
AI4I-CPS-IAS - Torino, September 16, 2025

EFFICIENT LEARNING ALGORITHMS
FOR MODEL PREDICTIVE CONTROL

Alberto Bemporad

imt.lu/ab

Funded by
the European Union

European Research Council
Established by the European Commission

 / 8
Model predictive control toolset 1

imt.lu/ab

thalesaleniaspace.com comau.com

gm.com
enel.com

needpix.com airbus.com

Automotive sector
Aeronautics
Aerospace

Military sector
Manufacturing

Chemicals
Pharmaceuticals
Paper production

Mining & metals
Medical devices

Financial engineering
Electrical systems

Water resource management
Environmental systems

Logistics
…

2023/2024 Forecast
World1 USD 206bn (2024) USD 379bn (2030)
Italy2 USD 5bn (2023) USD 11.4bn (2033)

1grandviewresearch.com 2apollorr.com

INDUSTRIAL AUTOMATION AND CONTROL SYSTEMS MARKET

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 1/40

grandviewresearch.com
apollorr.com

CONTROL SYSTEMS DESIGN METHODS

model predictive control machine learning

nonlinear control system identificationPID control

(source: https://books.google.com/ngrams)

MPC andML =main R&D trends in industry for control systems design

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 2/40

MODEL PREDICTIVE CONTROL (MPC)

prediction
model

controller

set-points outputsinputs

measurements

r(t) u(t) y(t)

process

optimization
algorithm

• Main idea: At each sample step, use a (simplified) dynamical

(M)odel of the process to (P)redict its future evolution and

choose the “best” (C)ontrol action accordingly

time t

r(t)
y(t)

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 3/40

future

predicted outputs

manipulated inputs

t t+k t+N

uk

r(t)
yk

past

t+1 t+1+k t+N+1

future

predicted outputs

manipulated inputs

t t+k t+N

uk

r(t)
yk

past

Repeat at all time steps t

MODEL PREDICTIVE CONTROL

• MPC algorithm:

min
u0, . . . , uN−1

N−1∑
k=0

∥yk − r(t)∥2
2 + ρ∥uk − ur(t)∥2

2

s.t. xk+1 = f(xk, uk) prediction model
yk = g(xk)

umin ≤ uk ≤ umax constraints
ymin ≤ yk ≤ ymax

x0 = x(t) state feedback

numerical optimization problem

1 estimate current state x(t)

2 optimizewrt {u0, . . . , uN−1}

3 only apply optimal u0 as input u(t)

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 4/40

(energytransition.org) (pixabay.com, aecdiagnostics.com)

MPC IN INDUSTRY

• Conceived in the 1960s (Rafal, Stevens, 1968) (Propoi, 1963)

• Used in the process industries since the 1980s (Qin, Badgewell, 2003)

• Nowmassively spreading to the automotive industry and other sectors

• MPC byGeneralMotors andODYS in high-volume production since 2018

(3+million vehicles worldwide) (Bemporad, Bernardini, Long, Verdejo, 2018)

(Bemporad, Bernardini, Livshiz, Pattipati, 2018)

First known mass production of MPC
in the automotive industry

andmore are underway...

 / 8
Model predictive control toolset 1
http://www.odys.it/odys-and-gm-bring-online-mpc-to-production

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 5/40

http://www.odys.it/odys-and-gm-bring-online-mpc-to-production

FOCUS OF MY TALK

outputsinputs

process

system
identification

MPC

data collection embedded
optimization

model adaptation

1

2

3

Focus of my talk:

1. Learn nonlinear predictionmodels from data

2. Learn disturbancemodels online for model adaptation

3. Learn convex functions for reducing onlineMPC computations

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 6/40

"All models are wrong, but some are useful."

(George E. P. Box)

LEARNING CONTROL-ORIENTED NONLINEAR MODELS

CONTROL-ORIENTED MODELS

• A complexmodel implies a complexMPC controller

• We typically look for small-scalemodels (e.g.,≤ 10 states/inputs/outputs)

with a limited number of coefficients (<1k params vs >300B of LLMs)

• Limit nonlinearities asmuch as possible (e.g., avoid very deep neural networks)

• Need to get the best modelwithin a poormodel class from a rich dataset

(= limited risk of overfit)

• Computation constraints: solve the learning problem using limited resources

(=our laptop, no supercomputing infrastructures)

Learningcontrol-orientedmodelsofdynamical systemsrequires

different algorithms than typical machine learning tasks

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 7/40

RECURRENT NEURAL NETWORKS

• Neural networks proposed for nonlinear system identification since the ’90s

(Narendra, Parthasarathy, 1990) (Hunt et al., 1992) (Suykens, Vandewalle, DeMoor, 1996)

• Recurrent Neural Network (RNN)model:

xk+1 = fx(xk, uk, θx)

yk = fy(xk, θy)

fx, fy = feedforward neural network

(e.g.: general RNNs, LSTMs, RESNETS, physics-informed NNs, …)

x

v1
v2

vL
y

vj = Wjfj−1(vj−1) + bj

θ = (W1, b1, . . . ,WL, bL)

• Training problem: given an I/O dataset {u0, y0, . . . , uN−1, yN−1} solve

min
θx, θy

x0, x1, . . . , xN−1

r(x0, θx, θy) +
1

N

N−1∑
k=0

ℓ(yk, fy(xk, θy))

s.t. xk+1 = fx(xk, uk, θx)

• Main issue: xk are hidden states and hence also unknowns of the problem
(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 8/40

GRADIENT DESCENT METHODS FOR TRAINING RNNS

• Problem condensing: substitute xk+1 = fx(xk, uk, θx) recursively and solve

min
θx,θy,x0

V (θx, θy, x0)min
θx,θy,x0

r(x0, θx, θy) +
1

N

N−1∑
k=0

ℓ(yk, fy(xk, θy)) =

• Gradient descent (GD) methods: update θx, θy, x0 by setting[
θx

t+1

θy
t+1

xt+1
0

]
=

[
θx

t

θy
t

xt
0

]
− αt∇V (θx

t, θy
t, xt0)

Example: Adam uses adaptivemoment estimation to set the learning rateαt
(Kingma, Ba, 2015)

• Main issue: slow convergence (in theory and in practice)

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 9/40

GRADIENT DESCENT METHODS FOR TRAINING RNNS

• Stochastic gradient descent (SGD) can be even less efficient with RNNs:

– collect a high number of short independent experiments (often impossible)

– or createmini-batches by usingmultiple-shooting ideas

(Forgione, Piga, 2020) (Bemporad, 2023)

• Newton’s method: very fast (2nd-order) local convergence but difficult to

implement, as we need theHessian∇2V (θx
t, θy

t, xt0)

• Quasi-Newtonmethods: good tradeoff between convergence speed / solution

quality and numerical complexity. Only requires the gradient∇V (θx
t, θy

t, xt0)

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 10/40

L-BFGS
Adam

AI-generated image - DALL-E

TRAINING RECURRENT MODELS VIA L-BFGS

SYSTEM IDENTIFICATION PROBLEM
• Class of nonlinear dynamical models (e.g., RNNsw/ linear bypass):

xk+1 = Axk +Buk + fx(xk, uk; θx) Special cases:
ŷk = Cxk +Duk + fy(xk, uk; θy) linear model, RNN, ...

• Loss function (open-loop prediction error + regularization)

minz,x1,...,xN−1 r(z) +
1

N

N−1∑
k=0

ℓ(yk, Cxk +Duk + fy(xk, uk; θy))

s.t. xk+1 = Axk +Buk + fx(xk, uk; θx)

k = 0, . . . , N − 2

z=[x0
Θ]

Θ=


A(:)
B(:)
C(:)
D(:)
θx
θy


• Condense the problem by eliminating the hidden states xk and get

min
z
f(z)+r(z) (nonconvex) nonlinear programming (NLP) problem

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 11/40

NLP PROBLEM

• If f and r differentiable: use any state-of-the-art unconstrainedNLP solver,

e.g., L-BFGS (Limited-memory Broyden–Fletcher–Goldfarb–Shanno) (Liu, Nocedal, 1989)

• The gradient∇f(z) can be computed efficiently by automatic differentiation

• However, sparsifying themodel requires non-smooth regularizers:

r1(z) = τ ∥z∥1 rg(z) = τg
∑m
i=1 ∥Iiz∥2

ℓ1-regularization group-Lasso penalty

• Group-Lasso penalties can be used for reducing:

– the number of states

– the number of inputs

– the number of neurons in each layer of fx, fy

– . . .

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 12/40

HANDLING NON-SMOOTH REGULARIZATION TERMS
(Bemporad, 2024)

1. If r(x) =
∑n
i=1 ri(xi) and ri : R → R is convex and positive semidefinite, the

ℓ1-regularized problem can be recast as a bound-constrainedNLP:

min
x
f(x)+τ∥x∥1+r(x)

x∗ = y∗ − z∗

min
y,z≥0

f(y−z)+τ [1 . . . 1] [yz]+r(y)+r(−z)

Example: r(x) = ∥x∥22 then r(y) + r(−z) = ∥[yz]∥
2
2

well-regularized
augmented problem

2. If r(x) is convex and symmetric wrt each component xi and increasing for

x ≥ 0, and τ > 0, then we can solve instead

min
y,z≥0

f(y−z)+τ [1 . . . 1] [yz]+r(y+z)
if r(x) differentiable for x ̸= 0 then
r(y + z) differentiable if any yi, zj > 0

Example: r(x) = group-Lasso penalty + constraint y, z ≥ ϵ =machine precision

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 13/40

JAX-SYSID LIBRARY
(Bemporad, 2024)

• Python package to identify linear/nonlinear/staticmodels:

import numpy as np
from jax_sysid.models import Model

def state_fcn(x,u,params):
...

def output_fcn(x,u,params):
...

model = Model(nx, ny, nu, state_fcn=state_fcn, output_fcn=output_fcn)

model.init(params=[A,B,C,W1,W2,W3,b1,b2,W4,W5,b3,b4])
model.loss(rho_x0=1.e-4, rho_th=1.e-4)
model.optimization(adam_epochs=1000, lbfgs_epochs=1000)
model.fit(Y, U)

Yhat, Xhat = model.predict(model.x0, U)

state-update function, x(k + 1)

output function, y(k)

pip install jax-sysid github.com/bemporad/jax-sysid

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 14/40

github.com/bemporad/jax-sysid

QUASI-LPV MODEL IDENTIFICATION

• Quasi-Linear Parameter Varying (qLPV, a.k.a. “self-scheduled” LPV) models:

xk+1 = A(pk)xk +B(pk)uk

yk = C(pk)xk +D(pk)uk

[
A(pk) B(pk)
C(pk) D(pk)

]
=

[
A0 B0

C0 D0

]
+

np∑
i=1

[
Ai Bi

Ci Di

]
pki

where pk ∈ Rnp is the scheduling parameter vector, such as

pki =
1

1 + e−f(xk,uk;θi)
, i = 1, . . . , np − 1

where f(xk, uk; θi) is a FNNwith linear output layer and parameters θi

• qLPVmodels are a very powerful class of control-oriented nonlinear models

from jax_sysid.models import qLPVModel

model = qLPVModel(nx, ny, nu, npar, qlpv_fcn, qlpv_params_init)

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 15/40

EXAMPLE: QLPV MODEL IDENTIFICATION

• Generate 5000 training data and 1000 test data from the NL dynamics

xk+1 =

 0.5 sin(x1k) + 1.7 cos(0.5x2k)uk

0.6 sin(x1k + x3k) + 0.4 atan(x1k + x2k)

0.4 e−x2k + 0.9 sin(−0.5x1k)uk

+ ξk

yk = atan(2.2x3
1k) + atan(1.8x3

2k) + atan(−x3
3k) + zk

where ξk, zk ∈ N (0, 0.012) and uk uniformly generated in [− 1
2 ,

1
2]

• pk = 2-layer FNN (6 neurons each) + swish activation + sigmoid output function

• Training results:

– 1000 Adam + 5000 L-BFGS iters

– CPU time measured on [Apple M4 Max]

Best Fit Rate Best Fit Rate CPU time
model np training data test data (s)
LTI 0 71.35 71.36 1.3
qLPV 1 93.57 93.55 20.1
qLPV 2 95.54 95.51 22.6
qLPV 3 96.04 95.94 26.4

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 16/40

COMBINED LEARNING OF MODEL AND INVARIANT SETS
(Mulagaleti, Bemporad, 2025)

• Goal: learn amodel for control design under constraints y ∈ Y , u ∈ U

• Key idea: add regularization term r(θ) in training problem (θ =model coeffs):

r(θ) = min
R

conservativeness(R)

s.t. C ·R⊕W ⊆ Y
∀xt ∈ R, ∃ut ∈ U : xt+1 ∈ R

- r(θ) < ∞⇒∃ control invariant set R

- small r(θ)⇒ less conservativeR

- qLPV + polytopic sets⇒ r(θ) differentiable

• Example: 1.5ÿ + ẏ + y + 1000y3 = u

10,000 training + 2,000 disturbance-set estimation data

learned model: nx = 4 states, np = 6 scheduling params
p-function = shallow FNN with 3 neurons

r(θ) almost does not perturb quality of fit
(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 17/40

nonlinearbenchmark.org

INDUSTRIAL ROBOT BENCHMARK
(Weigand, Götz, Ulmen, Ruskowski, 2022)

• KUKAKR300 R2500 ultra SE industrial robot,

full robot movement

• 6 inputs (torques), 6 outputs (joint angles), w/ backlash,

highly nonlinear and coupled, slightly oversampled

(∥yk − yk−1∥ is often very small)

• Identification benchmark dataset (forwardmodel):

– Sample time: Ts = 100ms

– N = 39988 training samples

– Ntest = 3636 test samples

• Very challenging NL-SYSID benchmark on nonlinearbenchmark.org

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 18/40

nonlinearbenchmark.org
nonlinearbenchmark.org

INDUSTRIAL ROBOT BENCHMARK: RESULTS
(Bemporad, 2024)

• State x ∈ R12, fx, fy with 36 and 24 neurons, swish activation fcn
x

1+e−x

• Total number of training parameters: dim(θx) + dim(θy) = 1590

𝜏

R2

(%)

p
er

ce
n
ta

ge
 o

f
ze

ro
s

R2 (test data)

R2 (training data)

% zeros in model

𝜏=0.008

(bestR2 in 30 runs)

• Model quality measured by averageR2-score on all outputs:

R2 =
1

ny

ny∑
i=1

100

(
1−

∑N
k=1(yk,i − ŷk,i|0)

2∑N
k=1(yk,i −

1
N

∑N
i=1 yk,i)

2

)

• Training time≈ 12min per run on a single core [Apple M1 Max]
(3192 variables, 2000 Adam iterations + 2000 L-BFGS-B iterations)

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 19/40

INDUSTRIAL ROBOT BENCHMARK: RESULTS
• Open-loop simulation errors (ρ = 0.01, τ = 0.008):

R2 (training) R2 (test) R2 (training) R2 (test)
RNN model RNN model linear model linear model

average 77.1493 57.1784 48.2789 43.8573 jax-sysid
39.2822 32.0410 n4sid

• More parameters/smaller regularization leads to overfitting training data

• Pure Adam vs LBFG-B+Adam vsOWL-QN (Andrew, Gao, 2007): (τ = 0.008)

adam fcn R2 R2 # zeros CPU
solver iters evals training test (θx, θy) time (s)
L-BFGS-B 2000 2000 77.1493 57.1784 556/1590 309.87
OWL-QN 2000 2000 74.7816 54.0531 736/1590 449.17
Adam 6000 0 71.0687 54.3636 1/1590 389.39

• Adam is unable to sparsify themodel

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 20/40

ONLINE TRAINING VIA EXTENDED KALMAN FILTERING

TRAINING RNNS BY EKF
(Puskorius, Feldkamp, 1994) (Wang, Huang, 2011) (Bemporad, 2023)

• Key idea: treat the parameters of the feedforward NNs as constant states and

iterate an EKF on the training dataset:


xk+1 = fx(xk, uk, θxk) + ξk[

θx(k+1)

θy(k+1)

]
=

[
θxk

θyk

]
+ ηk

yk = fy(xk, θyk) + ζk

Q = Var[ηk]

R = Var[ζk]

P0 = Var
[[θx

θy
x0

]]

• The ratioQ/R determines the learning-rate of the training algorithm

Themodel θx, θy can be learned offline by processing a given datasetmultiple

times, and also adapted on line from streaming data (uk, yk)

• Generalization: train viaMoving Horizon Estimation (MHE) instead of EKF
(Løwenstein, Bernardini, Bemporad, Fagiano, 2023)

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 21/40

TRAINING RNNS BY EKF
(Bemporad, 2023)

• EKF can be generalized to handle general strongly convex and smooth loss

functions ℓ(yk, ŷk)

• Strongly convex smooth regularization terms r(x0, θx, θy) can be handled

similarly

• Can handle ℓ1-penalties λ
∥∥∥[θxθy]∥∥∥1, useful to sparsify θx, θy by changing the

EKF update into[
x̂(k|k)
θx(k|k)
θy(k|k)

]
=

[
x̂(k|k−1)
θx(k|k−1)
θy(k|k−1)

]
+M(k)e(k)−λP (k|k − 1)

[
0

sign(θx(k|k−1))
sign(θy(k|k−1))

]

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 22/40

TRAINING RNNS BY EKF - EXAMPLE
• Example: magneto-rheological fluid damper

N=2000 data used for training, 1499 for testing themodel

(Wang, Sano, Chen, Huang, 2009)

• RNNmodel: 4 states, shallowNNsw/ 4 neurons, I/O feedthrough

0 1 2 3 4 5 6 7 8 9 10

training time (s)

101

102

103

M
S
E

NAILS
NAILM
EKF
AMSGrad

20 40 60

training time (s)

AMSGrad MSE loss on training data,
mean value (std) over 20 runs
from different random initial
weights

BFR = 100(1− ∥Y−Ŷ ∥2

∥Y−ȳ∥2
)

NAILS = GNN method with line search
NAILM = GNN method with LM steps

(Bemporad, 2023)

BFR (Best Fit Rate) training test
NAILS 94.41 (0.27) 89.35 (2.63)
NAILM 94.07 (0.38) 89.64 (2.30)
AMSGrad 84.69 (0.15) 80.56 (0.18)
EKF 91.41 (0.70) 87.17 (3.06)
L-BFGS 93.19 (0.46) 90.33 (0.46)

Two ends of the MR damper (RD-1097-01) provided
by Lord Corp. are physically connected to the shake
table and ground, respectively. The voltage of the MR
damper is fixed to 1.25V. The shake table generates
necessary vibrations dragging the piston rod of the
MR damper moving along its chamber. Since the
shake table weights about 60 lbs leading to a large
inertia, it has to be controlled under a closed-loop
operation. The proportional-derivative (PD) control-
ler in Figure 7 is implemented in Computer #1, and
reads the displacement by counting turns of
a circulating shaft and sends out currents to drive
the shake table at sampling period 0.001 s.
Simultaneously, Computer #2 reads the damping
force y(t) via a strain meter and the displacement
via an infrared sensor at sampling period 0.005 s.
After downsampling the measurements from
Computer #1 by a factor 5, we synchronise all
measurements from the two computers by comparing
the two displacement measurements. Eventually,
displacement measurements from Computer #2 are
discarded because they are relatively noisy. No
velocity sensor is available so that the velocity u(t)
is obtained by a numerical differentiation of the
displacement measurements from Computer #1.

The numerical differentiation can be implemented
by passing the displacement measurements through
a simple differentiation filter 1! q!1, i.e.
u(t)¼ d(t)! d(t! 1), where d(t) denotes the measured
displacement, or a more complex Savitzky–Golay
differentiation filter (Orfanidis 1996) to avoid ampli-
fying measurement noises. Here we adopt the former
in order to be consistent with our previous study in
vibration control (Terasawa, Sakai, Ohmori, and
Sano 2004); in fact, both filters are exploited and
resulting MR damper models have similar perfor-
mances. It is worth pointing out that the differentia-
tion filter does not physically exist in the experimental
setup so that the measured damping force and the
estimated inner signal are not affected by the choice
of filters.

Assumption A1 in x 2 requires the velocity to be
piecewise constant for p consecutive samples. We let
the desired displacement in Figure 7 take uniformly
distributed random values within the range [!1.5, 1.5]
centimetre and have a constant increment every 0.2 s.
As a result, the velocity is approximately piecewise
constant for every 40 samples (the sampling period h is
0.005 s). For example, Figure 8 shows some enlarged
parts of the measured displacement, the calculated

Figure 6. Experimental devices.

MR
damper

PD
controller

Shake table

Desired
displacement

+

Measured
displacement

−

Current Measured
damping force

Figure 7. A diagram of the experimental setup.

−10

0

10

V
el

oc
ity

 (c
m

/s
ec

)

−2

0

2

D
is

pl
ac

em
en

t (
cm

)

2.8 3 3.2 3.4 3.6 3.8 4 4.2

−50

0

50

Time (s)

2.8 3 3.2 3.4 3.6 3.8 4 4.2
Time (s)

2.8 3 3.2 3.4 3.6 3.8 4 4.2
Time (s)

D
am

pi
ng

 fo
rc

e
(N

)

Figure 8. Some enlarged parts of experimental data.

International Journal of Control 947

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f W

ar
w

ic
k]

 a
t 0

3:
36

 0
3

A
ug

us
t 2

01
7

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 23/40

TRAINING RNNS BY EKF - EXAMPLE
• RNNmodel: 4 states, shallowNNswith 6 neurons each,

atan activation, I/O feedthrough

• Compare BFRwrt NNARXmodel (SYS-ID TBX):

EKF = 92.82, Adam = 89.12, NNARX(6,2) = 88.18 (training)
EKF = 89.78, Adam = 85.51, NNARX(6,2) = 85.15 (test)

• Repeat EKF-based training with ℓ1-penalty τ
∥∥∥[θxθy]∥∥∥1

10 -6 10 -5 10 -4 10 -3

`1-regularization parameter =

70

75

80

85

90

95

B
F
R

(%
)

0

20

40

60

80

100

p
er

ce
n
ta

ge
of

ze
ro

s

BFR (test data)

BFR (training data)

percentage of zeros in 3x,3y

• Main advantage of EKF: online learning possible!

Two ends of the MR damper (RD-1097-01) provided
by Lord Corp. are physically connected to the shake
table and ground, respectively. The voltage of the MR
damper is fixed to 1.25V. The shake table generates
necessary vibrations dragging the piston rod of the
MR damper moving along its chamber. Since the
shake table weights about 60 lbs leading to a large
inertia, it has to be controlled under a closed-loop
operation. The proportional-derivative (PD) control-
ler in Figure 7 is implemented in Computer #1, and
reads the displacement by counting turns of
a circulating shaft and sends out currents to drive
the shake table at sampling period 0.001 s.
Simultaneously, Computer #2 reads the damping
force y(t) via a strain meter and the displacement
via an infrared sensor at sampling period 0.005 s.
After downsampling the measurements from
Computer #1 by a factor 5, we synchronise all
measurements from the two computers by comparing
the two displacement measurements. Eventually,
displacement measurements from Computer #2 are
discarded because they are relatively noisy. No
velocity sensor is available so that the velocity u(t)
is obtained by a numerical differentiation of the
displacement measurements from Computer #1.

The numerical differentiation can be implemented
by passing the displacement measurements through
a simple differentiation filter 1! q!1, i.e.
u(t)¼ d(t)! d(t! 1), where d(t) denotes the measured
displacement, or a more complex Savitzky–Golay
differentiation filter (Orfanidis 1996) to avoid ampli-
fying measurement noises. Here we adopt the former
in order to be consistent with our previous study in
vibration control (Terasawa, Sakai, Ohmori, and
Sano 2004); in fact, both filters are exploited and
resulting MR damper models have similar perfor-
mances. It is worth pointing out that the differentia-
tion filter does not physically exist in the experimental
setup so that the measured damping force and the
estimated inner signal are not affected by the choice
of filters.

Assumption A1 in x 2 requires the velocity to be
piecewise constant for p consecutive samples. We let
the desired displacement in Figure 7 take uniformly
distributed random values within the range [!1.5, 1.5]
centimetre and have a constant increment every 0.2 s.
As a result, the velocity is approximately piecewise
constant for every 40 samples (the sampling period h is
0.005 s). For example, Figure 8 shows some enlarged
parts of the measured displacement, the calculated

Figure 6. Experimental devices.

MR
damper

PD
controller

Shake table

Desired
displacement

+

Measured
displacement

−

Current Measured
damping force

Figure 7. A diagram of the experimental setup.

−10

0

10

V
el

oc
ity

 (c
m

/s
ec

)

−2

0

2

D
is

pl
ac

em
en

t (
cm

)

2.8 3 3.2 3.4 3.6 3.8 4 4.2

−50

0

50

Time (s)

2.8 3 3.2 3.4 3.6 3.8 4 4.2
Time (s)

2.8 3 3.2 3.4 3.6 3.8 4 4.2
Time (s)

D
am

pi
ng

 fo
rc

e
(N

)

Figure 8. Some enlarged parts of experimental data.

International Journal of Control 947

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ity

 o
f W

ar
w

ic
k]

 a
t 0

3:
36

 0
3

A
ug

us
t 2

01
7

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 24/40

MODEL ADAPTATION AND OFFSET-FREE TRACKING

OUTPUT INTEGRATORS AND OFFSET-FREE TRACKING

• Tracking errors in steady state can be due tomodel mismatch / disturbances{
xk+1 = Axk +Buk
yk = Cxk

prediction model ̸= plant dynamics

offset

reference
output

• Possible remedy: introduce a constant disturbancemodel
xk+1 = Axk +Buk
dk+1 = dk
yk = Cxk + dk

augmented prediction model

no offset

reference
output

and estimate xk, dk by a state observer (Pannocchia, Gabiccini, Artoni, 2015)

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 25/40

OUTPUT INTEGRATORS AND OFFSET-FREE TRACKING

+

+

𝜂(t) output
integrators

u(t)

d(t)

nonlinear
plant
model

outputs

inputs

state noise

measurement noise

³(t)

»(t)

y(t)

white noise


xk+1 = f(xk, uk)+ξk

dk+1 = dk+ηk

yk = g(xk) + dk+ζk

ξk, ηk, ζk are noise terms

• Use an extended Kalman filter to estimate x̂(t) and d̂(t) from y(t)

• Intuitively, we get offset-free tracking in steady state because:

– the observer makes g(x̂(t)) + d̂(t) → y(t) (estimation error)

– theMPC controller makes g(x̂(t)) + d̂(t) → r(t) (predicted tracking error)

– the combination of the twomakes y(t) → r(t) (actual tracking error)

• In steady state, the term d̂(t) compensates for model mismatch (DC-gain error)

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 26/40

NONLINEAR DISTURBANCE MODELS FOR MPC
(Krupa, Zanon, Bemporad, 2025)

• Generalize the predictionmodel with nonlinear disturbancemodels:

x(k + 1) = f(x(k), u(k), d(k))

d(k) = h(x(k), u(k), θ(k))

y(k) = g(x(k), d(k))

• Key idea: only train the disturbancemodel online to refine the prediction

model only where the system is operating

• The nominal model f, g is trained offline and frozen

• Motivation: training the full model onlinemay be difficult (lack of excitation,

trustworthiness of themodel, computational demand, etc.)

• Under certain assumptions, we can show that the tracking error y(k)− r(k)

converges asymptotically to zero, even if r(k) is not constant

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 27/40

Tj

Tf

CAf

CAT

F

A�� B

EXAMPLE: CSTR PROCESS

• MPC control of a diabatic continuous stirred tank reactor (CSTR)

• Process model is nonlinear (Bequette, 1998)

dCA

dt
=

F

V
(CAf − CA)− CAk0e

−∆E
RT

dT

dt
=

F

V
(Tf − T) +

UA

ρCpV
(Tj − T)−

∆H

ρCp
CAk0e

−∆E
RT

– T : temperature inside the reactor [K] (state)

– CA : concentration of the reactant in the reactor [kgmol/m3] (state)

– Tj : jacket temperature [K] (input)

– Tf : feedstream temperature [K] (measured disturbance)

– CAf : feedstream concentration [kgmol/m3] (measured disturbance)

• Objective: manipulate Tj to regulateCA on desired setpoint

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 28/40

EXAMPLE: CSTR PROCESS

• Generic trackable reference signal r(k) (w/ preview)

Draft 6 July 13, 2024

(a) Polynomial disturbance model (b) Constant disturbance model (c) FNN disturbance model

Fig. 2: Van der Pol plant. Closed-loop tracking of a piecewise-constant reference using different disturbance models.

(a) Polynomial disturbance model (b) Constant disturbance model (c) FNN disturbance model

Fig. 3: Van der Pol plant. Closed-loop tracking of a generic reference trajectory using different disturbance models.

(a) Polynomial disturbance model (b) Constant disturbance model (c) FNN disturbance model

Fig. 4: CSTR plant. Closed-loop tracking of a generic reference trajectory using different disturbance models.

7

White-box disturbance model

• The constant disturbancemodel is worse than FNN disturbancemodel,

especially when r(k) changes rapidly

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 29/40

LEARNING CONVEX FUNCTIONS

data convex fitting

LEARNING PARAMETRIC CONVEX FUNCTIONS

• Goal: learn a parametric convex function (PCF)

from data (xk, θk, yk)

y = f(x, θ) f : Rn×Θ → Rd

with f(x, θ) convexwrt the variable x ∈ Rn

for each parameter θ ∈ Θ

• Use: optimize f wrt x for each given θ in production

• Example: f(x, θ) = 1
2x

′F ′(θ)F (θ)x+ c(θ)x+ h(θ)

• Several input-convexNN architectures have been proposed in the literature

(Amos, Xu, Kolter, 2017) (Calafiore, Gaubert, Possieri, 2020)

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 30/40

NEURAL PCF ARCHITECTURE
(Schaller, Bemporad, Boyd, 2025)

• f = neural network with weights V i(θ),W i(θ), biasesωi(θ), and activation ϕ

• V i,W i,ωi generated by another networkψ (to be learned)

• Activation function ϕ is nondecreasing and convex (e.g., ReLU, softplus)

• TheweightsW i(θ) are elementwise nonnegative for all θ

f(x, θ) convex for all θ
(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 31/40

NEURAL PCF ARCHITECTURE

• TheNNψ is nonlinear re-parametrization from θ to the PCFweights

• ψ has weightsw = (W 2
ψ, . . . ,W

M
ψ , V 1

ψ , . . . , V
M
ψ , ω1

ψ, . . . , ω
M
ψ)

• The last layer ofψmakesW i(θ) elementwise nonnegative ∀θ

Examples: W i(θ) = max(VMψ θ +WM
ψ zM−1

ψ + ωMψ , 0)

W i(θ) = (VMψ θ +WM
ψ zM−1

ψ + ωMψ)2

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 32/40

THE LPCF PACKAGE

• Open-source package for fitting a PCF to given data (Schaller, Bemporad, Boyd, 2025)

pip install lpcf https://github.com/cvxgrp/lpcf

• Customizable neural network architecture

• Customizable loss and regularization

• Relies on jax_sysid (Adam + L-BFGS) for training

• Returns the PCF f as

– a JAX function for fast evaluation (and differentiation)

– aCVXPY expression for use in optimizationmodels (Diamond, Boyd, 2016)

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 33/40

https://github.com/cvxgrp/lpcf

USING THE LPCF PACKAGE

from lpcf.pcf import PCF

observed data

Y = ... # shape (N, d)

X = ... # shape (N, n)

Theta = ... # shape (N, p)

fit PCF to data

pcf = PCF()

pcf.fit(Y, X, Theta)

export PCF to CVXPY

x = cp.Variable((n, 1))

theta = cp.Parameter((p, 1))

y = pcf.tocvxpy(x, theta) # CVXPY expression

prob = cp.Problem(cp.Minimize(y + ...))

...

f = pcf.tojax() # JAX function f(x, θ)

Additional features:

• add (convex) quadratic term to the

neural network

• require f to bemonotone in x

• require f to be nonnegative

• require argminx f(x, θ) = g(θ)

for a given function g

• fit a parametrized convex set

C(θ) = {x | f(x, θ) ≤ 0}
(convex classification problem)

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 34/40

EXAMPLE: APPROXIMATE DYNAMIC PROGRAMMING (ADP)

• Consider the input-affine nonlinear system

xt+1 = F (xt, θ) +G(xt, θ)ut, t = 0, 1, . . .

• θ aremeasured parameters (e.g., physical quantities)

• Goal: for each given initial state x0, find u0, u1, . . . that minimize

J(x0) =

∞∑
t=0

H(xt, ut, θ) = H(x0, u0, θ) +

∞∑
t=1

H(xt, ut, θ)︸ ︷︷ ︸
cost to go

• ADP controller (i.e., MPCwith horizonN = 1):

ut = argminu (H(xt, u, θ) + f(F (xt, θ) +G(xt, θ)u, θ)) , t = 0, 1, . . .

• Convex problem if f(x, θ) = PCF approx of y = J(x, θ) andH convex in u

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 35/40

𝛿

m

u

EXAMPLE: APPROXIMATE DYNAMIC PROGRAMMING (ADP)
• Example: swing up inverted pendulum

x = [δ, δ̇]′, θ = m > 0 (mass)

• Solve nonlinear optimal control problem

J(x0) =

150∑
t=0

H(xt, ut, θ)

on 1000 data points (xk, θk), θk ∈ [0.5, 2], δk ∈ [−π/6, 7π/6], δ̇k ∈ [−1, 1]

• Fit PCF f(x, θ) and use CVXPY to solve the ADP problem online

0 50 100
u∗0 (nonlinear)

0

50

100

û
0

(c
on

ve
x)

Convex ADP vs nonlinear optimal control

training data

test data

0 1 2 3
0

2

δ
[r

ad
]

Closed-loop control

nonlinear

ADP

0 1 2 3
time [s]

0

50

100

u
[N

m
] nonlinear

ADP

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 36/40

LEARNING MPC FROM PREFERENCES

trajectories

preference-
based learning
algorithmpreference

vs
y1 y2

u1 u2

LEARNING MPC CONTROLLER FROM PREFERENCES
• Problem: how to define theMPC cost function to minimize at runtime?

– A clear KPI (key performance indicator) to optimize

may not be available (no KPI ormultiple KPIs)

– A quantitative criterion leaves no room for

qualitative assessments by a human calibrator

• Approach: preference-based optimization over control policy parameters

via Bayesian optimization (Brochu, de Freitas, Ghosh, 2007) or radial basis functions

(GLISp) (Bemporad, Piga, 2021) (Zhu, Piga, Bemporad, 2022)

pip install glis cse.lab.imtlucca.it/~bemporad/glis

• Alternative: learn theMPC cost directly from comparing trajectories

(Krupa, El Hasnaouy, Zanon, Bemporad, 2025)

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 37/40

cse.lab.imtlucca.it/~bemporad/glis

PREFERENCE-BASED LEARNING OF MPC COST FUNCTION
(Krupa, El Hasnaouy, Zanon, Bemporad, 2025)

• X = state trajectory,U = input trajectory. Let T = (X,U)

• Comparisons evaluated (manually or automatically) via a preference function

π(Ti, Tj) =

{
1 if Ti preferred to Tj
0 otherwise

• Key idea: there exists an (unmeasurable) latent function σ(T)

π(Ti, Tj) =

{
1 if σ(Ti) ≤ σ(Tj)

0 otherwise

• Procedure: collect preferences (Ti, Tj , π(Ti, Tj)) and fit a binary classifier

π̂(Ti, Tj , θ) =
1

1 + exp (σ̂(Ti, θ)− σ̂(Tj , θ))
σ̂(T, θ) = PCF

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 38/40

k

u1 u2

k k k
m m m

p1 p2 p3

PREFERENCE-BASED LEARNING OF MPC COST FUNCTION

• LearnedMPC controller: at each time t, given x(t), solve the convex problem

Tt ∈ arg minT σ(T, θ
∗)

s.t. xk+1 = Axk +Buk, k = 0, . . . , N − 1

x0 = x(t), uk ∈ U , xk ∈ X
T = (X,U), X = [x0, . . . , xN], U = [u0, . . . , uN−1]

and apply u(t) = 1st control move in Tt [we assumeU ,X are convex sets]

• Example: 3 oscillatingmasses. Latent function σ(T) =
N−1∑
k=0

x′kQxk + u′kRuk

0 5 10 15 20 25 30
Sample time

−1.0

−0.5

0.0

0.5

1.0

Fo
rc

e
ap

pl
ie

d
to

 o
bj

ec
t #

1

Pref. func.
Rand. MPC
σ20
σ100
σ1000

true
random

0 5 10 15 20 25 30
Sample time

−0.3

−0.2

−0.1

0.0

0.1

0.2

Po
sit

io
n

of
 c

en
tra

l o
bj

ec
t

0 5 10 15 20 25 30
Sample time

−1.0

−0.5

0.0

0.5

1.0

Fo
rc

e
ap

pl
ie

d
to

 o
bj

ec
t #

1

Pref. func.
Rand. MPC
σ20
σ100
σ1000

u1p2

Training datasets: 20, 100, 1000 comparisons generated from 50 trajectories

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 39/40

CONCLUSIONS

CONCLUSIONS
• ML very useful to get control-orientedmodels and control laws from data

• ML cannot replace control engineering:

– Blindly applying deep learning can lead to useless models for embedded control

– Model-basedMPC design is more sample-efficient, and performs tasks it wasn’t

trained for, better thanmodel-free reinforcement learning

(Yann LeCun, X/Twitter, August 25, 2024)

• Some current research topics:

– How to get good-quality training data (active learning) (Xie, Bemporad, CDC, 2024)

– More efficient methods for non-smooth nonlinear optimizationwith constraints

(Adeoye, Latafat, Bemporad, 2025)

ERC Advanced Grant "COMPACT" (2024-2029)
Funded by

the European Union
European Research Council
Established by the European Commission

(C) 2025 A. Bemporad - Efficient learning algorithms for MPC 40/40

