# TRAINING RECURRENT NEURAL-NETWORK MODELS ON THE INDUSTRIAL ROBOT DATASET UNDER $\ell_1$ -REGULARIZATION

#### **Alberto Bemporad**

imt.lu/ab





## **OUTLINE**

• Industrial robot benchmark problem: description and challenges

• Recurrent neural network model in residual form

- Training methods supporting  $\ell_1$ -penalties for sparsification
- Industrial robot benchmark problem: identification results

Conclusions

#### **INDUSTRIAL ROBOT BENCHMARK**

(Weigand, Götz, Ulmen, Ruskowski, 2022)

- KUKA KR300 R2500 ultra SE industrial robot, full robot movement
- 6 inputs (torques), 6 outputs (joint angles), backlash
- Identification benchmark dataset (forward model):
  - Sample time:  $T_s = 100 \,\mathrm{ms}$
  - N = 39988 training samples
  - $N_{
    m test}$  = 3636 test samples



nonlinearbenchmark.org

# **INDUSTRIAL ROBOT BENCHMARK: CHALLENGES**

Highly nonlinear dynamics.
 Nonlinear modeling required



- Multi-input / multi-output, highly coupled system
- Data are slightly over-sampled,  $\|y_k-y_{k-1}\|$  is often very small, need to minimize open-loop simulation error
- Limited information: easy to overfit training data and get poor testing results
- Large number of samples complicates numerical optimization

Finding a model that minimizes the simulation error is a rather challenging task from a computational viewpoint

#### **CONTROL-ORIENTED MODELS**

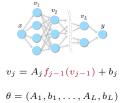
- Target: get a good dynamical model for model-based (predictive) control:
  - Complex model = complex controller model must be simple
  - Easy to linearize (to get Jacobian matrices for nonlinear optimization)

- Similar requirements for Kalman filtering (simple model, easy to linearize)
- Metrics: best fit on predicting test data not seen during training
- Compact recurrent neural network models are good candidates

#### RECURRENT NEURAL NETWORKS IN RESIDUAL FORM

Recurrent Neural Network (RNN) model in residual form:

$$x_{k+1} = Ax_k + Bu_k + f_x(x_k, u_k, \theta_x^i)$$
 $y_k = Cx_k + f_y(x_k, \theta_y^i)$ 
 $f_x, f_y = \text{feedforward neural network}$ 



• Training problem: minimize open-loop simulation error under regularization

$$\begin{split} \min_{A,B,C,\theta_x,\theta_y} \frac{1}{N} \sum_{k=1}^N \|y_k - \hat{y}_k\|_2^2 + \frac{1}{2} \rho(\|\theta_x\|_2^2 + \|\theta_y\|_2^2) + \tau(\|\theta_x\|_1 + \|\theta_y\|_1) \\ \text{s.t. model equations, } x_0 = 0 \end{split}$$

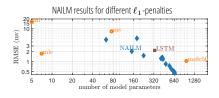
•  $\ell_1$ -regularization introduced to reduce # model coefficients (=simpler model)

# TRAINING RNN W/ $\ell_1$ -PENALTIES

- The RNN training problem w/  $\ell_1$ -regularization can be solved in several ways:
  - gradient descent methods, like Adam (Kingma, Ba, 2014) and similar variants
  - non-smooth NLP solvers, like OWL-QN (Andrew, Gao, 2007) (general purpose)
  - extended Kalman filtering (Bemporad, 2023) (specific to train RNNs)
  - Generalized Gauss-Newton + ADMM method (NAILM) (Bemporad, 2021, arXiv) 1:

| Silverbox benchmark                    | RMSE [mV]    | BFR [%]       |  |  |  |  |
|----------------------------------------|--------------|---------------|--|--|--|--|
| ARX (ml) [1]                           | 16.29 [4.40] | 69.22 [73.79] |  |  |  |  |
| NLARX (ms) [1]                         | 8.42 [4.20]  | 83.67 [92.06] |  |  |  |  |
| NLARX (mlc) [1]                        | 1.75 [1.70]  | 96.67 [96.79] |  |  |  |  |
| NLARX (ms8c50) [1]                     | 1.05 [0.30]  | 98.01 [99.43] |  |  |  |  |
| Recurrent LSTM model [2]               | 2.20         | 95.83         |  |  |  |  |
| SS encoder [3] $(n_x = 4)$             | [1.40]       | [97.35]       |  |  |  |  |
| NAILM                                  | 0.35         | 99.33         |  |  |  |  |
| 2,96000 training data, 40000 tost data |              |               |  |  |  |  |

<sup>≈86000</sup> training data, 40000 test data



<sup>&</sup>lt;sup>1</sup>Trained RNN model available at http://cse.lab.imtlucca.it/-bemporad/shared/silverbox/rnn888.zip [1] Ljung, Zhang, Lindskog, Juditski, 2004 [2] Ljung, Andersson, Tiels, Schön, 2020 [3] Beintema, Toth, Schoukens, 2021

## TRAINING RNN W/ $\ell_1$ -PENALTIES - INDUSTRIAL ROBOT

- Main issues with industrial robot benchmark:
  - many parameters to train, large dataset ⇒ complex NLP
  - high sensitivity wrt weights (dynamics gets easily unstable)
  - local minima (solution depends on initial guess)
  - cannot easily use mini-batches: open-loop simulation cost is not separable, long-term memory effects present due to small sample time

# **SOLUTION APPROACH**

- 1. Standard-scale I/O data for numerical reasons  $u_i \leftarrow \frac{u_i \mu_u^i}{\sigma_u^i}, y_i \leftarrow \frac{y_i \mu_y^i}{\sigma_y^i}$   $i=1,\ldots,6$
- 2. Train (A,B,C) by N4SID (Overschee, De Moor, 1994) with focus on simulation

See also results in recently updated report (Weigand, Götz, Ulmen, Ruskowski, 2023)

3. Train simple RESNET model with shallow NNs:

$$x_{k+1} = Ax_k + Bu_k + f_x(x_k, u_k, \frac{\theta_x}{\theta_x}), \qquad y_k = Cx_k + f_y(x_k, \frac{\theta_y}{\theta_y})$$

• Optimization setup: in Python, using JAX and L-BFGS-B (Byrd, Lu, Nocedal, Zhu, 1995) to handle  $\ell_1$ -regularization

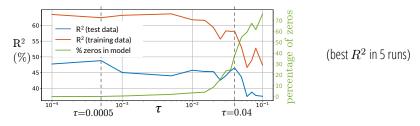
# TRAINING RNN W/ $\ell_1$ -PENALTIES VIA L-BFGS-B

• To handle  $\ell_1$ -regularization, split  $\theta_x = \theta_x^+ - \theta_x^-$  and  $\theta_y = \theta_y^+ - \theta_y^-$ :

$$\begin{aligned} \min_{\theta_x^+, \theta_y^+, \theta_x^-, \theta_y^-} \frac{1}{N} \sum_{k=1}^N \|y_k - \hat{y}_k\|_2^2 + \frac{1}{2} \rho \left\| \begin{bmatrix} \frac{\theta_x^+}{\theta_y^+} \\ \frac{\theta_y^+}{\theta_x^-} \end{bmatrix} \right\|_2^2 + \tau \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}' \begin{bmatrix} \theta_x^+ \\ \theta_y^+ \\ \theta_x^- \\ \theta_y^- \end{bmatrix} \\ \text{s.t.model equations, } x_0 = 0 \\ \theta_x^+, \theta_y^+, \theta_x^-, \theta_y^- \geq 0 \end{aligned}$$

- Lemma: weighting  $\|\theta_x^+\|_2^2 + \|\theta_x^-\|_2^2 + \|\theta_y^+\|_2^2 + \|\theta_y^-\|_2^2$  is equivalent to weighting  $\|\theta_x^+ \theta_x^-\|_2^2 + \|\theta_y^+ \theta_y^-\|_2^2$  (proof is simple by contradiction)
- Note: weighting  $\|\theta_x^+\|_2^2 + \|\theta_x^-\|_2^2 + \|\theta_y^+\|_2^2 + \|\theta_y^-\|_2^2$  is numerically better, as  $\ell_2$ -regularization is strongly convex for  $\rho>0$

- State  $x \in \mathbb{R}^{12}$ ,  $f_x$ ,  $f_y$  with  $n_1^x = 24$  and  $n_1^y = 12$  neurons, respectively,  $\rho = 10^{-4}$
- Total number of training parameters:  $\dim(\theta_x) + \dim(\theta_y) = 990$



• Model quality measured by average  $\mathbb{R}^2$ -score on all outputs:

$$\overline{R^2} = \frac{1}{n_y} \sum_{i=1}^{n_y} 100 \left( 1 - \frac{\sum_{k=1}^{N} (y_{k,i} - \hat{y}_{k,i|0})^2}{\sum_{k=1}^{N} (y_{k,i} - \frac{1}{N} \sum_{i=1}^{N} y_{k,i})^2} \right)$$

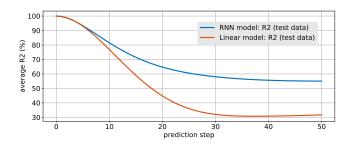
• Training time  $\approx 50$  min on a single core of an Apple M1 Max CPU

• Open-loop simulation errors ( $ho=10^{-4}$ , au=0.0005,  $n_1^x=24$ ,  $n_1^y=12$ ):

|         | $R^2$ (training) | $R^2$ (test) | $R^2$ (training) | $\mathbb{R}^2$ (test) |
|---------|------------------|--------------|------------------|-----------------------|
|         | RNN model        | RNN model    | linear model     | linear model          |
| $y_1$   | 84.3099          | 74.3654      | 59.7335          | 59.9400               |
| $y_2$   | 73.3438          | 53.2403      | 48.6032          | 31.9400               |
| $y_3$   | 65.0838          | 47.0516      | 47.3231          | 24.1045               |
| $y_4$   | 47.9524          | 46.2464      | 25.0829          | 21.6542               |
| $y_5$   | 37.0665          | 34.3510      | 25.0987          | 24.8838               |
| $y_6$   | 66.9417          | 37.5726      | 29.8516          | 31.5943               |
| average | 62.4497          | 48.8046      | 39.2822          | 32.3528               |

- Note: we tried different values of  $\tau$  and number of neurons  $n_1^x, n_1^y$ : max  $R^2$ -score on test data = 48.9904 with  $R^2=59.0654$  on training data
- More model parameters/smaller regularization leads to overfit training data

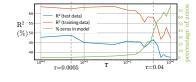
• Compute p-step ahead prediction  $\hat{y}_{k+p|k}$ , with hidden state  $x_{k|k}$  estimated by an Extended Kalman Filter based on identified RNN model



• This is a more relevant indicator of model quality for MPC purposes than open-loop simulation error  $\hat{y}_{k|0}-y_k$ 

Compare Adam (Kingma, Ba, 2014) vs L-BFGS-B<sup>2</sup>:

$$(\tau = 0.04, \rho = 10^{-4}, n_1^x = 24, n_1^y = 12)$$



|          | best case    | average $\mathbb{R}^2$ | average $\mathbb{R}^2$ |         | CPU      |
|----------|--------------|------------------------|------------------------|---------|----------|
| method   | criterion    | (training)             | (test)                 | # zeros | time (s) |
| L-BFGS-B | $R_2$ (test) | 58.13                  | 46.49                  | 375/990 | 3215     |
| Adam     |              | 51.51                  | 47.31                  | 8/990   | 2511     |
| L-BFGS-B | # zeros      | 54.34                  | 45.07                  | 520/990 | 3172     |
| Adam     |              | 50.41                  | 41.99                  | 27/990  | 2518     |

Adam: tuned with learning rate exponentially decaying from 0.01 after 1000 steps, with decay rate 0.05.

• L-BFGS-B leads to sparser models than Adam with similar  $R^2$ -scores

 $<sup>^2</sup>$ Best out of 5 runs, either based on the  $R_2$  on test data or # zeros in  $\theta_x,\theta_y$ 

#### CONCLUSIONS

 Numerically challenging nonlinear SYS-ID benchmark: long I/O sequences, many model parameters to learn



- Large training dataset, but easily overfit. More experiments required to be able to identify richer model structures
- Possible numerical improvements: split data into independent experiments, then parallelize cost/gradient computations
- A realistic physics-based nonlinear robot simulation model to assess model quality in terms of resulting closed-loop control performance would be great

I thank all contributors who made the dataset available!