EFFICIENT LEARNING ALGORITHMS
FOR MODEL PREDICTIVE CONTROL

Alberto Bemporad

imt.lu/ab

OOOOOO

Al4l-CPS-IAS - Torino, September 16, 2025

imt.lu/ab

INDUSTRIAL AUTOMATION AND CONTROL SYSTEMS MARKET

Automotive sector
Aeronautics
Aerospace
Military sector
Manufacturing
Chemicals
Pharmaceuticals
Paper production
Mining & metals
Medical devices
Financial engineering
Electrical systems
Water resource management
Environmental systems

Logistics

2023/2024 Forecast
World! | USD 206bn (2024) | USD 379bn (2030)
Italy? usD 5bn (2023) | USD 11.4bn (2033)

1 grandviewresearch.com 2.'=1pv:>11c>rr.cv:m\

(€) 2025 A. Bemporad - Efficient learning algorithms for MPC 1/40

grandviewresearch.com
apollorr.com

CONTROL SYSTEMS DESIGN METHODS

model predictive control machine learning

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

PID control nonlinear control system identification

A

985 1990 1995 2000 2005 2000 2015 2020 575 1980 1985 1990 1995 2000 2005 2010 2015 2020 1670 1975 190 1985 1990 1995 2000 2005 2010 2015 2020

(source: https://books.google.com/ngrams)

MPC and ML = main R&D trends in industry for control systems design

(C

5A. Bemporad - Efficient learning MP(2/40

MODEL PREDICTIVE CONTROL (MPC)

prediction optimization
¢ algorithm ¢
controller : :
/ process
set-points inputs =\ outputs
r(t) u(t))
-==- r(t)
T measurements it)

time t

e Mainidea: At each sample step, use a (simplified) dynamical
(M)odel of the process to (P)redict its future evolution and
choose the “best” (C)ontrol action accordingly

(€) 2025 A. Bemporad - Efficient learning algorithms for MPC 3/40

MODEL PREDICTIVE CONTROL

e MPC algorithm:

fqture ()

N-1
. 2 2
min 3 fluk — (13 + plluk — ur (D)3
Ug; -+ -, UN—1 k=0

st. xpi1 = f(zr, uk) pradic&tom model

yr = g(Tk)

Umin < Uk < Umax conskraints
Ymin S Yk S Ymax

xo = x(t) state feedbm:k

past

//‘
-

=1

numerical optimization problem

It+1 t+1+k t+N+1
@ estimate current state z(t) /"
@ optimizewrt {uo,...,un_1}
e only apply optimal ug as input u(¢) Repeat at all time steps ¢
4/40

o algorithms for MPC

2025 A. Bemporad - Efficient learning

MPC IN INDUSTRY

e Conceived in the 1960s

e Used in the process industries since the 1980s
o Now massively spreading to the automotive industry and other sectors

¢ MPC by General Motors and ODYS in high-volume production since 2018
(3+ million vehicles worldwide)

First known mass production of MPC

in the automotive industry

and more are underway...

http://www.odys.it/odys-and-gm-bring-online-mpc-to-production

(€) 2025 A. Bemporad - Efficient learning algorithms for MPC 5/40

http://www.odys.it/odys-and-gm-bring-online-mpc-to-production

FOCUS OF MY TALK

-_—— - ~

- -

data collection 7 system \I 7 embedded \I o on
‘\ identification __optimization “g= e

b |

inputs - outputs
MPC) ——
- 3 process
2, - I- % 5
{ model adaptation” |/ <
\ Vi
~ -

Focus of my talk:

1. Learnnonlinear prediction models from data
2. Learndisturbance models online for model adaptation

3. Learn convex functions for reducing online MPC computations

g algorithms for MPC 6/40

(C) 2025 A

Bemporad - Efficient learning

LEARNING CONTROL-ORIENTED NONLINEAR MODELS

"All models are wrong, but some are useful."

(George E. P. Box)

CONTROL-ORIENTED MODELS

o A complex model implies a complex MPC controller

We typically look for small-scale models (e.g., < 10 states/inputs/outputs)
with a limited number of coefficients (<1k params vs >300B of LLMs)

Limit nonlinearities as much as possible (e.g., avoid very deep neural networks)

Need to get the best model within a poor model class from a rich dataset
(= limited risk of overfit)

Computation constraints: solve the learning problem using limited resources
(=our laptop, no supercomputing infrastructures)

Learning control-oriented models of dynamical systems requires

different algorithms than typical machine learning tasks

(€) 2025 A. Bemporad - Efficient learning algorithms for MPC 7/40

RECURRENT NEURAL NETWORKS

e Neural networks proposed for nonlinear system identification since the '90s

e Recurrent Neural Network (RNN) model: & = .
x Yy
ey = fo(Tn, uk, 0s)
ue = fy(an,0,)
fo, fy = feedforward neural network v =Wilj-1(vj—1)+ b
0= (Wy,b1,..., Wr,br)

(e.g.: general RNNs, LSTMs, RESNETS, physics-informed NN, ...)

¢ Training problem: given an I/O dataset {uo,yo,.. ,UN—1,YN—1} Solve
min r(z0, 04, 0,) Nzey;wfy ., 0y))

st. zpp1 = fo(Tr, ug, 0r)

e Mainissue: 7 are hidden states and hence also unknowns of the problem

5A. Bemporad - Efficient learning algo

rithms for MPC

8/40

GRADIENT DESCENT METHODS FOR TRAINING RNNS

e Problem condensing: substitute z1 = f(zx, ux, 6,) recursively and solve

N-—

1 .

min 7(xg, 0z, 0y) Uyk, fy(xr,0y)) = min V(0,,0,,z0)
0z, 9y xo k;—O 91‘703;7550

,_.

o Gradient descent (GD) methods: update 8., 6,,, z¢ by setting

01t+1 gmt
0, | = [ey‘] -, VV(0,",0," xk)

t+1
x xg

Example: Adam uses adaptive moment estimation to set the learning rate o

e Mainissue: slow convergence (in theory and in practice)

5 A. Bemporad - Efficient learning algorithms for MPC 9/40

GRADIENT DESCENT METHODS FOR TRAINING RNNS

e Stochastic gradient descent (SGD) can be even less efficient with RNNs:

- collect a high number of short independent experiments (often impossible)

- or create mini-batches by using multiple-shooting ideas

o Newton’s method: very fast (2"d-order) local convergence but difficult to
implement, as we need the Hessian V2V (0., 6,", z})

e Quasi-Newton methods: good tradeoff between convergence speed / solution
quality and numerical complexity. Only requires the gradient VV(QQﬂ Gyt, xf)

MPC 10/40

TRAINING RECURRENT MODELS VIA L-BFGS

SYSTEM IDENTIFICATION PROBLEM

e Class of nonlinear dynamical models (e.g., RNNs w/ linear bypass):

Te+1 = Axk + Bug + fo(zr, uk; 02) Special cases:

gr = Czy + Dui + fy (xk,uk; ey) Linear model, RNN, ..

e Loss function (open-loop prediction error + regularization)

1 Nt z=[3]
MiNz,;,..ay_y 7(2) + kz U(yr, Cr + Duk + fy(Th, un; 0y)) 40
s.t. Tr+1 = Axg + Buk + fo (xk, Uk; O) o= g(;‘)
k=0,...,N—2 e(w')

9?4

I—
e Condense the problem by eliminating the hidden states x;, and get
min f(z)+r(z) (nonconvex) nonlinear programming (NLP) problem
z
(€) 2025 A. Bemporad - Efficient learning algorithms for MPC 11/40

NLP PROBLEM

o If f and r differentiable: use any state-of-the-art unconstrained NLP solver,
e.g., L-BFGS (Limited-memory Broyden—-Fletcher-Goldfarb—Shanno)

e The gradient V f(z) can be computed efficiently by automatic differentiation

e However, sparsifying the model requires non-smooth regularizers:

ri(z) =7 |||, rg(2) =174 221 11iz]2

l1-reqularization group-Lasso penalky

e Group-Lasso penalties can be used for reducing:

- the number of states
- the number of inputs

- the number of neurons in each layer of f5, fy

5A. Bemporad - Efficient learning algo VIPC 12/40

HANDLING NON-SMOOTH REGULARIZATION TERMS

1 Ifr(z) = > ri(z;) and r; : R — Ris convex and positive semidefinite, the
{1 -regularized problem can be recast as a bound-constrained NLP:

. . B) L

min f () 47|zl +r(z) min fly=2)+7(1 - A [L+r(y)+r(-2)
x* = y* — Z*

2 well-reqularized

Example: r(z) = |[z[|3 thenr(y) +r(—2) = [[[£][|5

augmented problem

2. If r(z) is convex and symmetric wrt each component z; and increasing for
x > 0,and 7 > 0, then we can solve instead

. f r(x) c\i.ﬂ:erevd:iable {:O\” z # 0 then
min —z)+7[1 .. 1 [Y]+r(y+ ’
y,zlzo f(y Z) T[} [Z] T(y Z) r(y + 2z) differentiable if any yi,z; >0

Example: r(z) = group-Lasso penalty + constraint y, z > € = machine precision

5A. Bemporad - Efficient learning algorithms for MPC 13/40

JAX-SYSID LIBRARY

e Python package to identify linear/nonlinear/static models:

numpy as np jaX'SySid

jax_sysid.models Model
state_fcn(x,u,params): s&c&e-—updo&e function, z(k + 1)
output_fen(x,u,params): output function, y(k)

model = Model(nx, ny, nu, state_fcn=state_ fcn, output_ fcn=output_fcn)
model.init(params=[A,B,C,W1l,W2,W3,bl,b2,W4,W5,b3,bd])
model.loss(rho_x0=1.e-4, rho_th=l.e-4)
model.optimization(adam_epochs=1000, lbfgs_epochs=1000)

model.fit(Y, U)

Yhat, Xhat = model.predict(model.x0, U)

P pip install jax-sysid github.com/bemporad/jax-sysid

orad - Efficient learning algorithms for MPC 14/40

github.com/bemporad/jax-sysid

QUASI-LPV MODEL IDENTIFICATION

e Quasi-Linear Parameter Varying (qLPV, a.k.a. “self-scheduled” LPV) models:

Try1 = Alpr)zr + B(pr)up
yr = C(pr)zr + D(pr)us

A Be0 _ [40 8 408
{C(pi) D(p;:)} [co D?) +Z ci p.] Pri

where p, € R is the scheduling parameter vector, such as

1

Ty = Ly =1

Pki =
where f(xg, ug; 0;) is a FNN with linear output layer and parameters 6;

e qLPV models are a very powerful class of control-oriented nonlinear models

from jax_sysid.models import gLPVModel

model = gLPVModel(nx, ny, nu, npar, glpv_fcn, glpv_params_init)

MPC 15/40

EXAMPLE: QLPV MODEL IDENTIFICATION

e Generate 5000 training data and 1000 test data from the NL dynamics

0.5sin(x1) + 1.7 cos(0.5z2k) ur
Trt1 = | 0.6sin(z1y + x3x) + 0.4 atan(z1x + x2r) | + &k
0.4e"2k 4 0.9sin(—0.5x1%) ug

yr = atan(2.2z%,) + atan(1.825;,) + atan(—z3,) + 2zx

where &, z; € N'(0,0.01%) and uy, uniformly generated in [— 1, 1]
o pi = 2-layer FNN (6 neurons each) + swish activation + sigmoid output function

e Training results:

BestFitRate | BestFitRate | CPUtime
— 1000 Adam + 5000 L-BFGS iters model | mp | training data test data (s)
) LTI 0 71.35 71.36 1.3
- CPUtime measured on [Apple M4 Max] AR 9357 9355 501
gLPV | 2 95.54 95.51 22.6
gLPV | 3 96.04 95.94 264
ns for MP(16/40

(€) 2025 A. Bemporad - Efficient learning algorit

COMBINED LEARNING OF MODEL AND INVARIANT SETS

(Mulagaleti, Bemporad, 2025)

o Goal: learn a model for control design under constraintsy € Y, u € U

o Keyidea: add regularization term r(6) in training problem (6 = model coeffs):

r(0) = mpizn conservativeness(R) -7(6) < oo = 3 control invariant set R

- small (6) => less conservative R
st. C-ReWC)y

- qLPV + polytopic sets = (@) differentiable
VZIIt € R,Elut ceu: Te41 €R

e Example: 1.5 + ¢ + y + 1000y> = u

I AN) i A \ N
10,000 training + 2,000 disturbance-set estimation data =0

.0 25 50 7.5 100 125 15.0 175
0

learned model: n, = 4 states, n,, = 6 stheduling params
p-function = shallow FNN with 3 neurons

7(6) almost does not perturb quality of fit M

(€) 2025 A. Bemporad - Efficient learning algorithms for MPC 17/40

INDUSTRIAL ROBOT BENCHMARK

¢ KUKA KR300 R2500 ultra SE industrial robot,
full robot movement

e 6inputs (torques), 6 outputs (joint angles), w/ backlash,
highly nonlinear and coupled, slightly oversampled
(lyx — yr—1]| is often very small)

e |dentification benchmark dataset (forward model): TN
nonlinearbenchmark.org

- Sample time: Ts = 100 ms
- N =39988 training samples
- Niest = 3636 test samples

o Very challenging NL-SYSID benchmark onnonlinearbenchmark.org

(€) 2025 A. Bemporad - Efficient learning algorithms 18/40

nonlinearbenchmark.org
nonlinearbenchmark.org

INDUSTRIAL ROBOT BENCHMARK: RESULTS

e Stater € R'?, f,, f, with 36 and 24 neurons, swish activation fcn e

e Total number of training parameters: dim(6,,) + dim(6,)) = 1590

H
1)
S

percentage of zeros

—— R2(test data)
—R2(trainingdata) |,
% zeros in model

(%)% (best B2 in 30 runs)

40

1

:T:OAOOS

1074 10-3 1072 1071 10°
T

¢ Model quality measured by average R?-score on all outputs:

pro b nzy 100 (1~ > ney Wk — Gr.i)’
Ny i3

N N
> 1 Yk — % D et Yki)?

e Training time ~ 12 min per run on a single core [Apple M1 Max]
(3192 variables, 2000 Adam iterations + 2000 L-BFGS-B iterations)

MPC 19/40

(€) 2025 A. Bemporad - Efficient learning algorithms f

INDUSTRIAL ROBOT BENCHMARK: RESULTS

e Open-loop simulation errors (p = 0.01, 7 = 0.008):

R? (training) R? (test) R? (training) R? (test)
RNN model ~ RNN model | linear model linear model
average 77.1493 57.1784 48.2789 43.8573 jax-sysid

e More parameters/smaller regularization leads to overfitting training data

e Pure Adam vs LBFG-B+Adam vs OWL-QN 2 (7 = 0.008)
adam fcn R? R? # zeros CPU
solver iters | evals | training test (0z,0y) | time(s)

L-BFGS-B | 2000 | 2000 | 77.1493 | 57.1784 | 556/1590 | 309.87
OWL-QN 2000 | 2000 | 74.7816 | 54.0531 | 736/1590 | 449.17
Adam 6000 0 | 71.0687 | 54.3636 1/1590 | 389.39

e Adam is unable to sparsify the model

orad - Efficient learning algo

5A. Bempe gorithms for MPC 20/40

ONLINE TRAINING VIA EXTENDED KALMAN FILTERING

TRAINING RNNS BY EKF

o Key idea: treat the parameters of the feedforward NNs as constant states and
iterate an EKF on the training dataset:

Tht1 = fol(Tr, Uk, Ouk) + &k Q = Var[n]
[Oz(k+1) } — Ok + Rt = Var(Gd]
Oy (k+1) Oyk Py = Var HZ; H

o

ye = fy(@r, Oyr) + G

e Theratio)/ R determines the learning-rate of the training algorithm

The model 8, §,, can be learned offline by processing a given dataset multiple

nd also adapted on line from streaming data (ug, yx)

e Generalization: train via Moving Horizon Estimation (MHE) instead of EKF

(€) 2025 A. Bemporad - Efficient learning algorithms 21/40

TRAINING RNNS BY EKF

e EKF can be generalized to handle general strongly convex and smooth loss
functions ¢(yx, Jx)

e Strongly convex smooth regularization terms r(xo, 6, 8,) can be handled
similarly

e Canhandle /;-penalties \ H [gz } H1 useful to sparsify 6, 8, by changing the
EKF update into
#(k|k) #(k|k—1) 0
[%(kk)} = [%(kkl)]—kM(k)e(k)—)\P(kk -1) [sign(ﬁx(k’kl))]

0y (k|k) 0y (k|k—1) sign(0, (k|k—1))

5A. Bemporad - Efficient learning algorithms for MPC 22/40

TRAINING RNNS BY EKF - EXAMPLE

e Example: magneto-rheological fluid damper
N=2000 data used for training, 1499 for testing the model

e RNN model: 4 states, shallow NNs w/ 4 neurons, |/O feedthrough

NAILS AMSGrad

R MSE loss on training data,
e mean value (std) over 20 runs
from different random initial

<] .
2. weights
_ Y =¥,
BFR=100(1 — 45=2)
—_ b BFR (Best Fit Rate) training test
training time (s) training time (s) NAILS 94.41 (0.27) 89.35(2.63)
NAILM 94.07 (0.38) | 89.64(2.30)
NAILS = GNN method with line search AMSGrad 84.69(0.15) | 8056(0.18)
) EKF 91.41(0.70) | 87.17(3.06)
NAILM = GNN method with LM Steps -BFGS 93.19 (0.46) | 90.33(0.46)
(€) 2025 A. Bemporad - Efficient learning algorithms for MPC 23/40

TRAINING RNNS BY EKF - EXAMPLE

e RNN model: 4 states, shallow NNs with 6 neurons each,
atan activation, I/O feedthrough

e Compare BFR wrt NNARX model (SYS-ID TBX):
EKF=92.82, Adam = 89.12, NNARX(6,2) = 88.18 (training)
EKF=89.78, Adam = 85.51, NNARX(6,2) = 85.15 (test)

o Repeat EKF-based training with /1 -penalty 7 H {zw] H
vl

& s

= 81 _BFR (test data)

5 g0 H—— BFR (training data)

/M s percentage of zeros in 6,,6,

70 I
10° 10° 10 10
{-regularization parameter 7

e Main advantage of EKF: online learning possible!

(€) 2025 A. Bemporad - Efficient learning algorithms for MPC 24/40

MODEL ADAPTATION AND OFFSET-FREE TRACKING

OUTPUT INTEGRATORS AND OFFSET-FREE TRACKING

e Tracking errors in steady state can be due to model mismatch / disturbances

Tpe1 = Axp+ Buy l
yk = ka offTset
prediction model = plant dynamics ~< reference
output
e Possible remedy: introduce a constant disturbance model
Tp+1 = Axy + Buy, ----.------«-----—,.-__”;::%:::::
dk+1 - dk no offset
v = Cop+dy
-- reference
augmented prediction model e

and estimate xy, dj, by a state observer

(€) 2025 A. Bemporad - Efficient learning algorithms for MPC 25/40

OUTPUT INTEGRATORS AND OFFSET-FREE TRACKING

measurement noise

inputs
=" nonlinear | |<0
plant —O———5y(0) Thpr = f(@e,ue)+in
g(tyems , model dir = drtii
d(t) ye = g(zk) +dutCs
n(t) . output)
Wienoss . itgrators &k, M, G are noise terms

e Use an extended Kalman filter to estimate &(¢) and d(t) from y(t)

o Intuitively, we get offset-free tracking in steady state because:

- the observer makes g(Z(t)) + d(t) — y(t) (estimation error)
- the MPC controller makes g(Z(t)) + d(t) — r(t) (predicted tracking error)
- the combination of the two makes y(t) — r(t) (actual tracking error)

e |Insteady state, the term cf(t) compensates for model mismatch (DC-gain error)

(€) 2025 A. Bemporad - Efficient learning algorithms f

MPC 26/40

NONLINEAR DISTURBANCE MODELS FOR MPC

e Generalize the prediction model with nonlinear disturbance models:

e Keyidea: only train the disturbance model online to refine the prediction
model only where the system is operating

e The nominal model f, g is trained offline and frozen

e Motivation: training the full model online may be difficult (lack of excitation,
trustworthiness of the model, computational demand, etc.)

¢ Under certain assumptions, we can show that the tracking error y(k) — r(k)
converges asymptotically to zero, even if (k) is not constant

orad - Efficient learning algorithms for MPC 27/40

EXAMPLE: CSTR PROCESS

e MPC control of a diabatic continuous stirred tank reactor (CSTR)

Ty
F
} Clay

e Process model is nonlinear

dC'a F _AE
—— = —(Cay—Cyu)—Cauk RT

o V(Af A) akoe

dT F UA AH

o STy = T) + —2 (Tj — T) — S5 Cakoe™ BT
dt Vv pCpV pCp

- T':temperature inside the reactor [K] (state)

- (4 : concentration of the reactant in the reactor [kgmol /m®] (state)

T} : jacket temperature [K] (input)
- T} : feedstream temperature [K| (measured disturbance)

- Cay : feedstream concentration [kgmol /m?] (measured disturbance)

¢ Objective: manipulate 77 to regulate C'4 on desired setpoint

(€) 2025 A. Bemporad - Efficient learning algorithms for MPC

28/40

EXAMPLE: CSTR PROCESS

o Generic trackable reference signal r (k) (w/ preview)

10

Output

Output
e N N
v
NN
~ 5
~ \
-~ _§
Output
P Jalle Ty
~
~
N
LN
~
~
~ o \

0 50 100 150 200 0 50 100 150

50 100 150
Sample time & Sample time k

Sample time k

0.).3 0.3 0.
—lle(R)I llet®)

= -lly(k) E-lly(k) =
0.2 02%= 02%
=01) 0.1%

)) ol == - 0) — =0

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

Sample time k Sample time k Sample time k
(a) White-box disturbance model (b) Constant disturbance model (c) FNN disturbance model

e The constant disturbance model is worse than FNN disturbance model,
especially when r (k) changes rapidly

(€) 2025 A. Bemporad - Efficient learning algorithms for MPC

29/40

LEARNING CONVEX FUNCTIONS

LEARNING PARAMETRIC CONVEX FUNCTIONS

¢ Goal: learn a parametric convex function (PCF) data convex fitting
fromdata (z, Ok, yi) o

y = f(z,0) f:R"x0 — R?

with f(x, #) convex wrt the variable x € R"
for each parameter 6 € ©

o Use: optimize f wrt x for each given 6 in production
o Example: f(z,0) = 32'F'(0)F(0)x + c(6)z + h(0)

e Several input-convex NN architectures have been proposed in the literature

5A. Bemporad - Efficient learning algorithms for MPC 30/40

NEURAL PCF ARCHITECTURE

e f=neural network with weights V*(0), W*(9), biases w’(#), and activation ¢

’ ! ! o !

o {0 o
oo) rof—o—(o s o} -o— v

|=® 0 e

o — :::w

o Vi W W' generated by another network 1 (to be learned)

e Activation function ¢ is nondecreasing and convex (e.g., ReLU, softplus)

e The weights W(f) are elementwise nonnegative for all §
f(z,0) convex for all 0

5A. Bemporad - Efficient learning algorithms for MPC 31/40

NEURAL PCF ARCHITECTURE

e The NN v is nonlinear re-parametrization from 6 to the PCF weights

; 2 M 171 M 1 M
e ¢ has weights w = (Ww,...,Ww Voo s Vi s wys oo Wy)
0 W]
v} Vi &3 wh
Vl
2 M
& @ 5 Wi @ zz | W ’ VL
1
wy w w o
U.)L

e The last layer of 1) makes W(6) elementwise nonnegative V¢

Examples: W*(6) = max(V,)'0 + W, M "+ wy,0)
WiHO) = (Vo + Wz~ 1+ww)?

5A. Bemporad - Efficient learning algorithms for MPC

32/40

THE LPCF PACKAGE

e Open-source package for fitting a PCF to given data
P pip install lpcf https://github.com/cvxgrp/lpcf

Customizable neural network architecture

Customizable loss and regularization

Relies on jax_sysid (Adam + L-BFGS) for training

Returns the PCF f as

- aJAXfunction for fast evaluation (and differentiation)

- aCVXPY expression for use in optimization models

orad - Efficient learning algorithms for MPC 33/40

https://github.com/cvxgrp/lpcf

USING THE LPCF PACKAGE

from lpcf.pcf import PCF

H

observed data

Y = ... # shape (N, d)
X = ... # shape (N, n)
Theta = ... # shape (N, p)

fit PCF to data
pcf = PCF()

pcf.fit(Y, X, Theta)

export PCF to CVXPY
x = cp.Variable((n, 1))

theta = cp.Parameter((p, 1))

y = pcf.tocvxpy(x, theta) # CVXPY expression

prob = cp.Problem(cp.Minimize(y + ...

f = pcf.tojax() # JAX function f(z,0)

))

Additional features:

add (convex) quadratic term to the
neural network

require f to be monotonein x
require f to be nonnegative

require arg min,, f(z,0) = g(0)
for a given function g

fit a parametrized convex set
C(0) ={z| f(z,0) <0}
(convex classification problem)

EXAMPLE: APPROXIMATE DYNAMIC PROGRAMMING (ADP)

Consider the input-affine nonlinear system

T+1 :F(xt,9)+G(xt,9)ut, t:O717

e () are measured parameters (e.g., physical quantities)

e Goal: for each given initial state xg, find ug, u1, . . . that minimize
oo
E H xtautu — fEO,'LL(), + E H xtuuh
t=0
(/03’\/ 4’0 %0

ADP controller (i.e., MPC with horizon N = 1):

uy = argmin,, (H(z¢,u,0) + f(F(x¢,0) + G(z,0)u,0)), t=0,1,...

Convex problem if f(x,) = PCF approx of y = J(z,) and H convex inu

5 A. Bemporad - Efficient learning algorithms for MPC 35/40

EXAMPLE: APPROXIMATE DYNAMIC PROGRAMMING (ADP)

e Example: swing up inverted pendulum -
x = [0,8]',6 = m > 0 (mass)

e Solve nonlinear optimal control problem
150

()) = ZH(xt,ut,H)

on 1000 data points (xx, 0y, 0y € [0.5,2],8; € [-7/6,77/6], 61 € [-1,1]

e Fit PCF f(z,0) and use CVXPY to solve the ADP problem online

Convex ADP vs nonlinear optimal control Closed-loop control

Y ===
100 e training data P g;,;’ o nonlincar
test data .i,’f’ —f 2 ADP
7 =
< 50 P o oL
z > |
5 & 0 H 3 3
= P 4 100
= r linear
= P e = nonline
0 p e ADP
4'/ =
7”{ 0N —r
0 50 100 0 1 5

ug (nonlinecar)

time [s]
5 A. Bemporad - Efficient learning algorithms for MPC

36/40

LEARNING MPC FROM PREFERENCES

LEARNING MPC CONTROLLER FROM PREFERENCES

e Problem: how to define the MPC cost function to minimize at runtime?

- Aclear KPI (key performance indicator) to optimize
may not be available (no KPI or multiple KPlIs)

- Aquantitative criterion leaves no room for

I . reference-
qualitative assessments by a human calibrator §Eased learning |

 algorithm

preference trajectories

o Approach: preference-based optimization over control policy parameters

via Bayesian optimization or radial basis functions
(GLISP)

P ‘\ pip install glis cse.lab.imtlucca.it/~bemporad/glis

e Alternative: learn the MPC cost directly from comparing trajectories

)5 A. Bemporad - Efficient learning algorithms for MPC

37/40

cse.lab.imtlucca.it/~bemporad/glis

PREFERENCE-BASED LEARNING OF MPC COST FUNCTION

X = state trajectory, U = input trajectory. Let T = (X, U)

e Comparisons evaluated (manually or automatically) via a preference function

1 if T; preferred to T}
0 otherwise

W(TZWTJ') = {

Key idea: there exists an (unmeasurable) latent function o (T')

0 otherwise

7T(Ti’Tj) = {

Procedure: collect preferences (T;, T;, 7(T;, T;)) and fit a binary classifier

1
1+ oxp ((T1,0) — 5(15.0))

#(T},T;,60) = 6(T,0) = PCF

5A. Bemporad - Efficient learning algorithms for MPC 38/40

PREFERENCE-BASED LEARNING OF MPC COST FUNCTION

e Learned MPC controller: at each time ¢, given z(t), solve the convex problem
T; € argming o (T, 0%)
S.t. 41 = Az + Bug, k=0,...,N—1
zo=2x(t), upr €U, zL€X
T=(X,U), X=lxo,...,zn], U=lug,...,un—_1]
and apply u(t) = 1st control move in T; [we assume U4, X are convex sets]

N-1
e Example: 3 oscillating masses. Latent function o(T') = Z z},Qzy + uj, Ruy,

k=0
— AW ’
true AN / i
random ‘I
d
=== 02 N/
</
=== 0100 p
=== 01000 2

Training datasets: 20, 100, 1000 comparisons generated from 50 trajectories

(€) 2025 A. Bemporad - Efficient learning algorithms for MPC 39/40

CONCLUSIONS

e ML very useful to get control-oriented models and control laws from data

e ML cannot replace control engineering:

- Blindly applying deep learning can lead to useless models for embedded control

- Model-based MPC design is more sample-efficient, and performs tasks it wasn’t
trained for, better than model-free reinforcement learning

2 YannLeCun

Indeed, | do favor MPC over RL.

I've been making that point since at least 2016.
RL requires ridiculously large numbers of trials to learn any new task.
In contrast MPC is zero shot: If you have a good world model and a good

task objective,

e Some current research topics:

- How to get good-quality training data (active learning)
- More efficient methods for non-smooth nonlinear optimization with constraints

ERC Advanced Grant "COMPACT" (2024-2029)

Funded by
the European Union

40/40

