EFFICIENT NUMERICAL OPTIMIZATION METHODS FOR LEARNING NONLINEAR STATE-SPACE MODELS

Alberto Bemporad

imt.lu/ab

CONTENTS OF MY TALK

- 1. Optimization methods for learning nonlinear state-space models
- 2. **jax-sysid**: A Python package for nonlinear system identification
- 3. Concurrent learning of nonlinear models and control invariant sets
- 4. Learning (static) parametric convex functions from data
- 5. Learning combined process and noise models in nonlinear state-space form

LEARNING CONTROL-ORIENTED NONLINEAR MODELS

"All models are wrong, but some are useful."

CONTROL-ORIENTED MODELS

- A complex model implies a complex model-based controller
- We typically look for small-scale models (e.g., ≤ 10 states/inputs/outputs) with a limited number of coefficients (<1k params vs >300B of LLMs)
- Limit nonlinearities as much as possible (e.g., avoid very deep neural networks)
- Need to get the best model within a poor model class from a rich dataset
 (= limited risk of overfit, under proper excitation)
- Computation constraints: solve the learning problem using limited resources (=our laptop, no supercomputing infrastructures)

Learning control-oriented models of dynamical systems requires different algorithms than typical machine learning tasks

NONLINEAR SYS-ID BASED ON NEURAL NETWORKS

- Neural networks proposed for nonlinear system identification since the '90s (Narendra, Parthasarathy, 1990) (Hunt et al., 1992) (Suykens, Vandewalle, De Moor, 1996)
- NNARX models: use a feedforward neural network (FNN) to approximate the nonlinear difference equation $|y_t \approx \mathcal{N}(y_{t-1}, \dots, y_{t-n_a}, u_{t-1}, \dots, u_{t-n_b})|$
- Neural state-space models:
 - w/ state data: fit a neural network model

$$x_{t+1} \approx \mathcal{N}_x(x_t, u_t), \ y_t \approx \mathcal{N}_y(x_t)$$

- I/O data only:
 - x_t = inner layer of a FNN (Prasad, Bequette, 2003)
 - Autoencoders (Masti, Bemporad, 2021)
 - SUBNETS (Beintema, Schoukens, Tóth, 2023)

• Usually minimize the open-loop prediction error to get a good prediction model

RECURRENT NEURAL NETWORKS

Recurrent Neural Network (RNN) model:

$$egin{array}{lcl} x_{k+1} &=& f_x(x_k,u_k, heta_x) \\ y_k &=& f_y(x_k, heta_y) \\ f_x,f_y &=& ext{feedforward neural network} \end{array}$$

(e.g.: general RNNs, LSTMs, RESNETS, physics-informed NNs, ...)

$$\theta = (W_1, b_1, \dots, W_L, b_L)$$

• Training problem: given an I/O dataset $\{u_0, y_0, \dots, u_{N-1}, y_{N-1}\}$ solve

$$\min_{\substack{\theta_x, \theta_y \\ x_0, x_1, \dots, x_{N-1} \\ \text{s.t.}}} r(x_0, \theta_x, \theta_y) + \frac{1}{N} \sum_{k=0}^{N-1} \ell(y_k, f_y(x_k, \theta_y))$$

• Main issue: x_k are hidden states and hence also unknowns of the problem

OPTIMIZATION METHODS FOR TRAINING RNNS

• Problem condensing: substitute $x_{k+1} = f_x(x_k, u_k, \theta_x)$ recursively and solve

$$\min_{\theta_x, \theta_y, x_0} r(x_0, \theta_x, \theta_y) + \frac{1}{N} \sum_{k=0}^{N-1} \ell(y_k, f_y(x_k, \theta_y)) = \left[\min_{\theta_x, \theta_y, x_0} V(\theta_x, \theta_y, x_0) \right]$$

• Gradient descent (GD) methods: update θ_x, θ_y, x_0 by setting

$$\begin{bmatrix} \theta_x^{t+1} \\ \theta_y^{t+1} \\ x_0^{t+1} \end{bmatrix} = \begin{bmatrix} \theta_x^t \\ \theta_y^t \\ x_0^t \end{bmatrix} - \alpha_t \nabla V(\theta_x^t, \theta_y^t, x_0^t)$$

Example: Adam uses adaptive moment estimation to set the learning rate α_t (Kingma, Ba, 2015)

Main issue with GD methods: slow convergence (in theory and in practice)

OPTIMIZATION METHODS FOR TRAINING RNNS

- Stochastic gradient descent (SGD) can be even less efficient with RNNs:
 - collect a high number of short independent experiments (often impossible)
 - or create mini-batches by using multiple-shooting ideas (Forgione, Piga, 2020) (Bemporad, 2023)
- Newton's method: very fast (2nd-order) local convergence but difficult to implement, as we need the Hessian $\nabla^2 V(\theta_x{}^t, \theta_y{}^t, x_0^t)$
- Quasi-Newton methods: good tradeoff between convergence speed / solution quality and numerical complexity. Only requires the gradient $\nabla V(\theta_x^{\ t},\theta_y^{\ t},x_0^t)$
- Extended Kalman Filtering (EKF): a recursive Gauss-Newton method for learning nonlinear models online

TRAINING RNNS BY EKF

(Puskorius, Feldkamp, 1994) (Wang, Huang, 2011) (Bemporad, 2023)

• **Key idea**: treat the parameters of the feedforward NNs as **constant states** and iterate an EKF on the training dataset:

$$\begin{cases} x_{k+1} &= f_x(x_k, u_k, \theta_{xk}) + \xi_k \\ \begin{bmatrix} \theta_{x(k+1)} \\ \theta_{y(k+1)} \end{bmatrix} &= \begin{bmatrix} \theta_{xk} \\ \theta_{yk} \end{bmatrix} + \eta_k \\ y_k &= f_y(x_k, \theta_{yk}) + \zeta_k \end{cases} \qquad Q = \operatorname{Var}[\eta_k] \\ R = \operatorname{Var}[\zeta_k] \\ P_0 = \operatorname{Var}\left[\begin{bmatrix} \theta_x \\ \theta_y \\ x_0 \end{bmatrix}\right]$$

ullet The ratio Q/R determines the **learning-rate** of the training algorithm

The model θ_x, θ_y can be learned offline by processing a given dataset multiple times, and also **adapted on line** from streaming data (u_k, y_k)

 Generalization: train via Moving Horizon Estimation (MHE) instead of EKF (Løwenstein, Bernardini, Bemporad, Fagiano, 2023)

- EKF can be generalized to handle general strongly convex and smooth loss functions $\ell(y_k, \hat{y}_k)$
- Strongly convex smooth regularization terms $r(x_0,\theta_x,\theta_y)$ can be handled similarly
- Can handle ℓ_1 -penalties $\lambda \left\| \left[\begin{smallmatrix} \theta_x \\ \theta_y \end{smallmatrix} \right] \right\|_1$, useful to sparsify θ_x, θ_y by changing the EKF update into

$$\begin{bmatrix} \hat{x}(k|k) \\ \theta_x(k|k) \\ \theta_y(k|k) \end{bmatrix} = \begin{bmatrix} \hat{x}(k|k-1) \\ \theta_x(k|k-1) \\ \theta_y(k|k-1) \end{bmatrix} + M(k)e(k) - \lambda P(k|k-1) \begin{bmatrix} 0 \\ \operatorname{sign}(\theta_x(k|k-1)) \\ \operatorname{sign}(\theta_y(k|k-1)) \end{bmatrix}$$

TRAINING RNNS BY EKF - EXAMPLE

Example: magneto-rheological fluid damper
 N=2000 data used for training, 1499 for testing the model
 (Wang, Sano, Chen, Huang, 2009)

• RNN model: 4 states, shallow NNs w/ 4 neurons, I/O feedthrough

NAILS = GNN method with line search (offline)
NAILM = GNN method with LM steps (offline)
(Bemporad, 2023)

MSE loss on training data, mean value (std) over 20 runs from different random initial weights

$$\text{BFR} = 100 \big(1 - \frac{\|Y - \hat{Y}\|_2}{\|Y - \bar{y}\|_2} \big)$$

BFR (Best Fit Rate)	training	test
NAILS	94.41 (0.27)	89.35 (2.63)
NAILM	94.07 (0.38)	89.64 (2.30)
AMSGrad	84.69 (0.15)	80.56 (0.18)
EKF	91.41 (0.70)	87.17 (3.06)

TRAINING RECURRENT MODELS VIA L-BFGS

SYSTEM IDENTIFICATION PROBLEM

Class of nonlinear dynamical models (e.g., RNNs w/ linear bypass):

$$x_{k+1}=Ax_k+Bu_k+f_x(x_k,u_k; heta_x)$$
 Special cases:
$$\hat{y}_k=Cx_k+Du_k+f_y(x_k,u_k; heta_y)$$
 Linear model, RNN, ...

Loss function (open-loop prediction error + regularization)

$$\begin{aligned} \min_{z,x_1,...,x_{N-1}} \ r(z) + \frac{1}{N} \sum_{k=0}^{N-1} \ell(y_k, Cx_k + Du_k + f_y(x_k, u_k; \theta_y)) \\ \text{s.t.} \quad x_{k+1} &= Ax_k + Bu_k + f_x(x_k, u_k; \theta_x) \\ k &= 0, \dots, N-2 \end{aligned}$$

$$z = \begin{bmatrix} x_0 \\ \Theta \end{bmatrix}$$

$$\Theta = \begin{bmatrix} A(:) \\ B(:) \\ C(:) \\ D(:) \\ \theta_x \\ \theta_y \end{bmatrix}$$

Condense the problem by eliminating the hidden states x_k and get

$$\min_{z} f(z) + r(z)$$

 $\min_{z} f(z) + r(z)$ (nonconvex) nonlinear programming (NLP) problem

NLP PROBLEM

- If f and r differentiable: use any state-of-the-art unconstrained NLP solver, e.g., L-BFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shanno) (Liu, Nocedal, 1989)
- The gradient $\nabla f(z)$ can be computed efficiently by automatic differentiation

However, sparsifying the model requires non-smooth regularizers:

$$r_1(z)= au\,\|z\|_1$$
 $r_g(z)= au_g\sum_{i=1}^m\|I_iz\|_2$ ℓ_1 -regularization group-Lasso penalty

- **Group-Lasso penalties** can be used for reducing:
 - the number of states
 - the number of inputs
 - the number of neurons in each layer of f_x , f_y

HANDLING NON-SMOOTH REGULARIZATION TERMS

(Bemporad, 2025)

1. If $r(x) = \sum_{i=1}^{n} r_i(x_i)$ and r_i 's are convex & positive semidefinite, the ℓ_1 -regularized problem can be recast as a bound-constrained NLP:

Example:
$$r(x) = \|x\|_2^2$$
 then $r(y) + r(-z) = \|[\frac{y}{z}]\|_2^2$ well-regularized augmented problem

2. If r(x) is convex and symmetric wrt each component x_i and increasing for $x \ge 0$, and $\tau > 0$, then we can solve instead

$$\min_{y,z>0} f(y-z) + \tau[1 \dots 1] \begin{bmatrix} y \\ z \end{bmatrix} + r(y+z)$$

if r(x) differentiable for $x \neq 0$ then $r(y+z) \mbox{ differentiable if any } y_i, z_j > 0$

Example: r(x) = group-Lasso penalty + constraint $y,z \geq \epsilon$ = machine precision

(Bemporad, 2025)

Python package to identify **linear/nonlinear/static** models:

```
jax-sysid
```

```
import numpy as np
from jax sysid.models import Model
                               state-update function, x(k+1)
def state fcn (x,u,params):
def output fcn (x,u,params):
                               output function, y(k)
    . . .
model = Model (nx, ny, nu, state fcn-state fcn, output fcn-output fcn)
model.init(params=[A,B,C,W1,W2,W3,b1,b2,W4,W5,b3,b4])
model.loss(rho x0=1.e-4, rho th=1.e-4, tau th=1.e-4)
model.optimization(adam epochs=1000, lbfgs epochs=1000)
model.fit(Y, U)
Yhat, Xhat = model.predict(model.x0, U)
```


pip install jax-sysid

github.com/bemporad/jax-sysid

JAX-SYSID LIBRARY

• Python code for testing the model:

```
from jax_sysid.utils import compute_scores

x0_test = model.learn_x0 (U_test, Y_test)
Yhat_test, Xhat_test = model.predict(x0_test, U_test)

R2_train, R2_test, msg = compute_scores(Y, Yhat, Y_test, Yhat_test, fit='R2')
print(msg)
```

Use multiple passes of EKF & Rauch-Tung-Striebel smoothing to estimate x_0

• Python code to identify a linear time-invariant model:

EXAMPLE: LINEAR SYSTEM IDENTIFICATION

• Cascaded-Tanks benchmark: (Schoukens, Mattson, Wigren, Noël, 2016)

 $z = (A, B, C, D, x_0)$, mean-squared error loss + ℓ_2 -regularization

		R^2 (training	g)		\mathbb{R}^2 (test)		
n_x	lbfgs	sippy ¹	matlab 2	lbfgs	sippy	MATLAB	
1	87.43	56.24	87.06	83.22	52.38	83.18	(ssest)
2	94.07	28.97	93.81	92.16	23.70	92.17	(ssest)
3	94.07	74.09	93.63	92.16	68.74	91.56	(ssest)
4	94.07	48.34	92.34	92.16	45.50	90.33	(ssest)
5	94.07	90.70	93.40	92.16	89.51	80.22	(ssest)
6	94.07	94.00	93.99	92.17	92.32	88.49	(n4sid)
7	94.07	92.47	93.82	92.17	90.81	< 0	(ssest)
8	94.49	< 0	94.00	89.49	< 0	< 0	(n4sid)
9	94.07	< 0	< 0	92.17	< 0	< 0	(ssest)
10	94.08	93.39	< 0	92.17	92.35	< 0	(ssest)

 $n_y = n_u = 1$ 1024 training data 1024 test data (standard scaling)

CPU time: 2.4 s (lbfgs), 30 ms (sippy), 50 ms (n4sid/pred.), 0.3 s (n4sid/sim.), 0.5 s (ssest) [Apple M1 Max]

^{1 (}Armenise, Vaccari, Bacci Di Capaci, Pannocchia, 2018)

² (Ljung, SYS-ID Toolbox)

LINEAR SYSTEM IDENTIFICATION W/ STABILITY CONSTRAINTS

- Stability: $\exists P \succ 0$ s.t. $P \succeq A'PA \quad \Leftrightarrow \quad I \succeq \bar{A}'\bar{A} \text{ for } \bar{A} = T^{-1}AT, \quad T'T = P$
- We try enforcing $\|A\|_2 \le 1$ via the penalty $\rho_A \max\{\|A\|_2^2 1 + \epsilon_A, 0\}^2$ (wlog)
- Example: 1000 training + 1000 test data generated by the unstable LTI system

$$x_{k+1} = \begin{bmatrix} 1.0001 & 0.5 & 0.5 \\ 0 & 0.9 & -0.2 \\ 0 & 0 & 0.7 \end{bmatrix} x_k + Bu_k + \xi_k \qquad B, C \in \mathcal{N}(0, 1)$$
$$\xi_k \in \mathcal{N}(0, 0.01^2), \zeta_k \in \mathcal{N}(0, 0.05^2)$$
$$y_k = Cx_k + z_k \qquad u_k \in \mathcal{U}[-\frac{1}{2}, \frac{1}{2}]$$

• Training setup: model. force_stability (rho_A=1.e3, epsilon_A=1.e-3)

-
$$\rho_A = 10^3$$
, $\epsilon_A = 10^{-3}$

- 3000 Adam + 5000 L-BFGS iters
- CPU time ≈ 3.36 s [Apple M4 Max]

Eigenvalues of identified matrix *A*:

 $|\ 0.99997, 0.92747, 0.59781$

QUASI-LPV MODEL IDENTIFICATION

• Quasi-Linear Parameter Varying (qLPV, a.k.a. "self-scheduled" LPV) models:

$$x_{k+1} = A(p_k)x_k + B(p_k)u_k$$

$$y_k = C(p_k)x_k + D(p_k)u_k$$

$$p_k = f(x_k, u_k, \theta_p)$$

$$\begin{bmatrix} A(p_k) & B(p_k) \\ C(p_k) & D(p_k) \end{bmatrix} = \begin{bmatrix} A_0 & B_0 \\ C_0 & D_0 \end{bmatrix} + \sum_{i=1}^{n_p} \begin{bmatrix} A_i & B_i \\ C_i & D_i \end{bmatrix} p_{ki}$$

 p_k = scheduling parameter

model parameters:

$$\theta = \left(\begin{array}{c} A_0, B_0, C_0, D_0 \\ \vdots \\ A_{n_p}, B_{n_p}, C_{n_p}, D_{n_p} \\ \theta_p \end{array} \right)$$

Example: $p_k = f(x_k, u_k; \theta)$ = FNN with sigmoid output layer ($\Rightarrow 0 \le p_{ki} \le 1$)

• (q)LPV models are a very powerful class of control-oriented nonlinear models

(Shamma, Athans, 1991) (Tóth, 2010)

```
from jax_sysid.models import qLPVModel
model = qLPVModel (nx, ny, nu, npar, qlpv_fcn, qlpv_params_init)
```

EXAMPLE: QLPV MODEL IDENTIFICATION

Generate 5000 training data and 1000 test data from the NL dynamics

$$\begin{split} x_{k+1} &= \begin{bmatrix} 0.5\sin(x_{1k}) + 1.7\cos(0.5x_{2k})u_k \\ 0.6\sin(x_{1k} + x_{3k}) + 0.4\tan(x_{1k} + x_{2k}) \\ 0.4\,e^{-x_{2k}} + 0.9\sin(-0.5x_{1k})u_k \end{bmatrix} + \xi_k \\ y_k &= \tan(2.2x_{1k}^3) + \tan(1.8x_{2k}^3) + \tan(-x_{3k}^3) + z_k \end{split}$$

where $\xi_k, z_k \in \mathcal{N}(0, 0.01^2)$ and u_k uniformly generated in $[-\frac{1}{2}, \frac{1}{2}]$

- p_k = 2-layer FNN (6 neurons each) + swish activation + sigmoid output function
- Training results:
- 1000 Adam + 5000 L-BFGS iters
- CPU time measured on [Apple M4 Max]

		Best Fit Rate	Best Fit Rate	CPU time
model	n_p	training data	test data	(s)
LTI	0	71.35	71.36	1.3
qLPV	1	93.57	93.55	20.1
qLPV	2	95.54	95.51	22.6
qLPV	3	96.04	95.94	26.4

COMBINED LEARNING OF MODEL AND INVARIANT SETS

(Mulagaleti, Bemporad, 2025)

• Goal: learn a model for control design under constraints $y \in \mathcal{Y}, u \in \mathcal{U}$

• Self-scheduled LPV model:

$$x_{k+1} = A(p(x_k))x_k + B(p(x_k))u_k$$

$$y_k = Cx_k$$

$$p(x_k) = \operatorname{softmax}(N_1(x_k), \dots, N_{n_p}(x_k))$$

- Uncertain predictions: $x_{k+1} \in \text{conv}(A_i x_k + B_i u_k, i = 1, \dots, n_p)$
- Control invariant set $R: \forall x \in R, \exists u \in \mathcal{U} \text{ s.t. } A_i x + B_i u \in R, \forall i = 1, \dots, n_p$

COMBINED LEARNING OF MODEL AND INVARIANT SETS

• Key idea: add regularization term $r(\theta)$ in training problem (θ = model coeffs):

$$r(\theta) = \min_{R} ext{conservativeness}(R)$$
 s.t. $C \cdot R \oplus W \subseteq \mathcal{Y}$

- $-r(\theta) < \infty \Rightarrow \exists$ control invariant set R
- small $r(\theta) \Rightarrow$ less conservative R
 - qLPV + polytopic sets \Rightarrow $r(\theta)$ differentiable

• Example: $1.5\ddot{y} + \dot{y} + y + 1000y^3 = u$

10,000 training + 2,000 disturbance-set estimation data

learned model: $n_x=4$ states, $n_p=6$ scheduling params p-function = shallow FNN with 3 neurons

r(heta) almost does not perturb quality of fit

INDUSTRIAL ROBOT BENCHMARK

(Weigand, Götz, Ulmen, Ruskowski, 2022)

- KUKA KR300 R2500 ultra SE industrial robot, full robot movement
- 6 inputs (torques), 6 outputs (joint angles), w/ backlash, highly nonlinear and coupled, slightly oversampled $(\|y_k y_{k-1}\|)$ is often very small)

nonlinear benchmark.org

- Identification benchmark dataset (forward model):
 - Sample time: $T_s=100~\mathrm{ms}$
 - N = 39988 training samples
 - $N_{
 m test}$ = 3636 test samples
- Very challenging NL-SYSID benchmark on nonlinearbenchmark.org

INDUSTRIAL ROBOT BENCHMARK: RESULTS

(Bemporad, 2024)

- State $x \in \mathbb{R}^{12}$, f_x, f_y with 36 and 24 neurons, swish activation fcn $\frac{x}{1+e^{-x}}$
- Total number of training parameters: $\dim(\theta_x) + \dim(\theta_y) = 1590$

• Model quality measured by average R^2 -score on all outputs:

$$R^{2} = \frac{1}{n_{y}} \sum_{i=1}^{n_{y}} 100 \left(1 - \frac{\sum_{k=1}^{N} (y_{k,i} - \hat{y}_{k,i|0})^{2}}{\sum_{k=1}^{N} (y_{k,i} - \frac{1}{N} \sum_{i=1}^{N} y_{k,i})^{2}} \right)$$

Training time ≈ 12 min per run on a single core [Apple M1 Max]
 (3192 variables, 2000 Adam iterations + 2000 L-BFGS-B iterations)

INDUSTRIAL ROBOT BENCHMARK: RESULTS

• Open-loop simulation errors (ho=0.01, au=0.008):

	R^2 (training) RNN model	R^2 (test) RNN model	R^2 (training) linear model	R^2 (test) linear model	
average	77.1493	57.1784	48.2789	43.8573	jax-sysid
			39.2822	32.0410	n4sid

- More parameters/smaller regularization leads to overfitting training data
- Pure Adam vs LBFG-B+Adam vs OWL-QN (Andrew, Gao, 2007): (au=0.008)

	adam	fcn	$\overline{R^2}$	$\overline{R^2}$	# zeros	CPU
solver	iters	evals	training	test	(θ_x, θ_y)	time (s)
L-BFGS-B	2000	2000	77.1493	57.1784	556/1590	309.87
OWL-QN	2000	2000	74.7816	54.0531	736/1590	449.17
Adam	6000	0	71.0687	54.3636	1/1590	389.39

• Adam is unable to sparsify the model

OTHER FEATURES OF JAX-SYSID LIBRARY

• Parallel training: train models from different initial guesses (x_0, θ)

```
from jax_sysid.models import find_best_model
models = model.parallel_fit (Ys, Us, init_fcn=init_fcn, seeds=range(10))
best_model, best_R2 = find_best_model(models, Ys_test, Us_test, fit='R2')
```

• Multiple training datasets: (u_k^i,y_k^i) , $k=0,\ldots,N_i-1$, $i=1,\ldots,M$ model.fit([Ys1, ..., YsM],[Us1, ..., UsM])

```
• Static gain: \hat{y}_{ss} \approx y_{ss} when x_{ss} = f_x(x_{ss}, u_{ss}, \theta) dcgain_loss = model.dcgain_loss (Uss = Uss, Yss = Yss) model.loss(rho_x0=1.e-3, rho_th=1.e-2, custom_regularization = dcgain_loss)
```

(for linear models: can also specify the desired DC gain $\hat{y}_{ss} = Gu_{ss}$ directly)

OTHER FEATURES OF JAX-SYSID LIBRARY

• Custom output loss $\ell(\hat{y}, y)$

```
eps = 1.e-4
def cross_entropy_loss(Yhat,Y):
    loss=jnp.sum(-Y*jnp.log(eps+Yhat)-(1.-Y)*jnp.log(eps+1.-Yhat))
    return loss

model.loss(rho_x0=0.01, rho_th=0.001, output_loss=cross_entropy_loss)
```

• Custom regularization $r(\theta, x_0)$

```
def custom_reg_fcn(th,x0):
    return 1000.*jnp.maximum(jnp.sum(th**2)-1.,0.)**2
model.loss(rho_x0=0.01, rho_th=0.001, custom_regularization = custom_reg_fcn)
```

• Upper and lower bounds on parameters and states

```
model.optimization(params_min = lb, params_max = ub, x0_min = x1, x0_max = xu, ...)
```

OTHER FEATURES OF JAX-SYSID LIBRARY

RNN models described in flax.linen

```
from flax import linen as nn
from jax_sysid.models import RNN

model = RNN (nx, ny, nu, FX=FX, FY=FY, x_scaling=0.1)
```

```
class FX(nn.Module):
    @nn.compact
    def __call__(self, x):
    x = nn.Dense(features=5)(x)
    x = nn.swish(x)
    x = nn.ense(features=5)(x)
    x = nn.bense(features=nx)(x)
    return x
```

• Continuous-time models $\dot{x} = f(x, u, t), y = g(x, u, t)$

```
from jax_sysid import CTModel
model = CTModel (nx, ny, nu, state_fcn=state_fcn, output_fcn=output_fcn)
```

• Static models $\hat{y} = f(x)$ (=standard nonlinear regression)

```
from jax_sysid import StaticModel
model = StaticModel (ny, nx, output_fcn)
```

```
Example: NARX model \hat{y}_k = f(y_{k-1}, \dots, y_{k-n_a}, u_{k-1}, \dots, u_{k-n_b}) (minimize 1-step-ahead prediction error y_k - \hat{y}_k)
```


PARAMETRIC CONVEX FUNCTIONS

• Goal: learn a parametric convex function (PCF) from data (x_k, θ_k, y_k)

$$y = f(x, \theta)$$
 $f: \mathbb{R}^n \times \Theta \to \mathbb{R}^d$

with $f(x, \theta)$ convex wrt the variable $x \in \mathbb{R}^n$ for each parameter $\theta \in \Theta$

- Use: optimize f wrt x for each given θ in production
- Example: $f(x,\theta) = \frac{1}{2}x'F'(\theta)F(\theta)x + c(\theta)x + h(\theta)$
- Several input-convex NN architectures have been proposed in the literature

(Amos, Xu, Kolter, 2017) (Calafiore, Gaubert, Possieri, 2020)

(Schaller, Bemporad, Boyd, 2025)

• f = neural network with weights $V^i(\theta)$, $W^i(\theta)$, biases $\omega^i(\theta)$, and activation ϕ

- V^i, W^i, ω^i generated by another network ψ (to be learned)
- Activation function ϕ is **nondecreasing** and **convex** (e.g., ReLU, softplus)
- $\bullet \;$ The weights $W^i(\theta)$ are elementwise nonnegative for all θ

NEURAL PCF ARCHITECTURE

- The NN ψ is nonlinear re-parametrization from θ to the PCF weights
- ψ has weights $w=(W_\psi^2,\dots,W_\psi^M,V_\psi^1,\dots,V_\psi^M,\omega_\psi^1,\dots,\omega_\psi^M)$

• The last layer of ψ makes $W^i(\theta)$ elementwise nonnegative $\forall \theta$

Examples:
$$\begin{split} W^i(\theta) &= \max(V_\psi^M \theta + W_\psi^M z_\psi^{M-1} + \omega_\psi^M, 0) \\ W^i(\theta) &= (V_\psi^M \theta + W_\psi^M z_\psi^{M-1} + \omega_\psi^M)^2 \end{split}$$

THE LPCF PACKAGE

Open-source package for fitting a PCF to given data (Schaller, Bemporad, Boyd, 2025)

https://github.com/cvxgrp/lpcf

- Customizable neural network architecture
- Customizable loss and regularization
- Relies on jax_sysid (Adam + L-BFGS) for training
- Returns the PCF f as
 - a JAX function for fast evaluation (and differentiation)
 - a CVXPY expression for use in optimization models (Diamond, Boyd, 2016)

USING THE LPCF PACKAGE

```
from lpcf.pcf import PCF
# observed data
Y = \dots \# \text{ shape (N, d)}
X = \dots \# \text{ shape } (N, n)
Theta = ... # shape (N, p)
# fit PCF to data
pcf = PCF()
pcf.fit(Y, X, Theta)
# export PCF to CVXPY
x = cp.Variable((n, 1))
theta = cp.Parameter((p, 1))
y = pcf.tocvxpy(x, theta) # CVXPY expression
prob = cp.Problem(cp.Minimize(y + ...))
. . .
f = pcf.tojax() # JAX function <math>f(x, \theta)
```

Additional features:

- add (convex) quadratic term to the neural network
- require f to be **monotone** in x
- require f to be nonnegative
- require $\arg\min_{x} f(x, \theta) = g(\theta)$ for a given function g
- fit a parametrized convex set $C(\theta) = \{x \mid f(x,\theta) \leq 0\}$ (convex classification problem)

EXAMPLE: APPROXIMATE DYNAMIC PROGRAMMING (ADP)

• Consider the input-affine nonlinear system

$$x_{t+1} = F(x_t, \theta) + G(x_t, \theta)u_t, \quad t = 0, 1, \dots$$

- θ are measured parameters (e.g., physical quantities)
- Goal: for each given initial state x_0 , find u_0, u_1, \ldots that minimize

$$J(x_0) = \sum_{t=0}^{\infty} H(x_t, u_t, \theta) = H(x_0, u_0, \theta) + \underbrace{\sum_{t=1}^{\infty} H(x_t, u_t, \theta)}_{\text{cost to go}}$$

• ADP controller (i.e., MPC with horizon N=1):

$$u_t = \operatorname{arg\,min}_u \left(H(x_t, u, \theta) + f(F(x_t, \theta) + G(x_t, \theta)u, \theta) \right), \quad t = 0, 1, \dots$$

• Convex problem if $f(x, \theta)$ = PCF approx of $y = J(x, \theta)$ and H convex in u

EXAMPLE: APPROXIMATE DYNAMIC PROGRAMMING (ADP)

• Example: swing up inverted pendulum $x = [\delta, \dot{\delta}]', \theta = m > 0$ (mass)

Solve nonlinear optimal control problem

$$J(x_0) = \sum_{t=0}^{150} H(x_t, u_t, \theta)$$
on 1000 data points (x_t, θ_t) $\theta_t \in [0.5]$

on 1000 data points (x_k,θ_k) , $\theta_k\in[0.5,2]$, $\delta_k\in[-\pi/6,7\pi/6]$, $\dot{\delta}_k\in[-1,1]$

• Fit PCF $f(x, \theta)$ and use CVXPY to solve the ADP problem online

- Role of stochastic noise models, combined with process models, is well understood for linear systems
- Goal: extend the use of noise models to general nonlinear state-space models (RNNs, qLPVs, ...)
- $G_{o}: \begin{cases} x_{k+1} = f_{\mathbf{x}}(x_{k}, u_{k}) \\ y_{\mathbf{o},k} = g_{\mathbf{x}}(x_{k}, u_{k}) \end{cases} \qquad H_{o}: \begin{cases} z_{k+1} = f_{\mathbf{z}}(z_{k}, x_{k}, u_{k}, \mathbf{e_{k}}) \\ v_{k} = g_{\mathbf{z}}(z_{k}, x_{k}, u_{k}) + \mathbf{e_{k}} \end{cases}$
- Since $e_k = v_k g_z(z_k, x_k, u_k)$, we also get the inverse noise model

$$H_{o}^{-1}: \begin{cases} z_{k+1} = f_{z}(z_{k}, x_{k}, u_{k}, v_{k} - g_{z}(z_{k}, x_{k}, u_{k})) \\ \mathbf{e}_{k} = v_{k} - g_{z}(z_{k}, x_{k}, u_{k}) \end{cases}$$

MODEL PARAMETERIZATION AND TRAINING PROBLEM

- Training dataset: N samples $(u_0, y_0, \dots, u_{N-1}, y_{N-1})$
- Parametric process + noise model and prediction error:

$$\begin{split} \hat{x}_{k+1} &= f_{\mathbf{x}}(\hat{x}_k, u_k, \theta_{\mathbf{x}}) \\ \hat{z}_{k+1} &= \tilde{f}_{\mathbf{z}}(\hat{z}_k, \hat{x}_k, u_k, y_k - g_{\mathbf{x}}(\hat{x}_k, u_k, \theta_{\mathbf{y}}), \theta_{\mathbf{z}}) \\ \hat{e}_k^{\mathrm{pred}} &= y_k - g_{\mathbf{x}}(\hat{x}_k, u_k, \theta_{\mathbf{y}}) - g_{\mathbf{z}}(\hat{z}_k, \hat{x}_k, u_k, \theta_{\mathbf{e}}) \end{split} \quad \text{inverse noise-model update} \\ \text{one-step-ahead prediction error} \end{split}$$

(Regularized) prediction-error minimization (PEM) problem:

$$\min_{\boldsymbol{\theta}, \hat{x}_0, \hat{z}_0} \frac{1}{N} \sum_{k=0}^{N-1} \|\hat{e}_k^{\text{pred}}\|_2^2 + R(\boldsymbol{\theta}, \hat{x}_0, \hat{z}_0) \qquad \boldsymbol{\theta} = (\boldsymbol{\theta}_x, \boldsymbol{\theta}_y, \boldsymbol{\theta}_z, \boldsymbol{\theta}_e)$$

- Special cases: LTI, LPV (ext.-scheduled, self-scheduled), nonlinear models
- Under suitable assumptions, consistency can be proved as $N \to \infty$

EXAMPLE: UNBALANCED DISK SYSTEM

• System dynamics: $\ddot{\alpha}=-rac{1}{ au}\dot{\alpha}+rac{K_{\mathrm{m}}}{ au}u-rac{mgl}{J}\sin(\alpha)$ (Kulcsár, Dong, van Wingerden, Verhaegen, 2009) (Koelewijn, Tóth, 2019)

• LTI model: 2000 training and test data generated by linearized system + noise

	$\hat{n}_{\mathbf{x}}$	\hat{n}_{z}	BFR train.	BFR test	type	time
best achievable	2	1	72.12%	68.13%	sim	-
Dest atrilevable	~	'	77.66%	72.85%	pred	-
plant only	2	0	72.03%	68.08%	sim	0.13 s
combined	2	1	72.02%	68.08%	sim	0.34 s
combined	2	1	77.67%	72.84%	pred	0.54 5
n4sid (s)	2	-	0.33%	0.56%	sim	0.15 s
n4sid (p)	3		61.21%	54.49%	sim	0.11 s
114SIU (þ)	٥	_	75.63%	70.46%	pred	0.115
ssest (s)	2	-	1.33%	1.37%	sim	0.47 s
(-)	3		64.23%	58.02%	sim	0.20 s
ssest (p)	3	-	76.31%	71.43%	pred	0.20 S

- Training: jax-sysid
- 10000 L-BFGS iters
- CPU: [Apple M4 Max]

EXAMPLE: UNBALANCED DISK SYSTEM

• self-scheduled LPV model: 2000 training + 2000 test data generated by NL system + noise

	\hat{n}_{x}	\hat{n}_{z}	BFR train.	BFR test	type	noise	time		
host achievable	2	1	89.32%	90.11%	sim	LPV	-		
best achievable	2		91.24%	91.86%	pred	LPV	-		
plant only	2	0	87.73%	86.45%	sim	-	10.06 s		
combined	2	1	85.19%	86.19%	sim	LTI	12.91 s		
combined	4	1	- 1	1	90.92%	91.46%	pred	LTI	12.915
combined	2	1	85.60%	86.56%	sim	LPV	18.82 s		
		ı	90.96%	91.51%	pred	LPV	10.02 5		

- Training: jax-sysid
- 1000 Adam +
 10000 L-BFGS iters
- CPU: [Apple M4 Max]

• nonlinear model: (same dataset)

	\hat{n}_{x}	\hat{n}_{z}	BFR train.	BFR test	type	time
best achievable	2	1	89.32%	90.11%	sim	-
best achievable	~	'	91.24%	91.86%	pred	-
plant only	2	0	89.33%	89.89%	sim	10.24 s
combined	2	1	89.23%	89.83%	sim	11.31 s
combined	2		91.05%	91.39%	pred	11.515

EXAMPLE: CONTROL MOMENT GYROSCOPE

 Data generated by high-fidelity CMG simulation model (Bloemers, Tóth, 2019), red gymbal locked, 1 input, 1 output

• 10,000 training data + 30,000 test data (SNR = 35dB in both datasets)

• LTI model:

	$\hat{n}_{\mathbf{x}}$	$\hat{n}_{\mathbf{z}}$	BFR train.	BFR test	type	time
best achievable	5	-	98.16%	98.19%	sim	-
plant only	8	0	35.99%	25.28%	sim	3.50 s
combined	8	2	34.46%	29.91%	sim	8.73 s
Combined	8	2	97.17%	97.12%	pred	0.733
n4sid	8	0	29.72%	20.98%	sim	0.85 s
n4sid	10	0	34.76%	22.45%	sim	1.05 s
ssest (s)	8	0	35.48%	24.70%	sim	2.05 s
ssest (p)	10	0	33.51%	26.88%	sim	3.06 s

- Training: jax-sysid
- 10000 L-BFGS iters
- CPU: [Apple M4 Max]

EXAMPLE: CONTROL MOMENT GYROSCOPE

• self-scheduled LPV model: 2000 training + 2000 test data generated by NL system + noise

Q.
5555

	\hat{n}_{x}	\hat{n}_{z}	BFR train.	BFR test	type	time
best achievable	5	-	98.16%	98.19%	sim	-
plant only	5	0	97.61%	96.50%	sim	47.54 s
combined	5	2	81.96%	83.78%	sim	67.19 s
combined	5	-	97.56%	97.64%	pred	07.195
SUBNET	5	0	97.28%	96.40%	sim	\approx 10 h

- Training: jax-sysid
- 1000 Adam + 10000 L-BFGS iters
- CPU: [Apple M4 Max]

nonlinear model: (same dataset)

	\hat{n}_{x}	\hat{n}_{z}	BFR train.	BFR test	type	time
best achievable	5	-	98.16%	98.19%	sim	-
plant only	5	0	96.75%	96.12%	sim	42.10 s
combined	5	2	96.66%	96.12%	sim	47.78 5
Combined	5	2	97.82%	97.84%	pred	47.703

CONCLUSIONS

- © Extremely flexible (model structure, loss functions, regularization terms)
- © Faster convergence/better models than with classical GD methods (like Adam)
- ② Numerically very robust (even to get linear state-space models!)
- (2) Non-convex problem: multiple runs often required from different initial guesses

• Current research:

- How to get good-quality training data (active learning) (Xie, Bemporad, CDC, 2024)
- Augmented Lagrangian methods for non-smooth nonlinear optimization with constraints (Adeoye, Latafat, Bemporad, 2025)

ERC Advanced Grant "COMPACT" (2024-2029)

