RNN model RNN model linear model linear model

average 77.1493 57.1784 48.2789 43.8573 jax-sysid
39.2822 32.0410 n4sid

• More parameters/smaller regularization leads to overfitting training data

• Pure Adam vs LBFG-B+Adam vsOWL-QN (Andrew, Gao, 2007): (τ = 0.008)

adam fcn R2 R2 # zeros CPU
solver iters evals training test (θx, θy) time (s)
L-BFGS-B 2000 2000 77.1493 57.1784 556/1590 309.87
OWL-QN 2000 2000 74.7816 54.0531 736/1590 449.17
Adam 6000 0 71.0687 54.3636 1/1590 389.39

• Adam is unable to sparsify themodel

(C) 2024 A. Bemporad 35/37

Industrial Robot Benchmark: Results

• Compute p-step ahead prediction ŷk+p|k , with hidden state xk|k estimated by

an Extended Kalman Filter based on identified RNNmodel

prediction step

R2

(%)

RNN model (test data)

Linear model (test data)

• This is a more relevant indicator of model quality forMPC purposes than

open-loop simulation error ŷk|0 − yk

(C) 2024 A. Bemporad 36/37

Conclusions

Conclusions
• Quasi-Newtonmethods for SYS-ID enabled by powerful autodiff libraries

⌣ Extremely flexible (model structure, loss functions, regularization terms)

⌣ Faster convergence/bettermodels thanwith classical GDmethods (like Adam)

⌣ Numerically very robust (even to get linear state-spacemodels!)

 Non-convex problem: multiple runs often required from different initial guesses

• Open research topics:

? How to get good-quality training data (active learning)

? More efficient methods for non-smooth nonlinear optimization

2023 ERC Advanced Grant "COMPACT"
Starting soon ... (postdoc positions available)

(C) 2024 A. Bemporad 37/37

