EFFICIENT NUMERICAL OPTIMIZATION
METHODS FOR LEARNING NONLINEAR
STATE-SPACE MODELS

Alberto Bemporad

imt.lu/ab

OOOOOO

l MT AAAAAAAAAAA 7
e ODV'S
LUCCA

33rd ERNSI Workshop on System Identification - Bordeaux, September 24, 2025


imt.lu/ab

CONTENTS OF MY TALK

1. Optimization methods for learning nonlinear state-space models

2. | jax-sysid : A Python package for nonlinear system identification
3. Concurrent learning of nonlinear models and control invariant sets
4. Learning (static) parametric convex functions from data

5. Learning combined process and noise models in nonlinear state-space form

(€) 2025 A. Bemporad - Efficient methods for learning NL models 1/40



LEARNING CONTROL-ORIENTED NONLINEAR MODELS

"All models are wrong, but some are useful."

(George E. P. Box)



CONTROL-ORIENTED MODELS

e A complex model implies a complex model-based controller

We typically look for small-scale models (e.g., < 10 states/inputs/outputs)
with a limited number of coefficients (<1k params vs >300B of LLMs)

Limit nonlinearities as much as possible (e.g., avoid very deep neural networks)

Need to get the best model within a poor model class from a rich dataset
(= limited risk of overfit, under proper excitation)

Computation constraints: solve the learning problem using limited resources
(=our laptop, no supercomputing infrastructures)

Learning control-oriented models of dynamical systems requires

different algorithms than typical machine learning tasks
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NONLINEAR SYS-1D BASED ON NEURAL NETWORKS

e Neural networks proposed for nonlinear system identification since the ’90s

¢ NNARX models: use a feedforward neural network (FNN) to approximate the
nonlinear difference equation y; & N (Y1, -, Yt—ny, Ut—1s-- -5 Ut—n,)

e Neural state-space models:

- w/ state data: fit a neural network model Yis ors Yomrs Yoets o Yons
Tep1 & N (me,ue), ye = Ny(xt) 0000000 0000000
decoder| . D [ D
0000 é 0009
- |I/Odataonly: af— Ol i —
. t O state t
e 1z =inner layer of a FNN ©000 pdate. /OOOO
encoder [,/ E e E
e Autoencoders 0000000 0000000
t t
Yers oo Ypen Upe Yks =++s Ykent1
e SUBNETS Upsy ooy Uy Uy o Ui

e Usually minimize the open-loop prediction error to get a good prediction model
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RECURRENT NEURAL NETWORKS

e Recurrent Neural Network (RNN) model: a
z & y
Thp1 = fo(@r, uk, 0z)
Yo = fy(@r,0y)
Sz fy = feedforward neural network v; = Wjfj-1(vj-1) +b;
0= (Wi,by1,..., W5, bL)

(e.g.: general RNNs, LSTMs, RESNETS, physics-informed NN, ...)

¢ Training problem: given an I/O dataset {ug, yo, . - ., un—1,yn—1} SOlve

N—-1

. 1
min r(zo,0z,0y) N (Y fy (T, 0y))
=

o

s.t. Th41 :fm(mkauk791)

e Mainissue: x;, are hidden states and hence also unknowns of the problem
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OPTIMIZATION METHODS FOR TRAINING RNNS

e Problem condensing: substitute z1 = f(zx, ux, 6, ) recursively and solve

N—
1 :
o uin (0, 0, 0y) + e fy(wr,6y)) =, min V(0r, 0y, 0)

k:O

,_.

o Gradient descent (GD) methods: update 8., 6,,, z¢ by setting

0,0+ 0.t
t t t .t
6, | = |:9y{:| — o, VV (0, 0y v:L'O)
xft zh

Example: Adam uses adaptive moment estimation to set the learning rate o

e Main issue with GD methods: slow convergence (in theory and in practice)
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OPTIMIZATION METHODS FOR TRAINING RNNS

e Quasi-Newton methods: good tradeoff between convergence speed / solution
quality and numerical complexity. Only requires the gradient VV(cht7 Hyt, xh)

e Extended Kalman Filtering (EKF): a recursive Gauss-Newton method for
learning nonlinear models online
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ONLINE LEARNING VIA EXTENDED KALMAN FILTERING



TRAINING RNNS BY EKF

o Key idea: treat the parameters of the feedforward NNs as constant states and
iterate an EKF on the training dataset:

Tht1 = fol(Tr, Uk, Ouk) + &k Q = Var[n]
[ Oz(k+1) } — Ok + Rt = Var(Gd]
Oy (k+1) Oyk Py = Var HZ; H

o

ye = fy(@r, Oyr) + G

e Theratio )/ R determines the learning-rate of the training algorithm

The model 8, §,, can be learned offline by processing a given dataset multiple

nd also adapted on line from streaming data (ug, yx )

e Generalization: train via Moving Horizon Estimation (MHE) instead of EKF
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TRAINING RNNS BY EKF

e EKF can be generalized to handle general strongly convex and smooth loss
functions ¢(yx, Jx)

e Strongly convex smooth regularization terms r(xo, 6, 8,) can be handled
similarly

e Canhandle /;-penalties \ H [gz } H1 useful to sparsify 6, 8, by changing the
EKF update into
#(k|k) #(k|k—1) 0
[%(kk)} = [%(kkl)]—kM(k)e(k)—)\P(kk -1) [sign(ﬁx(k’kl))]

0y (k|k) 0y (k|k—1) sign(0, (k|k—1))
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TRAINING RNNS BY EKF - EXAMPLE

e Example: magneto-rheological fluid damper
N=2000 data used for training, 1499 for testing the model

o RNN model: 4 states, shallow NNs w/ 4 neurons, |/O feedthrough

R gl e MSE loss on training data,
EKF
At mean value (std) over 20 runs
from different random initial
g weights
BFR=100(1 — 45=2)
L — T BFR (Best Fit Rate) training test
training time ()~ NAILS 94.41(027) | 89.35(2.63)
NAILM 94.07 (0.38) 89.64 (2.30)
NAILS = GNN method with line search (offline) AMSGrad 84.69 (0.15) | 80.56(0.18)
EKF 91.41(0.70) | 87.17 (3.06)

NAILM = GNN method with LM steps (offline)
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TRAINING RECURRENT MODELS VIA L-BFGS




SYSTEM IDENTIFICATION PROBLEM

e Class of nonlinear dynamical models (e.g., RNNs w/ linear bypass):

Te+1 = Axk + Bug + fo(zr, uk; 02) Special cases:

gr = Czy + Dui + fy (xk,uk; ey) Linear model, RNN, ..

e Loss function (open-loop prediction error + regularization)

1 N—1 Z= [ag)]
MmNz o, 25y T(Z) + N kz E(yk’ Cxi + Duy + fy(l’k,uk; 91/)) ggg
s.t. Tr+1 = Axg + Buk + fo (xk, Uk; O ) o= g(;‘)
k=0,...,N—2 e(w')

9?4

—
e Condense the problem by eliminating the hidden states x;, and get
min f(z)+r(z) (nonconvex) nonlinear programming (NLP) problem
z
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NLP PROBLEM

o If f and r differentiable: use any state-of-the-art unconstrained NLP solver,
e.g., L-BFGS (Limited-memory Broyden—Fletcher—Goldfarb—Shanno)

o The gradient V f(z) can be computed efficiently by automatic differentiation
di’x OPyTorch  ° l'\ > CasADi ©9 Zygote

e However, sparsifying the model requires non-smooth regularizers:

r(z) =7zl rg(2) =74 32001 [Hizll2

{1-regularization 3rouF—Lo.sso ,aevxo.LEv

e Group-Lasso penalties can be used for reducing:

the number of states

the number of inputs

the number of neurons in each layer of f., fy
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HANDLING NON-SMOOTH REGULARIZATION TERMS

1 Ifr(z) = >, ri(z;) and r;’s are convex & positive semidefinite, the .

{1 -regularized problem can be recast as a bound-constrained NLP:

min f(z)+7 |z +r(z) Join fly—2)+7(l . A2 (y)+r(=2)

x*:y*_z*

2 well-reqularized

Example: () = |[z[|3 thenr(y) +r(—2) = [|[Z]|;
augmented Probtam
2. If r(z) is convex and symmetric wrt each component z; and
increasing for x > 0,and 7 > 0, then we can solve instead

. ¥ r(z) differentiable for z # 0 then
min —2)+7[1 . 1Y 4+ r(y+2 ‘

y,leOf(y )+l [E]+r(y+2) r(y + z) differentiable if any y;,z; >0
Example: r(z) = group-Lasso penalty + constraint y, z > € = machine precision

(€) 2025 A. Bemporad - Efficient methods for learning NL models 12/40



JAX-SYSID LIBRARY

e Python package to identify linear/nonlinear/static models:

numpy as np jaX'SySid

jax_sysid.models Model

state_fecn (x,u,params): s&a&e—updo&e function, z(k + 1)

output_fen (x,u,params):  oubput function, y(k)

model = Model (nx, ny, nu, state_fcn=state_ fcn, output_ fcn=output_fcn)
model.init(params=[A,B,C,W1l,W2,W3,bl,b2,W4,W5,b3,bd])
model.loss(rho_x0=1.e-4, rho_th=l.e-4, tau_th=l.e-4)
model.optimization(adam_epochs=1000, lbfgs_epochs=1000)

model.fit(Y, U)

Yhat, Xhat = model.predict(model.x0, U)

P pip install jax-sysid github.com/bemporad/jax-sysid

norad - Efficient methods for learning NL model:
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JAX-SYSID LIBRARY

e Python code for testing the model:

jax_sysid.utils compute_scores

x0_test = model. learn_x0 (U_test, Y_test)
Yhat_test, Xhat_test = model.predict(x0_test, U_test)

R2_train, R2_test, msg = compute_scores(Y, Yhat, Y test, Yhat test, fit='R2'")
(msg)

Use multiple passes of EKF & Rauch-Tung-Striebel smoothing to estimate xz

e Python code to identify a linear time-invariant model:

jax_sysid.models LinearModel

1 = Li ‘Model
mode inearModel (nx, ny, nu) Tpal = ALk +Buk
model.loss(rho_x0=1.e-3, rho_th=l.e-2)
model.optimization(lbfgs _epochs=1000) Yp = C:L‘k + Duk

model.fit(Y,U)
Yhat, Xhat = model.predict(model.x0, U)
9 = (A,B,C, D)

A,B,C,D = model.ssdata()
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EXAMPLE: LINEAR SYSTEM IDENTIFICATIO

e Cascaded-Tanks benchmark:
z = (4, B,C, D, xg), mean-squared error loss + {5-regularization

R2 (training) R2 (test)
ng lbfgs s:'Lppy1 MATLAB 2 lbfgs sippy MATLAB
1 87.43 56.24 87.06 8322 52.38 8318 (ssest)
2| 9407 2897 93.81 92.16 23.70 9217 (ssest)
3| 9407 74.09 93.63 92.16 68.74 9156 (ssest)
4 | 9407 4834 92.34 92.16 4550 90.33 (ssest) .
5 | 9407 90.70 93.40 9216 89.51 80.22 (ssest) 1024 training data
6 94.07 94.00 93.99 9217 92.32 8849  (n4sid) 1024 test data
7| 9407 92.47 93.82 9217 90.81 <0 (ssest) (standard scaling)
8 | 9449 <0 94.00 89.49 <0 <0 (n4sid)
9 | 9407 <0 <0 92.17 <0 <0 (ssest)
10 | 94.08 93.39 <0 9217 92.35 <0 (ssest)

CPU time: 2.4 5 (Ibfgs), 30 ms (sippy), 50 ms (n4sid/pred.), 0.3 s (ndsid/sim.), 0.5s (ssest) [Apple M1 Max]
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LINEAR SYSTEM IDENTIFICATION W/ STABILITY CONSTRAINTS

e Stability: 3P = 0st. P = A/PA & 1> A'AforA=T"1'AT, T'T =P
e Wetryenforcing || Al[o < 1 viathe penalty p max{[[A[|2 — 1 + e, 0} (wlog)

e Example: 1000 training + 1000 test data generated by the unstable LTI system

1.0001 05 05 B,C e N(0,1)
Tp41 = 0 09 —0.2 |z, + Bug + & € € N(0,0.012),¢, € N(0,0.052)
0 0 0.7

1 1
yr = Czp + 21 uk €U[=3, 5]

° Training setup: model. force_stability (rho_A=l.e3, epsilon_A=l.e-3)

- pa=10%e4 =10"3 BFR (Best FitRate) | training test
98.2930 | 91.7369

- 3000 Adam +5000 L-BFGS iters

_ (PUtime~3.36's [Apple MA Max] Eigenvalues of identified matrix A:

0.99997,0.92747,0.59781
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QUASI-LPV MODEL IDENTIFICATION

e Quasi-Linear Parameter Varying (qLPV, a.k.a. “self-scheduled” LPV) models:

pi = scheduling parameter
Trr1 = A(pr)zk + B(pr)uk

yr = Cpr)zr + D(pr)us model parameters:
pk - f(xkvulme ) A(),B(),C(),D(]
A(pr) B(px) ] _ [4o B [45 5] pr 0= :
[cm) D(pk)} Ew +Z ct by Pri An,,, Bn,,,Cny,, Dn,,
0?

Example: p, = f(zk, ug; 0) = FNN with sigmoid output layer (= 0 < pg; < 1)
e (g)LPV models are a very powerful class of control-oriented nonlinear models
from jax_sysid.models import gLPVModel

model = qLPVModel (nx, ny, nu, npar, glpv_fcn, glpv_params_init)
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EXAMPLE: QLPV MODEL IDENTIFICATION

e Generate 5000 training data and 1000 test data from the NL dynamics
0.5sin(z1x) + 1.7 cos(0.5zo )uk

Trt1 = | 0.6sin(z1x + x3;) + 0.4 atan(z1y + xo) | + &k
0.4e %2k + 0.9sin(—0.5z1% )ug

Y = atan(2.2z3, ) 4 atan(1.823, ) + atan(—z3,) + 2,

where &, 2, € N'(0,0.01%) and uy, uniformly generated in [— 3, 3]

e p;. = 2-layer FNN (6 neurons each) + swish activation + sigmoid output function

¢ Training results: Best Fit Rate | Best FitRate | CPU time
model | mp | training data test data (s)
- 1000 Adam + 5000 L-BFGS iters LTI 0 71.35 71.36 13
_ . qLPV | 1 93.57 93.55 20.1
CPU time measured on  [Apple M4 Max] QP | 2 9557 9551 56
gLPv | 3 96.04 95.94 264
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COMBINED LEARNING OF MODEL AND INVARIANT SETS

Goal: learn a model for control design under constraintsy € )V, u € U

¢ Self-scheduled LPV model: 2 - "

Tpp1 = A(p(zr))zr + B(p(zk))uk [3](p) = Z (5] pi

i=1
yr = Cy,
p(xy) = softmax(Ny(xk), ..., Ny, (21)) 0 <pri <1, Zpki =1
i=1

e Uncertain predictions: z441 € conv(A;xz; + Biug, i =1,...,np)
e Controlinvariantset R:Vx € R,Ju e Ust. Ajizx + Biu e RVi=1,...,n,
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COMBINED LEARNING OF MODEL AND INVARIANT SETS

¢ Key idea: add regularization term r(6) in training problem (6 = model coeffs):

r(0) = m}%n conservativeness(R) -7(0) < oo = 3 control invariant set R

-small (6) = less conservative R
st. C-ReWC)Yy

- qLPV + polytopic sets = 7(#) differentiable
R control invariant

e Example: 1.5 + ¢ + y + 1000y = u

10,000 training + 2,000 disturbance-set estimation data | v o N

5
0

— 5 — -

t—=0.0 25 50 75 10.0 12,5 150 17.5
1.0

learned model: n, = 4 states, n,, = 6 scheduling params
p-function = shallow FNN with 3 neurons

7(0) almost does not perturb quality of fit

-0 05 0.0 05 10
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INDUSTRIAL ROBOT BENCHMARK

¢ KUKA KR300 R2500 ultra SE industrial robot,
full robot movement

e 6inputs (torques), 6 outputs (joint angles), w/ backlash,
highly nonlinear and coupled, slightly oversampled
(lyx — yr—1]| is often very small)

e |dentification benchmark dataset (forward model): TN
nonlinearbenchmark.org

- Sample time: Ts = 100 ms
- N =39988 training samples
- Niest = 3636 test samples

o Very challenging NL-SYSID benchmark onnonlinearbenchmark.org
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INDUSTRIAL ROBOT BENCHMARK: RESULTS

e Stater € R'?, f,, f, with 36 and 24 neurons, swish activation fcn e

e Total number of training parameters: dim(6,,) + dim(6,)) = 1590

H
1)
S

percentage of zeros

—— R2(test data)
—R2(trainingdata) |,
% zeros in model

(%)% (best B2 in 30 runs)

40

1

:T:OAOOS

1074 10-3 1072 1071 10°
T

¢ Model quality measured by average R?-score on all outputs:

pro b nzy 100 (1~ > ney Wk — Gr.i)’
Ny i3

N N
> 1 Yk — % D et Yki)?

e Training time ~ 12 min per run on a single core [Apple M1 Max]
(3192 variables, 2000 Adam iterations + 2000 L-BFGS-B iterations)
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INDUSTRIAL ROBOT BENCHMARK: RESULTS

e Open-loop simulation errors (p = 0.01, 7 = 0.008):

R? (training) R? (test) R? (training) R? (test)
RNN model ~ RNN model | linear model linear model
average 77.1493 57.1784 48.2789 43.8573 jax-sysid

e More parameters/smaller regularization leads to overfitting training data

e Pure Adam vs LBFG-B+Adam vs OWL-QN 2 (7 = 0.008)
adam fcn R? R? # zeros CPU
solver iters | evals | training test (0z,0y) | time(s)

L-BFGS-B | 2000 | 2000 | 77.1493 | 57.1784 | 556/1590 | 309.87
OWL-QN 2000 | 2000 | 74.7816 | 54.0531 | 736/1590 | 449.17
Adam 6000 0 | 71.0687 | 54.3636 1/1590 | 389.39

e Adam is unable to sparsify the model
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OTHER FEATURES OF JAX-SYSID LIBRARY

e Parallel training: train models from different initial guesses (z¢, 6)

from jax_sysid.models import find_best_model
models = model. parallel_ fit (Ys, Us, init_fcn=init_fcn, seeds=range(10))

best_model, best_R2 = find best_model (models, Ys_test, Us_test, fit='R2'")

e Multiple training datasets: (u,y%), k=0,...,N;—1, i=1,...,.M

model.fit( [¥sl, ..., ¥sM],[Usl, ..., UsM] )

e Staticgain: §ss = yss Whenzgs = [ (Zss, Uss, 0)

dcgain_loss = model. dcgain_loss (Uss = Uss, ¥Yss = ¥Yss)
model.loss(rho_x0=1.e-3, rho_th=l.e-2, custom regularization = dcgain_loss)

(for linear models: can also specify the desired DC gain §jss = Gugs directly)
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OTHER FEATURES OF JAX-SYSID LIBRARY

e Custom output loss £(§, y)

eps = l.e-4

def cross_entropy_loss(Yhat,Y):
loss=jnp.sum(-Y*jnp.log(eps+Yhat)-(1.-Y)*jnp.log(eps+1l.-Yhat))
return loss

model.loss(rho_x0=0.01, rho th=0.001, output_loss =cross_entropy_loss)

e Custom regularization (6, x¢)

def custom_reg_fcn(th,x0):
return 1000.*jnp.maximum(jnp.sum(th**2)-1.,0.)**2

model.loss(rho_x0=0.01, rho_th=0.001, custom_regularization = custom reg_ fcn)

e Upper and lower bounds on parameters and states

model.optimization( params_min =1b, params_max =ub, x0_min=x1l, =x0_max=xu, ...)

IE Cff
0075
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OTHER FEATURES OF JAX-SYSID LIBRARY

o . . class FX(nn.Module):
e RNN models describedin flax.linen e ——

def _ call_ (self, x):

flax linen as nn x = nn.Dense(features=5) (x)
- . X = nn.swish(x)
]axﬁsys:.d.models ISR X = nn.Dense(features=5) (x)
X = nn.swish(x)
model = RNN (nx, ny, nu, FX=FX, FY=FY, x_scaling=0.1) x = nn.Dense(features=nx) (x)
return x
e Continuous-time models © = f(z,u,t),y = g(x,u, t)
jax_sysid CTModel
model = CTModel (nx, ny, nu, state fcn=state_fcn, output_fcn=output fcn)

e Static models § = f(z) (=standard nonlinear regression)

jax_sysid StaticModel

model = StaticModel (ny, nx, output_fcn)

Example: NARX model g, = f(Yk—1,- -+ Yk—nys Uk—1y - -« s Uk—ny )
(minimize 1-step-ahead prediction error y;, — )
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LEARNING PARAMETRIC CONVEX FUNCTIONS



PARAMETRIC CONVEX FUNCTIONS

e Goal: learn a parametric convex function (PCF) data convex ftting

from data (., O, yi)
y=f(z.0) RO - R’

with f(x, #) convex wrt the variable x € R"
for each parameter 6 € ©

o Use: optimize f wrt x for each given 6 in production
o Example: f(z,0) = 32'F'(0)F(0)x + c(6)z + h(0)

e Several input-convex NN architectures have been proposed in the literature
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NEURAL PCF ARCHITECTURE

e f=neural network with weights V*(0), W*(9), biases w’(#), and activation ¢

’ ! ! o !

o {0 o
oo ) rof—o—(o s o} -o— v

|=® 0 e

o — :::w

o Vi W W' generated by another network 1 (to be learned)

e Activation function ¢ is nondecreasing and convex (e.g., ReLU, softplus)

e The weights W(f) are elementwise nonnegative for all §
f(z,0) convex for all

5A. Bemporad - Efficient methods for learning NL models 28/40



NEURAL PCF ARCHITECTURE

e The NN v is nonlinear re-parametrization from 6 to the PCF weights

; 2 M 171 M 1 M
e ¢ has weights w = (Ww,...,Ww Voo s Vi s wys oo Wy )
0 W]
v} Vi &3 wh
Vl
2 M
& @ 5 Wi @ zz | W ’ VL
1
wy w w o
U.)L

e The last layer of 1) makes W(6) elementwise nonnegative V¢

Examples: W*(6) = max(V,)'0 + W, M "+ wy,0)
Wz(e) ( 9+ M M 1+ww )2
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THE LPCF PACKAGE

e Open-source package for fitting a PCF to given data
P pip install lpcf https://github.com/cvxgrp/lpcf

Customizable neural network architecture

Customizable loss and regularization

Relies on jax_sysid (Adam + L-BFGS) for training

Returns the PCF f as

- aJAXfunction for fast evaluation (and differentiation)

- aCVXPY expression for use in optimization models
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USING THE LPCF PACKAGE

from lpcf.pcf import PCF

# observed data

Y = ... # shape (N, d)

X = ... # shape (N, n)
Theta = ... # shape (N, p)

# fit PCF to data
pcf = PCF()

pcf.fit(Y, X, Theta)

# export PCF to CVXPY
X = cp.Variable((n, 1))

theta = cp.Parameter((p, 1))

y = pcf.tocvxpy(x, theta) # CVXPY expression

prob = cp.Problem(cp.Minimize(y + ...

f = pcf.tojax() # JAX function f(z,0)

Bemporad - Efficient methods for learning

))

Additional features:

add (convex) quadratic term to the
neural network

require f to be monotonein x
require f to be nonnegative

require arg min,, f(z,0) = g(0)
for a given function g

fit a parametrized convex set
C(0) ={z| f(z,0) <0}
(convex classification problem)




EXAMPLE: APPROXIMATE DYNAMIC PROGRAMMING (ADP)

Consider the input-affine nonlinear system

T+1 :F(xt,9)+G(xt,9)ut, t:O717

e () are measured parameters (e.g., physical quantities)

e Goal: for each given initial state xg, find ug, u1, . . . that minimize
oo
E H xtautu — fEO,'LL(), + E H xtuuh
t=0
(/03’\/ 4’0 %0

ADP controller (i.e., MPC with horizon N = 1):

uy = argmin,, (H(z¢,u,0) + f(F(x¢,0) + G(z,0)u,0)), t=0,1,...

Convex problem if f(x, ) = PCF approx of y = J(z, ) and H convex inu
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EXAMPLE: APPROXIMATE DYNAMIC PROGRAMMING (ADP)

e Example: swing up inverted pendulum (-
x = [0,8]',6 = m > 0 (mass)

e Solve nonlinear optimal control problem
150

()) = ZH(xt,ut,H)

on 1000 data points (xx, 0y, 0y € [0.5,2],8; € [-7/6,77/6], 61 € [-1,1]

e Fit PCF f(z,0) and use CVXPY to solve the ADP problem online

Convex ADP vs nonlinear optimal control Closed-loop control

Y ——
100 e training data e ?j,;’ o nonlinear
test data .if;{,’rd —f 2 ADP
A =
3 V
RN % ol
g 4
S ’;}t 0 1 2 3
< y 100
4 > —
= > o F 50 nonlinear
0 # Z o ADP
=
o 0 \—
0 50 100 0 1 2 3
u; (nonlinear) time [s]
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LEARNING COMBINED PROCESS & NOISE MODELS



PROCESS AND NOISE MODELS

e Role of stochastic noise models, combined with process models, is well
understood for linear systems

e Goal: extend the use of noise models to general nonlinear state-space models
(RNNs, gLPVs, ...

e Model structure: Yk = Yo,k + Vk data generating system
¢
a . 1 = [x(Tr, up) P fa(Zs iy uk, €1)
o - o -
Yo,k = gx(xlm uk) VE = gz(zka Tk, uk) + e

process model noise model
e Since e, = v — g,(2k, Tk, ui ), we also get the inverse noise model

. {Zk—H = fu(2k, Thy uk, V& — G2k, Thy Uk))
HI

€k = Vg — gz(zka Hiimuk)
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MODEL PARAMETERIZATION AND TRAINING PROBLEM

e Training dataset: N samples (ug, Yo, - -, UN—1,YN—1)
e Parametric process + noise model and prediction error:

i1 = fx(Tr, Uk, Ox)

Zkr1 = [z (ik, Thy Uk, Yk — gx({f?k, Uk, Hy)7 QZ) inverse noise-model update

égred =Y — gx(.i‘k, U, ey) — gy (ik, Th, Uk, Qe) ona—s&ep—ahead predic&ion error

e (Regularized) prediction-error minimization (PEM) problem:

N-1
. 1 ~pred > 2 2
min N Z |erre ||§ + R(0, %0, 20) 0 = (0x,0y,0,,0c)
k=0

0,20,20

e Special cases: LTI, LPV (ext.-scheduled, self-scheduled), nonlinear models
e Under suitable assumptions, consistency can be provedas N — oo

(Y IE A
(C) 2025
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EXAMPLE: UNBALANCED DISK SYSTEM

e

o Systemdynamics: & = — L + Kmqy — ™ 5in(q)

\

e LTI model: 2000 training and test data generated by linearized system + noise

Nk | T, | BFR train. | BFR test | type | time _ Training' jax-sysid
bestachievable| 2 | 1 | 7212%| 68.13%) sim ) .
7766%| 72.85%|pred| - ~ 10000 L-BFGS iters
plant only 210 72.03% | 68.08% | sim |0.13 s
. 2 [ 1] 72.02% 68.08% | sim - (PU: [Apple M4 Max]
combined 2| 1| 77.67%| 72.84% | pred | 9343
n4sid (s) 2 0.33%| 0.56%| sim |0.15s
. 61.21% | 54.49% | sim
n4sid (p) 31| 7563%| 70.46% |pred| %" S
ssest (s) 2| - 133% | 1.37%| sim |0.47s
64.23% | 58.02% | sim
ssest (p) 31| 7631%| 71.43% | pred | 920°
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EXAMPLE: UNBALANCED DISK SYSTEM

s =

- Training: jax-sysid

o self-scheduled LPV model: 2000 training + 2000 test data
generated by NL system + noise

-

\ﬂ

nix | T, | BFR train. | BFR test | type | noise | time

9 9
best achievable | 2 | 1 89.32% | 90.11% | sim | LPV

91.24% | 91.86% |pred | LPV - — 1000 Adam +
plant only 210 87.73% | 86.45% | sim - |10.06s .
. 10000 L-BFGS iters
0 0
combined 51 85.19% | 86.19% | sim | LTI 1291

90.92% | 91.46% |pred| LTI

. 85.60% | 86.56% | sim | LPV
combined 21 9096%| 91.51% | pred | Lpv | 18823

- (PU: [Apple M4 Max]

e nonlinear model: (same dataset)

n, | BFR train. | BFRtest | type time
89.32% | 90.11% | sim
91.24% | 91.86% | pred -
0 89.33% | 89.89% | sim | 10.24s
89.23% | 89.83% | sim

V1 91.05% | 91.39% | pred | 1131

plant only

Mx
best achievable | 2 1

2

2

combined
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EXAMPLE: CONTROL MOMENT GYROSCOPE

o Data generated by high-fidelity CMG simulation model
,red gymbal locked, 1 input, 1 output

e 10,000 training data + 30,000 test data (SNR = 35dB in both datasets)

e LTI model:
Nk | M, | BFRtrain. | BFRtest | type time _ Trainmg: jax-sysid
best achievable | 5 - 98.16% | 98.19% | sim -
plant only 8 0 3599% | 25.28% | sim | 3.50s — 10000 L-BFGS iters
combined 8 2 34.46% | 29.91% | sim 873
8 | 2 97.17% | 97.12% | pred - (PU: [Apple M4 Max]
n4sid 8 0 29.72% | 20.98% | sim | 0.85s
n4sid 0| 0 34.76% | 22.45% | sim | 1.05s
ssest (s) 8 0 35.48% 24.70% | sim 2.05s
ssest (p) 10 0 33.51% 26.88% | sim 3.06s
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EXAMPLE: CONTROL MOMENT GYROSCOPE

o self-scheduled LPV model: 2000 training + 2000 test data
generated by NL system + noise

ik | N, | BFR train. | BFR test | type | time
best achievable | 5 98.16% | 98.19% | sim - _ Training: jax-sysid
plant only 510 97.61% | 96.50% | sim | 47.54s
. 81.96% | 83.78% | sim - 1000 Adam + 10000 L-BFGS iters
combined 512 97.56% | 97.64% | pred 67.19 s
SUBNET 5|10 97.28%]| 96.40% | sim | ~10h - (PU: [Apple M4 Max]

e nonlinear model: (same dataset)

ik | N, | BFR train. | BFR test | type time
best achievable | 5 98.16% | 98.19% | sim -
plant only 510 96.75% | 96.12% | sim |42.10s
5
5

2 96.66% | 96.12% | sim

combined 2| 97.82% | 97.84% | pred

47.78 s
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CONCLUSIONS



CONCLUSIONS

¢ Quasi-Newton methods for SYS-ID enabled by powerful autodiff libs m
© Extremely flexible (model structure, loss functions, regularization terms)
© Faster convergence/better models than with classical GD methods (like Adam)
© Numerically very robust (even to get linear state-space models!)

Non-convex problem: multiple runs often required from different initial guesses

e Currentresearch:
- How to get good-quality training data (active learning)

- Augmented Lagrangian methods for non-smooth nonlinear optimization with
constraints
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