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Workshop contents

• Part 1 (08:45-10:15)

– Introduction and basic principles ofMPC, linearMPC

– Observer design and integral action

– Solutionmethods for linearMPC: quadratic programming, explicitMPC

• Part 2 (13:45-15:15)

– Linear time-varying and nonlinearMPC

– HybridMPC (modeling, control, mixed-integer programming solvers)

– StochasticMPC based on scenarios

• Part 3 (15:30-17:00)

– Data-driven linearMPC

– Machine-learningmethods for nonlinear and hybridMPC

– Active-learningmethods for automatic and preference-basedMPC calibration
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Model Predictive Control: Basic Principles



Model Predictive Control (MPC)

prediction model

model-based optimizer

set-points outputsinputs

measurements

r(t) u(t) y(t)

optimization 

algorithm

process

Use a dynamical model of the process to predict its future

evolution and choose the “best” control action

simplified likely

--------------------
a good
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t+1 t+1+k t+N+1

future

predicted outputs

manipulated inputs

t t+k t+N

uk

r(t)

yk

past

Model Predictive Control
• MPCproblem: find the best control sequence over a future horizon ofN steps

min
u0, . . . , uN−1

N−1∑
k=0

∥yk − r(t)∥2
2 + ρ∥uk − ur(t)∥2

2

s.t. xk+1 = f(xk, uk) prediction model
yk = g(xk)

umin ≤ uk ≤ umax constraints
ymin ≤ yk ≤ ymax

x0 = x(t) state feedback

numerical optimization problem

1 estimate current state x(t)

2 optimizewrt {u0, . . . , uN−1}

3 only apply optimal u0 as input u(t)

Repeat at all time steps t
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Daily-life examples of MPC

• MPC is like playing chess !

• You useMPC toowhen you drive !
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(energytransition.org) (pixabay.com, aecdiagnostics.com) 

MPC in industry

• Conceived in the 60’s (Rafal, Stevens, 1968) (Propoi, 1963)

• Used in the process industries since the 80’s (Qin, Badgewell, 2003)

• Nowmassively spreading to the automotive industry and other sectors

• MPC byGeneralMotors andODYS in high-volume production since 2018

(Bemporad, Bernardini, Long, Verdejo, 2018)

First known mass production of MPC
in the automotive industry

 / 8
Model predictive control toolset 1

www.odys.it

http://www.odys.it/odys-and-gm-bring-online-mpc-to-production
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MPC of gasoline turbocharged engines
• Control throttle, wastegate, intake & exhaust cams tomake engine torque

track set-points, withmax efficiency and satisfying constraints

Measurements

Desired 
torque

Actuators
commands

Achieved
Torque

EngineMPC

numerical optimization problem

solved in real-time on ECU

(Bemporad, Bernardini, Long, Verdejo, 2018)

engine operating at low pressure (66 kPa)
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MPC for autonomous driving / driver-assistance systems
(Graf Plessen, Bernardini, Esen, Bemporad, 2018)

• Coordinate torque request and steering to achieve safe and comfortable

autonomous driving with no collisions

• MPC combines path planning, path tracking, and obstacle avoidance

• Stochastic predictionmodels used to account for uncertainty

(other vehicles/pedestrians, driver’s requests)


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Typical use of MPC

low-level 
controllers

MPC

reference 
optimization

• fast sampling
•single loops

•optimize transient response
•ensure reference tracking
•handle constraints
•coordinate multiple inputs

•Static optimizer of steady-
state (static I/O models)

•Reference trajectory 
generator

reference-signal

actuator set-pointsmeasurements

high-level optimizer

dynamic optimizer

regulators

r(t)

y(t) u(t)

strategic planner

tactical planner

€
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T. Samad, M. Bauer and S. Bortoff et al. / Annual Reviews in Control 49 (2020) 1–14 5 
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Fig. 3. Leaders of the IEEE Control Systems Society whose affiliation is with industry: (a) percentage by decade, (b) absolute numbers by decade. See text for explanation. 

4.1. Advanced control technologies vary significantly in their impact 

and perceptions thereof 

Table 2 shows the results of a survey conducted by the Industry 

Committee in March, 2018. The results of an earlier, similar survey, 

with similar results, are reported in ( Samad, 2017 ). Respondents—

members of the Industry Committee—were asked whether each 

technology in the list had demonstrated “high impact in multiple 

sectors,” “high impact in a single sector,” “medium impact,” “low 

impact,” or “no impact.” Assessments of both “the present level of 

impact” and “the potential for future impact … over the next 10 

years” were prompted for. Of the 77 members of the committee 

then, 66 responded. 

The intent of the survey was to determine Industry Committee 

members’ opinions regarding the real-world impact of advanced 

control technologies, such as model predictive control (MPC), ro- 

bust control, adaptive control, etc. The survey also included cross- 

cutting ancillary topics such as system identification, data analyt- 

ics, and estimation. PID control was also included—not as an ad- 

vanced control technology but for calibration purposes. The survey 

as distributed included a glossary for the terms used (for exam- 

ple, the glossary noted that nonlinear control included feedback 

linearization, dynamic inversion, sliding-mode control, etc.). 

Table 2 

The percentage of survey respondents indicating whether a control technology had 

demonstrated (“Current Impact”) or was likely to demonstrate over the next five 

years (“Future Impact”) high impact in practice. 

Current Impact Future Impact 

Control Technology %High %High 

PID control 91% 78% 

System Identification 65% 72% 

Estimation and filtering 64% 63% 

Model-predictive control 62% 85% 

Process data analytics 51% 70% 

Fault detection and identification 48% 78% 

Decentralized and/or coordinated control 29% 54% 

Robust control 26% 42% 

Intelligent control 24% 59% 

Discrete-event systems 24% 39% 

Nonlinear control 21% 42% 

Adaptive control 18% 44% 

Repetitive control 12% 17% 

Hybrid dynamical systems 11% 33% 

Other advanced control technology 11% 25% 

Game theory 5% 17% 

As can be observed, MPC is clearly considered more impactful, 

and likely to be more impactful, vis-à-vis other control technolo- 

gies, especially those that can be considered the “crown jewels” of "As can be observed, MPC is clearly considered more impactful, and likely to be more impactful,
vis-à-vis other control technologies, especially those that can be considered the "crown jewels"
of control theory - robust control, adaptive control, and nonlinear control."

MPC in industry
(Samad et al., 2020)
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Word trends

model predictive control machine learning

nonlinear control system identification PID control

(source: https://books.google.com/ngrams)
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Linear Model Predictive Control



Linear MPC

• Linear predictionmodel:

{
xk+1 = Axk +Buk

yk = Cxk

x ∈ Rn

u ∈ Rm

y ∈ Rp

• Constrained optimal control problem (quadratic performance index):

min
z

x′
NPxN +

N−1∑
k=0

x′
kQxk + u′

kRuk

s.t. umin ≤ uk ≤ umax, k = 0, . . . , N − 1

ymin ≤ yk ≤ ymax, k = 1, . . . , N

R = R′≻0

Q = Q′⪰0

P = P ′⪰0

z =

 u0
u1

...
uN−1


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Linear MPC

• Optimization problem (condensed form): xk = Akx0 +

k−1∑
i=0

AiBuk−1−i

V (x0) =
1
2x

′
0Y x0+ min

z

1
2z

′Hz + x′
0F

′z (quadratic objective)

H = H ′ ≻ 0

s.t. Gz ≤W + Sx0 (linear constraints)

convexQuadratic Program (QP)

• z =

 u0
u1

...
uN−1

 ∈ RNm is the optimization vector z*

• QPmatrices depend on chosenweights, model, and constraints

• Alternative: keep also x1, . . . , xN as optimization variables and the equality

constraints xk+1 = Axk +Buk (non-condensed form, which is sparse)
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future

predicted outputs

manipulated inputs

t t+k t+N

uk

r(t)

yk

past

Linear MPC algorithm

@each sampling step t:

• Measure (or estimate) the current state x(t)

• Get the solution z∗ =


u∗
0

u∗
1

...
u∗
N−1

 of theQP


min
z

1
2z

′Hz +

feedback︷ ︸︸ ︷
x′(t)F ′z

s.t. Gz ≤W + S x(t)︸︷︷︸
feedback

• Apply only u(t) = u∗
0 , discarding the remaining optimal inputs u

∗
1, . . . , u

∗
N−1

• UnconstrainedMPC:

gradient︷ ︸︸ ︷
Hz + Fx(t) = 0 u(t) = −[I 0 . . . 0]H−1Fx(t)

linear state feedback!
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Basic convergence properties
(Keerthi, Gilbert, 1988) (Bemporad, Chisci, Mosca, 1994)

• Theorem: Let theMPC law be based on

V ∗(x(t)) = min

N−1∑
k=0

x′
kQxk + u′

kRuk

s.t. xk+1 = Axk +Buk

umin ≤ uk ≤ umax

ymin ≤ Cxk ≤ ymax

xN = 0 ← “terminal constraint”

withR,Q ≻ 0, umin < 0 < umax, ymin < 0 < ymax.

If the optimization problem is feasible at time t = 0 then

lim
t→∞

x(t) = 0, lim
t→∞

u(t) = 0

and the constraints are satisfied at all time t ≥ 0, for allR,Q ≻ 0.

• Manymore convergence and stability results exist (Mayne, 2014)
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Linear MPC - Tracking

• Objective: make the output y(t) track a reference signal r(t)

• Let us parameterize the problem using the input increments

∆u(t) = u(t)− u(t− 1)

• As u(t) = u(t− 1) + ∆u(t)we need to extend the systemwith a new state

xu(t) = u(t− 1){
x(t+ 1) = Ax(t) +Bu(t− 1) +B∆u(t)

xu(t+ 1) = xu(t) + ∆u(t)


[

x(t+1)
xu(t+1)

]
= [A B

0 I ]
[

x(t)
xu(t)

]
+ [BI ]∆u(t)

y(t) = [C 0 ]
[

x(t)
xu(t)

]
• Again a linear systemwith states x(t), xu(t) and input∆u(t)
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Linear MPC - Tracking

• Optimal control problem (quadratic performance index):

min
z

N−1∑
k=0

∥W y(yk+1 − r(t))∥22 + ∥W∆u∆uk∥22

[∆uk ≜ uk − uk−1], u−1 = u(t− 1)

s.t. umin ≤ uk ≤ umax, k = 0, . . . , N − 1

ymin ≤ yk ≤ ymax, k = 1, . . . , N

∆umin ≤ ∆uk ≤ ∆umax, k = 0, . . . , N − 1

z =


∆u0

∆u1

...

∆uN−1

 or z =


u0

u1

...

uN−1



weightW (·) = diagonal matrix

min
z

J(z, x(t)) = 1
2
z′Hz + [x′(t) r′(t)u′(t− 1)]F ′z

s.t. Gz ≤ W + S

 x(t)

r(t)

u(t− 1)


convex

Quadratic

Program

• Add the extra penalty ∥Wu(uk − uref(t))∥22 to track input references
• Constraints may depend on r(t), such as emin ≤ yk − r(t) ≤ emax
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Anticipative action (a.k.a. "preview")

min
∆U

N−1∑
k=0

∥W y(yk+1 − r(t+ k))∥22 + ∥W∆u∆u(k)∥22

• Reference not known in advance
(causal):

rk ≡ r(t), ∀k = 0, . . . , N − 1

use r(t)

output / reference

input

• Future refs (partially) known in
advance (anticipative action):

rk = r(t+ k), ∀k = 0, . . . , N − 1

use r(t+k)

output / reference

input

• Same for previewingmeasured disturbancesxk+1 = Axk +Buk +Bvv(t+ k)
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Example: Cascaded MPC

• We can use preview also to coordinatemultipleMPC controllers

• Example: cascadedMPC

r(t)

u2(t)y(t) actual u1(t)

torquespeed throttleprocess #1 process #2

reference
speed

MPC #1 MPC #2
uref,1 (t), uref,1(t+1), …, uref,1(t+N-1)

future desired u1(t)

• MPC #1 commands set-points toMPC #2
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Offset-free tracking and integral action

• In control systems, integral action occurs if the controller has a

transfer-function from the output to the input of the form

u(t) =
B(z)

(z − 1)A(z)
y(t), B(1) ̸= 0

• Onemay think that the∆u-formulation ofMPC provides integral action ...

... is it true ?

• Example: we want to regulate the output y(t) to zero of the scalar system

x(t+ 1) = αx(t) + βu(t)

y(t) = x(t)
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Integral action and∆u-formulation
• Design an unconstrainedMPC controller with horizonN = 1

∆u(t) = argmin∆u0 ∆u2
0 + ρy21

s.t. u0 = u(t− 1) + ∆u0

y1 = x1 = αx(t) + β(∆u0 + u(t− 1))

• By substitution, we get

∆u(t) = argmin∆u0
∆u2

0 + ρ(αx(t) + βu(t− 1) + β∆u0)
2

= argmin∆u0(1 + ρβ2)∆u2
0 + 2βρ(αx(t) + βu(t− 1))∆u0

= − βρα
1+ρβ2x(t)− ρβ2

1+ρβ2u(t− 1)

• Since x(t) = y(t) and u(t) = u(t− 1) + ∆u(t)we get the linear controller

u(t) = −
ρβα

1+ρβ2 z

z − 1
1+ρβ2

y(t) No pole in z = 1

• Reason: MPC gives a feedback gain on both x(t) and u(t− 1), not just on x(t)
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Output integrators and offset-free tracking
• Add constant unknown disturbances onmeasured outputs:

xk+1 = Axk +Buk

dk+1 = dk
yk = Cxk + dk

• Use the extendedmodel to design a state observer (e.g., Kalman filter) that

estimates both the state x̂(t) and disturbance d̂(t) from y(t)

• Whywe get offset-free tracking in steady-state (intuitively):

– the observer makesCx̂(t) + d̂(t)→ y(t) (estimation error)

– theMPC controller makesCx̂(t) + d̂(t)→ r(t) (predicted tracking error)

– the combination of the twomakes y(t)→ r(t) (actual tracking error)

• In steady state, the term d̂(t) compensates for model mismatch

• Seemore on survey paper (Pannocchia, Gabiccini, Artoni, 2015)
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Error feedback
(Kwakernaak, Sivan, 1972)

• Idea: add the integral of the tracking error as an additional state (original idea

developed for integral action in state-feedback control)

• Extended predictionmodel:
x(t+ 1) = Ax(t) +Buu(t) + 0 · r(t) ← r(t) is seen as a meas. disturbance
q(t+ 1) = q(t) + Cx(t)− r(t)︸ ︷︷ ︸

tracking error

← integral action

y(t) = Cx(t)

• ∥W iq∥22 is penalized in the cost function, otherwise it is useless.W i is a new

tuning knob

• Intuitively, if theMPC closed-loop is asymptotically stable then q(t) converges

to a constant, and hence y(t)− r(t) converges to zero.
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Frequency analysis of MPC (for small signals)

• UnconstrainedMPC gain + linear observer = linear dynamical system

• Closed-loopMPC analysis can be performed using standard frequency-domain

tools (e.g., Bode plots for sensitivity analysis)

u(t)

ym(t)

r(t)

process

MPC

x(t)

x(t)^
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Controller matching

• Given a desired linear controller u = Kdx, find a set of weightsQ,R, P

defining anMPC problem such that

−
[
I 0 . . . 0

]
H−1F = Kd

i.e., theMPC law coincides withKd when the constraints are inactive

• The above inverse optimality problem can be cast to a convex problem

(Di Cairano, Bemporad, 2010)

• Result extended tomatch any linear controller/observer by LQR/Kalman filter

(Zanon, Bemporad, 2021)
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10,000+ downloads

1.5 downloads/day

odys.it/embedded-mpc
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Tools for MPC design and deployment

• MPCToolbox (TheMathworks, Inc.): (Bemporad, Ricker, Morari, 1998+)

– Part ofMathworks’ official toolbox distribution

– All written inMATLAB code

– Great for education and research

• Hybrid Toolbox: (Bemporad, 2003+)

– Free download: http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox

– Great for research and education

• ODYS EmbeddedMPC Toolset: (ODYS, 2013+)

– Support for linear & nonlinearMPC and extended Kalman filtering

– Library-free C code,MISRA-C 2012 compliant. Single precision supported

– ODYSDeep Learning supports neural networks as predictionmodels

– Designed and adopted for industrial production
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Embedded Quadratic Optimization for MPC



Embedded Linear MPC and Quadratic Programming

• MPC based on linear models requires solving aQuadratic Program (QP)

min
z

1

2
z′Qz + x′(t)F ′z +

1

2
x′(t)Y x(t)

s.t. Gz ≤W + Sx(t)
z =


u0

u1

...

uN−1


z*

(Beale, 1955)

A rich set of goodQP algorithms is available today

• Not all QP algorithms are suitable for industrial embedded control
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MPC in a production environment
Key requirements for deployingMPC in production:

mi
n

1
2
x

0
Q

x

+ c

0
x

s.t
.

A

x

 b

1. speed (throughput)

– worst-case execution time less than sampling interval

– also fast on average (to free the processor to execute other tasks)

2. limitedmemory and CPU power (e.g., 150MHz / 50 kB)

3. numerical robustness (single precision arithmetic)

4. certification of worst-case execution time

5. code simple enough to be validated/verified/certified

(library-free C code, easy to check by production engineers) for (i=0;i<nx;i++) {
v[i]=x[i];
}

h=v[0];
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Embedded solvers in industrial production

• MultivariableMPC controller

• Sampling frequency = 40Hz (= 1QP solved every 25ms)

• Vehicle operating≈1 hr/day for≈360 days/year on average

• Controller running on 10million vehicles

~520,000,000,000,000 QP/yr
and none of them should fail.
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Dual gradient projection for QP
(Goldstein, 1964) (Levitin, Poljak, 1965) (Combettes,Waijs, 2005)

• Consider the strictly convexQP and its dual

min 1
2z

′Qz + x′F ′z

s.t. Gz ≤W + Sx

min 1
2y

′Hy + (Dx+W )′y

s.t. y ≥ 0

withH = GQ−1G′,D = S +GQ−1F . TakeL ≥ λmax(H)

• Apply proximal gradientmethod to dual QP:

yk+1 = max{yk− 1

L
(Hyk+Dx+W ), 0} y0 = 0

• The primal solution is related to the dual solution by

zk = −Q−1(Fx+G′yk)

• Convergence is slow: the initial error f(z0)− f(z∗) reduces as 1/k
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Fast gradient projection for (dual) QP
(Nesterov, 1983) (Beck, Teboulle, 2008) (Patrinos, Bemporad, 2014)

• The fast gradientmethod is applied to solve the dual QP problem

min
z

1

2
z′Qz + x′F ′z

s.t. Gz ≤ W + Sx

K = Q−1G′

J = Q−1F

L ≥ λmax(GQ−1G′)

βk = max{ k−1
k+2

, 0}

wk = yk + βk(y
k − yk−1)

zk = −Kwk − Jx

sk = 1
LGzk − 1

L (W + Sx)

yk+1 = max
{
wk + sk, 0

}

while k<maxiter
beta=max((k-1)/(k+2),0);
w=y+beta*(y-y0);
z=-(iMG*w+iMc);
s=GL*z-bL;

y0=y;

% Termination
if all(s<=epsGL)
gapL=-w'*s;
if gapL<=epsVL

return
end

end

y=w+s;
k=k+1;

end

• Very simple to code
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theoretical

experimental

Fast gradient projection for (dual) QP

• Termination criteria: when the following two conditions aremet

ski ≤ 1
LϵG, i = 1, . . . ,m primal feasibility

−(wk)′sk ≤ 1
Lϵf optimality

the solution zk = −Kwk − Jx satisfiesGiz
k −Wi − Six ≤ ϵG and, ifwk ≥ 0,

f(zk)− f(z∗) ≤ f(zk)− q(wk)︸ ︷︷ ︸
dual fcn

= −(wk)′skL ≤ ϵf

• Convergence rate: f(xk)− f(x∗) ≤ 2L

(k + 2)2
∥z0 − z∗∥22

• Tight bounds onmaximum number of iterations
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ADMM
(Gabay,Mercier, 1976) (Glowinski, Marrocco, 1975) (Douglas, Rachford, 1956) (Boyd et al., 2010)

• Alternating DirectionsMethod ofMultipliers for QP
min 1

2
z′Qz + c′z

s.t. ℓ ≤ Az ≤ u

zk+1 = −(Q+ ρA′A)−1(ρA′(vk − sk) + c)

sk+1 = min{max{Azk+1 + vk, ℓ}, u}
vk+1 = vk +Azk+1 − sk+1

ρv = dual vector

while k<maxiter
k=k+1;
z=-iM*(c+A'*(rho*(v-s)));
Az=A*z;
s=max(min(Az+v,u),ell);
v=v+Az-s;

end

(7 lines EML code)

(≈40 lines of C code)

• Matrix (Q+ ρA′A)must be nonsingular

• The factorization of matrix (Q+ ρA′A) can be done at start and cached

• Very simple to code. Sensitive tomatrix scaling (as gradient projection)

• Used inmany applications (control, signal processing, machine learning)
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Regularized ADMM for quadratic programming
(Stellato, Banjac, Goulart, Bemporad, Boyd, 2020)

• Robust “regularized” ADMM iterations:

zk+1 = −(Q+ ρATA+ ϵI)−1(c− ϵzk + ρAT (vk − zk))

sk+1 = min{max{Azk+1 + vk, ℓ}, u}
vk+1 = vk +Azk+1 − sk+1

• Works for anyQ ⪰ 0,A, and choice of ϵ > 0

• Simple to code, fast, and robust

• Only needs to factorize

[
Q+ ϵI A′

A − 1
ρ
I

]
once

• Implemented in free osQP solver http://osqp.org
(Python interface:≈ 1,700,000 downloads)

• Extended to solvemixed-integer quadratic programming problems

(Stellato, Naik, Bemporad, Goulart, Boyd, 2018)
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ODYS QP solver
• General purposeQP solver designed for industrial production

min
z

1

2
z′Qz + c′z

s.t. bℓ ≤ Az ≤ bu

ℓ ≤ z ≤ u

Ez = f

• Implements a proprietary state-of-the-art method for QP

• Completely written inANSI-C andMISRA-C 2012 compliant

• Fast, robust (also in single precision), low-memory requirements

• optimized version forMPC available (≈ 50% faster)

• Licensed to several automotiveOEMs and Tier-1 suppliers

• Certifiable execution time
odys.it/qp
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Primal-dual interior-point method for QP
(Nocedal,Wright, 2006) (Gondzio, Terlaki, 1994)

• The Karush-Kuhn-Tucker (KKT) optimality conditions for the convexQP

minx
1
2x

′Qx+ c′x

s.t. Ax ≤ b Q = Q′ ⪰ 0

Ex = f

are

rQ = Qx+ c+ E′y +A′z = 0 x = primal vars
rE = Ex− f = 0 y = dual vars (eq. constr.)
rA = Ax+ s− b = 0 s = slacks (ineq. constr.)
rS = [z1s1 . . . zmsm]′ = 0 z = dual vars (ineq. constr.)
z, s ≥ 0

• In a nutshell, interior-pointmethods use Newton’s methodwith line search to

solve the above nonlinear system of equations

• The complementary slackness constraint is replaced by zisi = µ and µ→ 0
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Primal-dual interior-point method for QP

(Nocedal,Wright, 2006) (Gondzio, Terlaki, 1994)

• Each interior-point iteration requires solving a linear system of the form
Q E′ A′ 0

E 0 0 0

A 0 0 I

0 0 S Z



∆x

∆y

∆z

∆s

 =


−rQ
−rE
−rA
−rS

 Z = diag z

S = diag s

• InMPC the structure xk+1 = Axk +Buk can be heavily exploited to

factorize/solve the linear systems efficiently (Rao,Wright, Rawlings, 1998) (Wright, 2018)

• Linear systems tends to become ill-conditioned at convergence
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Which QP solver too choose for MPC ?

large-size ≈ 500+ variables, 2500+ constraints

QP solver → Active-Set Interior-Point ADMM GPAD

CPU time

(small/medium & dense)

CPU time 

(large & sparse)

Worst-case estimate

of CPU time

Numerical robustness

(e.g., in single precision)

Software complexity 

(linear algebra libraries)

small-scale ≈ 20- variables, 50- constraints

• AS, ADMM require simpler linear algebra than IP

• IP gives good solutions within 10-15 iterations (usually ...)

• AS iterations tend to increase when both vars and constraints increase
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YES !

MPC without on-line QP

prediction model

model-based optimizer

set-points outputsinputs

measurements

r(t) u(t) y(t)

optimization 

algorithm

process

(aecdiagnostics.com)

• Canwe implement constrained linearMPC

without an on-lineQP solver ?
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Explicit model predictive control

• Continuous& piecewise affine solution of strictly convexmultiparametric QP

z∗(x) = argminz
1
2z

′Qz + x′F ′z

s.t. Gz ≤W + Sx

(Bemporad,Morari, Dua, Pistikopoulos, 2002)

• Corollary: linearMPC is continuous & piecewise affine !

z
∗
=


u0

u1

.

.

.

u∗
N−1

 u∗
0(x) =


F1x+ g1 if H1x ≤ K1

...
...

FMx+ gM if HMx ≤ KM

• NewmpQP solver based onNNLS available (Bemporad, 2015)

and included inMPCToolbox since R2014b (Bemporad,Morari, Ricker, 1998-today)

©2022 A. Bemporad - MPC: Fundamentals and Frontiers 40/170



Double integrator example

• Model and constraints:

{
x(t+ 1) = [ 1 1

0 1 ]x(t) + [ 01 ]u(t)

y(t) = [ 1 0 ]x(t)

−1 ≤ u(t) ≤ 1
• Objective:

min

∞∑
k=0

y2k+
1

100
u2
k

uk = Kxk, ∀k ≥ Nu, K = LQR gain

Nu = N = 2(∑1
k=0 y

2
k + 1

100u
2
k

)
+ x′

2 [ 2.1429 1.2246
1.2246 1.3996 ]︸ ︷︷ ︸

solution of algebraic
Riccati equation

x2

• QPmatrices (cost function normalized bymax singular value ofH)

H = [ 0.8365 0.3603
0.3603 0.2059 ] , F = [ 0.4624 1.2852

0.1682 0.5285 ]

G =

[
1 0
−1 0
0 1
0 −1

]
, W =

[
1
1
1
1

]
, S =

[
0 0
0 0
0 0
0 0

]
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Double integrator example - Explicit solution

Nu = 2

u(x) =



[−0.8166 −1.75 ]x if

[−0.8166 −1.75
0.8166 1.75
0.6124 0.4957
−0.6124 −0.4957

]
x ≤

[
1
1
1
1

]
(Region #1)

1 if [ 0.3864 1.074
0.297 0.9333 ]x ≤

[−1
−1

]
(Region #2)

1 if
[−0.297 −0.9333

0.8166 1.75
0.9712 2.699

]
x ≤

[
1
−1
−1

]
(Region #3)

[−0.5528 −1.536 ]x+ 0.4308 if
[−0.9712 −2.699

0.3864 1.074
0.6124 0.4957

]
x ≤

[
1
1
−1

]
(Region #4)

− 1 if
[−0.3864 −1.074

−0.297 −0.9333

]
x ≤

[−1
−1

]
(Region #5)

− 1 if
[

0.297 0.9333
−0.8166 −1.75
−0.9712 −2.699

]
x ≤

[
1
−1
−1

]
(Region #6)

[−0.5528 −1.536 ]x− 0.4308 if
[−0.3864 −1.074

0.9712 2.699
−0.6124 −0.4957

]
x ≤

[
1
1
−1

]
(Region #7)

go to demo linear/doubleintexp.m (Hybrid Toolbox forMATLAB)

(Bemporad, 2003-today)

http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox
≈10,000+ downloads

≈1.5 downloads/day
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Double integrator example - Hybrid Toolbox
Ts=1; % sampling time
model=ss([1 1;0 1],[0;1],[0 1],0,Ts); % prediction model

limits.umin=-1; limits.umax=1; % input constraints

interval.Nu=2; % control horizon
interval.N=2; % prediction horizon

weights.R=.1;
weights.Q=[1 0;0 0];
weights.P='lqr'; % terminal weight = Riccati matrix
weights.rho=+Inf; % hard constraints on outputs, if present

Cimp=lincon(model,'reg',weights,interval,limits); % MPC

range=struct('xmin',[-15 -15],'xmax',[15 15]);
Cexp=expcon(Cimp,range); % explicit MPC

x0=[10,-.3]';
Tstop=40; % simulation time
[X,U,T,Y,I]=sim(Cexp,model,[],x0,Tstop);
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MPC Toolbox
(Bemporad,Morari, Ricker,≥2014)

• @explicitMPC object
>> mpcobj = mpc(plant, Ts, p, m);
>> empcobj = generateExplicitMPC(mpcobj, range);
>> empcobj2 = simplify(empcobj, 'exact')
>> [y2,t2,u2] = sim(empcobj,Tf,ref);
>> u = mpcmoveExplicit(empcobj,xmpc,y,ref);

• Very simple and robust online PWA evaluation function

i=0; imin=0; vmin=Inf; flag=0;
while found && i<nr

i=i+1;
v=max(pwafun(i).H*th-pwafun(i).K);
if v<=0

found=true; flag=1;
else

if vmin>v
vmin=v; imin=i;

end
end

end
x=pwafun(imin).F*th+pwafun(imin).G;
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Applicability of explicit MPC

• Consider the following generalMPC formulation

min
z

N−1∑
k=0

1

2
(yk − r(t+ k))′S(yk − r(t+ k)) +

1

2
∆u′

kT∆uk

+ (uk − ur(t+ k))′V (uk − ur(t+ k))′ + ρϵϵ
2

subj. to xk+1 = Axk +Buk +Bvv(t+ k), k = 0, . . . , N − 1

yk = Cxk +Duk +Dvv(t+ k), k = 0, . . . , N − 1

umin(t+ k) ≤ uk ≤ umax(t+ k), k = 0, . . . , N − 1

∆umin(t+ k) ≤ ∆uk ≤ ∆umax(t+ k), k = 0, . . . , N − 1

ymin(t+ k)− ϵVmin ≤ yk ≤ ymax(t+ k) + ϵVmax, k = 1, . . . , N

x0 = x(t)

• Everythingmarked in red can be time-varying in explicit MPC

• Not applicable to time-varyingmodels andweights
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Complexity of multiparametric solutions

• Number nr of regions = # optimal combinations of active constraints:

– mainly depends on the number q of constraints: nr ≤
q∑

h=0

(
q

h

)
= 2q

(this is a worst-case estimate, most of the combinations are never optimal!)

– also depends on the number s of free variables

– weakly depends on the numbern of parameters (states + references)

states/horizon N = 1 N = 2 N = 3 N = 4 N = 5

n=2 3 6.7 13.5 21.4 19.3
n=3 3 6.9 17 37.3 77
n=4 3 7 21.65 56 114.2
n=5 3 7 22 61.5 132.7
n=6 3 7 23.1 71.2 196.3
n=7 3 6.95 23.2 71.4 182.3
n=8 3 7 23 70.2 207.9

average on 20 random SISO systemsw/ input saturation #	con
strain

ts
#	states

#	regions
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?
Point location problem

Which is the region the current x(t) belongs to ?

Approaches:

• Store all regions and search linearly through them

• Exploit properties of mpLP solution to locate x(t) from value function

(also extended tompQP) (Baotic, Borrelli, Bemporad,Morari 2008)

• Organize regions on a tree for logarithmic search (Tøndel, Johansen, Bemporad, 2003)

• FormpLP, recast as weighted nearest neighbor problem

(logarithmic search) (Jones, Grieder, Rakovic, 2003)

• Exploit reachability analysis (Spjøtvold, Rakovic, Tøndel, Johansen, 2006)

(Wang, Jones, Maciejowski, 2007)

• Use bounding boxes and trees (Christophersen, Kvasnica, Jones, Morari, 2007)
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Complexity certification for active-set QP solvers
• Result: The number of iterations to solve theQP via a dual active-set method is

a piecewise constant function of the parameter x

(Cimini, Bemporad, 2017)

We can exactly quantify how

many iterations (flops) the QP

solver takes in the worst-case !

• Examples (fromMPC Toolbox):

inverted pendulum DC motor nonlinear demo AFTI F16
Explicit MPC
max flops 3382 1689 9184 16434
max memory (kB) 55 30 297 430
Implicit MPC
max flops 3809 2082 7747 7807
sqrt 27 9 37 33
max memory (kB) 15 13 20 16

• QP certification algorithm currently used in industrial production projects
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 / 8
Model predictive control toolset 1

MPC for torque control of PMSM
(Cimini, Bernardini, Levijoki, Bemporad, 2021)

• MPC of PermanentMagnet SynchronousMotor

• Goal: control motor torque

• Nonlinear isotropic PMSMmodel approximated

by linear model @ω(t) = ω0:

ẋ =
d

dt

[
id(t)

iq(t)

]
=

−
R

L
ω0

−ω0 −
R

L

[
id(t)

iq(t)

]
+

 1

L
0

0
1

L

[
ud(t)

uq(t)

]
+

 0

−
λ

L

ω(t)

y(t) =

[
id(t)

τ(t)

]
=

[
1 0

0 Kt

] [
id(t)

iq(t)

]
d = direct, q = quadrature

• Voltage/current constraints:

(polyhedral approximation)
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MPC for torque control of PMSM
• LinearMPC formulation, solved byODYSQP

• Platform: TI F28335Delfino 32-bit DSP

150MHzCPU, single precision

• Complexity certification algorithm guarantees

2431 flops is the worst-case (=6QP iters)

• Memory occupancy: 13 kB

(≤ single-access RAMblock of 34 kB)

• Sampling time = 0.3ms⇒
real-timeQP is 100% feasible
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Suboptimal solutions - Function regression

• Use any function regression technique to approximateMPC laws

– CollectM samples (xi, ui) by solvingMPC optimization problem for each xi

– Fit approximatemapping û(x) on the samples

– Check performance / feasibility/ prove closed-loop stability (if possible)

• Possible function regression approaches:

– Lookup tables (linear interpolation, inverse distance weighting, …)

– Neural networks (Parisini, Zoppoli, 1995) (Karg, Lucia, 2018)

– Hybrid system identification / PWA regression (Breschi, Piga, Bemporad, 2016)

– Nonlinear systems identification (Canale, Fagiano,Milanese, 2008)

– Decision trees, random forests,K-nearest neighbors, ...

• Approachworks for linear/nonlinear/stochastic/hybridMPC
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Linear Time-Varying MPC



Linear time-varying models

• Linear Time-Varying (LTV)model{
xk+1 = Ak(t)xk +Bk(t)uk

yk = Ck(t)xk

• At each time t themodel can also change over the prediction horizon k

• Possible measured disturbances are embedded in themodel

• On-line optimization is still a QP

min
z

1

2
z′H(t)z +

[
x(t)
r(t)

u(t−1)

]′
F (t)′z

s.t. G(t)z ≤W (t) + S(t)

[
x(t)
r(t)

u(t−1)

]

• TheQPmatrices cannot be constructed offline
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Linearizing a nonlinear model

• LTVmodels can be obtained by linearizing a nonlinearmodel{
dxc(t)

dt = f(xc(t), uc(t))

yc(t) = g(xc(t))

• At time t, consider the nominal trajectory

U = {ūc(t), ūc(t+ Ts), . . . , ūc(t+ (N − 1)Ts)}

For exampleU = shifted previous sequence optimized byMPC@t− 1

• Integrate themodel from x̄c(t) and get nominal state/output trajectories

X = {x̄c(t), x̄c(t+ Ts), . . . , x̄c(t+ (N − 1)Ts)}
Y = {ȳc(t), ȳc(t+ Ts), . . . , ȳc(t+ (N − 1)Ts)}

For example x̄c(t) = current state
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Linearizing a nonlinear model

• Linearize the nonlinear model around the nominal states and inputs:

dxc

dt
= f(xc, uc) ≈ f(x̄c, ūc)︸ ︷︷ ︸

dx̄c
dt

+
∂f

∂xc

∣∣∣∣
x̄c,ūc︸ ︷︷ ︸

Jacobian matrix Ac

(xc − x̄c) +
∂f

∂uc

∣∣∣∣
x̄c,ūc︸ ︷︷ ︸

Jacobian matrix Bc

(uc − ūc)

y = g(xc) ≈ g(x̄c)︸ ︷︷ ︸
ȳc

+
∂g

∂xc

∣∣∣∣
x̄c︸ ︷︷ ︸

Jacobian matrix C

(xc − x̄c)

• Define x ≜ xc − x̄c, u ≜ uc − ūc, y ≜ yc − ȳc and get the linear system

dx

dt
= Acx+Bcu y = Cx

• Convert linear model to discrete-time and get matrices (Ak, Bk, Ck)

• Alternative: compute (Ak, Bk, Ck) (a.k.a. sensitivities) during integration
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Autonomous driving example

• Goal: Control longitudinal acceleration and steering angle of the vehicle

simultaneously for autonomous drivingwith obstacle avoidance

• Approach: MPC based on a bicycle-like kinematic model of the vehicle in

Cartesian coordinates

±

µ

L

v

x

y


ẋ = v cos(θ + δ)

ẏ = v sin(θ + δ)

θ̇ =
v

L
sin(δ)

(x, y) Cartesian position of front wheel v velocity at front wheel
θ vehicle orientation δ steering input
L vehicle length = 4.5 m
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Autonomous driving example
• Let xn, yn, θn, vn, δn nominal states/inputs satisfying ẋn

ẏn
θ̇n

 =

 vn cos(θn + δn)

vn sin(θn + δn)
vn
L

sin(δn)

 feasible nominal trajectory

• Linearize themodel around the nominal trajectory: ẋ

ẏ

θ̇

 ≈

 ẋn

ẏn
θ̇n

+Ac

 x− xn

y − yn
θ − θn

+Bc

[
v − vn
δ − δn

]
linearized model

whereAc,Bc are the Jacobianmatrices

Ac =

 0 0 −vn sin(θn + δn)

0 0 vn cos(θn + δn)

0 0 0

 Bc =

 cos(θn + δn) −vn sin(θn + δn)

sin(θn + δn) vn cos(θn + δn)
1
L
sin(δn)

vn
L

cos(δn)



• Use first-order Euler method to discretize model:

A = I + TsAc, B = TsBc, Ts = 50ms
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Autonomous driving example
• Constraints on inputs and input variations∆vk = vk − vk−1,∆δk = δk − δk−1:

−20 ≤ v ≤ 70 km/h velocity constraint
−45 ≤ δ ≤ 45 deg steering angle
−5 ≤ ∆δ ≤ 5 deg steering angle rate

• Stage cost tominimize:

(x− xref)
2 + (y − yref)

2 +∆v2 +∆δ2

• Prediction horizon: N = 30 (prediction distance =NTsv, for example 25 m at 60 km/h)

• Control horizon: Nu = 4

• Preview on reference signals available
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Autonomous driving example

• Closed-loop simulation results
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vel =  66.0 km/h, delta =   0.0 deg

 Linear Parameter-Varying (LPV)MPC

Model linearized @t and used @t+ k, ∀k
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 Linear Time-Varying (LTV)MPC

Model linearized @t+ k, ∀k
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Autonomous driving example

• Add position constraint y ≥ 0m
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 LPV-MPC

Model linearized @t
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 LTV-MPC

Model linearized @t+ k, k = 0, . . . , N − 1
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Nonlinear MPC



Nonlinear MPC
(Mayne, Rawlings, Diehl, 2017)

• Nonlinear predictionmodel{
xk+1 = f(xk, uk)

yk = g(xk, uk)

• Nonlinear constraints h(xk, uk) ≤ 0

• Nonlinear performance indexmin ℓN (xN ) +

N−1∑
k=0

ℓ(xk, uk)

• Optimization problem: nonlinear programming problem (NLP)

minz F (z, x(t))

s.t. G(z, x(t)) ≤ 0

H(z, x(t)) = 0

z =


u0

...
uN−1
x1

...
xN


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Nonlinear optimization

• (Nonconvex) NLP is harder to solve thanQP

• Convergence to a global optimummay not be guaranteed

• Several NLP solvers exist (such as Sequential Quadratic Programming (SQP))

(Nocedal,Wright, 2006)

• NLP can be useful to deal with strong dynamical nonlinearities and/or nonlinear

constraints/costs

• NL-MPC is less used in practice than linearMPC
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Fast nonlinear MPC
(Lopez-Negrete, D’Amato, Biegler, Kumar, 2013)

• FastMPC: exploit sensitivity analysis to compensate for the computational

delay caused by solving the NLP

• Key idea: pre-solve the NLP between time t− 1 and t based on the predicted

state x∗(t) = f(x(t− 1), u(t− 1)) in background

• Get u∗(t) and sensitivity
∂u∗

∂x

∣∣∣∣
x∗(t)

within sample interval [(t− 1)Ts, tTs)

• At time t, get x(t) and compute

u(t) = u∗(t) +
∂u∗

∂x
(x(t)− x∗(t))

• A.k.a. advanced-stepMPC (Zavala, Biegler, 2009)

• Note that still one NLPmust be solvedwithin the sample interval
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From LTV-MPC to Nonlinear MPC

• Canwe use the LTV-MPCmachinery to handle nonlinearMPC ?

• Key idea: Solve a sequence of LTV-MPC problems at each time t

For h = 0 to hmax − 1 do:

1. Simulate from x(t)with inputsUh and get state trajectoryXh

2. Linearize around (Xh, Uh) and discretize in time

3. GetU∗
h+1 =QP solution of corresponding LTV-MPC problem

4. Line search: find optimal step sizeαh ∈ (0, 1];

5. SetUh+1 = (1− αh)Uh + αhU
∗
h+1;

Return solutionUhmax

• Special case: just solve one iteration withα = 1 (a.k.a. Real-Time Iteration)

(Diehl, Bock, Schloder, Findeisen, Nagy, Allgower, 2002) = LTV-MPC
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Nonlinear MPC
(Gros, Zanon, Quirynen, Bemporad, Diehl, 2020)

• Example
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Fig. 7. Illustration of the RTI solution vs. the linear MPC solutions at the
discrete time instant i = 2, with state noise.

0 5 10 15 20 25 30

0

1

2

3

4

x1

 

 

0 5 10 15 20 25 30

0

1

2

3

4

x2

0 5 10 15 20 25 30

-0.4

-0.2

0

0.2

u
1

time

Linear MPC
RTI
Converged

Fig. 8. Illustration of the RTI solution vs. the linear MPC solutions in
closed-loop simulations, without state noise.
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Fig. 9. Illustration of the RTI solution vs. the linear MPC solutions in
closed-loop simulations, with state noise of covariance 0.1.

the system is readily described as a discrete dynamic system,
such as when the model is identified from input/output data,
computing f (x,u) and — f (x,u) is straightforward. However,
in many applications, the system dynamics are available in a
continuous form, typically as an Ordinary Differential Equa-
tion (ODE) of the form:

ẋ(t) = F (x(t),u(t)) . (23)

In this section, we will present a family of numerical meth-
ods for simulation and sensitivity generation. It is important
to stress that the well-known matrix exponential can also
be considered as such a method for numerical simulation.
However, depending on the system considered, other methods
might be more accurate and less computationally intensive.
We also want to stress the fact that several integration steps
can be taken inside each control interval in order to increase
the accuracy of the simulation. We will also sketch how the
sensitivities can be propagated in case multiple integration
steps are taken.

For the sake of simplicity we consider here an explicit
ODE having time-invariant dynamics, though the following
developments can be easily extended to the time-varying case
and to implicit ODE or Differential Algebraic Equation (DAE)
systems.

Let us consider a piecewise constant discretization of the
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Output feedback - Extended Kalman filter
• For state estimation, an Extended Kalman Filter (EKF) can be used based on

the same nonlinear model (with additional noise)

x(k + 1) = f(x(k), u(k), ξ(k))

y(k) = g(x(k)) + ζ(k)

• measurement update:

C(k) =
∂g

∂x
(x̂k|k−1)

M(k) = P (k|k − 1)C(k)′[C(k)P (k|k − 1)C(k)′ +R(k)]−1

consumed by MPC → x̂(k|k) = x̂(k|k − 1) +M(k) (y(k)− g(x̂(k|k − 1)))

P (k|k) = (I −M(k)C(k))P (k|k − 1)

• time update:

x̂(k + 1|k) = f(x̂(k|k), u(k))

A(k) =
∂f

∂x
(x̂k|k, u(k), E[ξ(k)]), G(k) =

∂f

∂ξ
(x̂k|k, u(k), E[ξ(k)])

P (k + 1|k) = A(k)P (k|k)A(k)′ +G(k)Q(k)G(k)′
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Hybrid MPC



Hybrid dynamical systems

0

1 0

1

00 01

11 10

1
0

0

1

xc(k)uc(k)
continuous 
dynamical 

system

x`(k)

u`(k)

hybrid
dynamical
system

• Variables are binary-valued

xℓ ∈ {0, 1}nℓ , uℓ ∈ {0, 1}mℓ

• Dynamics = finite statemachine

• Logic constraints

• Variables are real-valued

xc ∈ Rnc , uc ∈ Rmc

• Difference/differential equations

• Linear inequality constraints
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Piecewise affine systems

x(k + 1) = Ai(k)x(k) +Bi(k)u(k) + fi(k)
y(k) = Ci(k)x(k) +Di(k)u(k) + gi(k)

i(k) s.t. Hi(k)x(k) + Ji(k)u(k) ≤ Ki(k)

• PWA systems can approximate nonlinear dynamics arbitrarily well

(even discontinuous ones)

x(k+1)

x(k)
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Discrete Hybrid Automaton (DHA)
(Torrisi, Bemporad, 2004)

Event Generator

Finite State Machine

Mode Selector

Switched Affine System

mode

discrete
time
counter

continuous

discrete

xℓ ∈ {0, 1}nℓ = binary state

uℓ ∈ {0, 1}mℓ = binary input

δe ∈ {0, 1}ne = event variable

xc ∈ Rnc = real-valued state

uc ∈ Rmc = real-valued input

i ∈ {1, . . . , s} = currentmode
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Conversion of logic formulas to linear inequalities
(Glover, 1975) (Williams, 1977) (Hooker, 2000)

• Key observation:X1 ∨X2 = true δ1 + δ2 ≥ 1, δ1, δ2 ∈ {0, 1}
• Wewant to impose the Boolean statement

F (X1, . . . , Xn) = true

• Convert the formula toConjunctive Normal Form (CNF)

m∧
j=1

∨
i∈Pj

Xi

∨
i∈Nj

X̄i

 = true, Pj ∪Nj ⊆ {1, . . . , n}

• Transform the CNF into the equivalent linear inequalities
∑

i∈P1
δi +

∑
i∈N1

(1− δi) ≥ 1
...

...∑
i∈Pm

δi +
∑

i∈Nm
(1− δi) ≥ 1

Aδ ≤ b, δ ∈ {0, 1}n

polyhedron

Any logic proposition can be translated into integer linear inequalities
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Big-M technique (iff)

• Consider the if-and-only-if condition

[δ = 1]↔ [a′xc−b ≤ 0]
xc ∈ X
δ ∈ {0, 1}

• AssumeX ⊂ Rnc bounded. LetM andm such that ∀xc ∈ X

M > a′xc − b

m < a′xc − b

• The if-and-only-if condition is equivalent to{
a′xc − b ≤ M(1− δ)

a′xc − b > mδ

• We can replace the second constraint with a′xc − b ≥ ϵ+ (m− ϵ)δ to avoid

strict inequalities, where ϵ > 0 is a small number (e.g., themachine precision)
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Big-M technique (if-then-else)
• Consider the if-then-else condition

z =

{
a′1xc − b1 if δ = 1

a′2xc − b2 otherwise

xc ∈ X
δ ∈ {0, 1}
z ∈ R

• AssumeX ⊂ Rnc bounded. LetM1,M2 andm1,m2 such that ∀xc ∈ X

M1 > a′1xc − b1 > m1

M2 > a′2xc − b2 > m2

• The if-then-else condition is equivalent to
(m1 −M2)(1− δ) + z ≤ a′1xc − b1
(m2 −M1)(1− δ)− z ≤ −(a′1xc − b1)

(m2 −M1)δ + z ≤ a′2xc − b2
(m1 −M2)δ − z ≤ −(a′2xc − b2)
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Switched 
Affine System

1

2

s

Switched affine system
• The state-update equation of a SAS can be rewritten as

xc(k+1) =

s∑
i=1

zi(k) zi(k) ∈ Rnc

with

z1(k) =

{
A1xc(k) +B1uc(k) + f1 if δ1(k) = 1

0 otherwise

...

zs(k) =

{
Asxc(k) +Bsuc(k) + fs if δs(k) = 1

0 otherwise

andwith δi(k) ∈ {0, 1} subject to the exclusive or condition
s∑

i=1

δi(k) = 1 or equivalently

{ ∑s
i=1 δi(k) ≥ 1∑s
i=1 δi(k) ≤ 1

• Output eqs yc(k) = Cixc(k) +Diuc(k) + gi admit similar transformation
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Transformation of a DHA into linear (in)equalities

Finite State 
Machine

Mode Selector

Switched 
Affine System

1

2

s

Event 
Generator
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Mixed Logical Dynamical (MLD) systems
(Bemporad,Morari, 1999)

• By converting logic relations intomixed-integer linear inequalities

a DHA can be rewritten as theMixed Logical Dynamical (MLD) system

Event Generator

Finite State Machine

Mode Selector

Switched Affine System

mode

discrete
time
counter

continuous

discrete 
x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) +B5

y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k) +D5

E2δ(k) + E3z(k) ≤ E4x(k) + E1u(k) + E5

x ∈ Rnc × {0, 1}nb , u ∈ Rmc × {0, 1}mb

y ∈ Rpc × {0, 1}pb , δ ∈ {0, 1}rb , z ∈ Rrc

• The translation fromDHA toMLD can be automatized, see e.g. the language

HYSDEL (HYbrid SystemsDEscription Language) (Torrisi, Bemporad, 2004)

• MLDmodels allow solvingMPC, verification, state estimation, and fault

detection problems viamixed-integer programming
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Equivalence of hybrid models

• MLD and PWA systems are equivalent (Bemporad, Ferrari-Trecate, Morari, 2000)

Proof: For a given combination (xℓ, uℓ, δ) of anMLDmodel, the state and

output equation are linear and valid in a polyhedron.

Conversely, a PWA system can bemodeled asMLD system (see next slide)

• Efficient conversion algorithms fromMLD to PWA form exist

(Bemporad, 2004) (Geyer, Torrisi, Morari, 2003)

• Further equivalences exist with other classes of hybrid dynamical systems, such

as Linear Complementarity (LC) systems (Heemels, De Schutter, Bemporad, 2001)
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Example: room temperature control

Tamb

heating

air conditioning

uhot
ucold

T1 T2

discrete dynamics

• #1 = cold→ heater = on

• #2 = cold→ heater = on unless #1 hot

• A/C activation has similar rules

continuous dynamics

dTi

dt
= −αi(Ti−Tamb)+ki(uhot−ucold)

i = 1, 2

go to demo demos/hybrid/heatcool.m
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Example: room temperature control

>> S=mld('heatcoolmodel',Ts);

>> [XX,TT]=sim(S,x0,U);

get theMLDmodel inMATLAB

simulate theMLDmodel
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Example: room temperature control

• MLDmodel of the room temperature system
x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) +B5

y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k) +D5

E2δ(k) + E3z(k) ≤ E4x(k) + E1u(k) + E5

– 2 continuous states (temperature T1, T2)

– 1 continuous input (room temperature Tamb)

– 2 auxiliary continuous vars (power flows uhot, ucold)

– 6 auxiliary binary vars (4 threshold events + 2 for theOR condition)

– 20mixed-integer inequalities

• In principle, we have 26 = 64 possible combinations of binary variables
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Example: room temperature control
• PWAmodel of the room temperature system

x(k + 1) = Ai(k)x(k) +Bi(k)u(k) + fi(k)
y(k) = Ci(k)x(k) +Di(k)u(k) + gi(k)

i(k) s.t. Hi(k)x(k) + Ji(k)u(k) ≤ Ki(k)

>> P=pwa(S);

both offheater on A/C on

5 polyhedral regions

(partition does not depend on input)

2 continuous states (T1, T2)

1 continuous input (Tamb)
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Identification of hybrid systems



PWA regression problem
• Problem: Given input/output pairs {x(k), y(k)}, k = 1, . . . , N and number s of

models, compute a piecewise affine (PWA) approximation y ≈ f(x)

v(k) =


F1z(k) + g1 ifH1z(k) ≤ K1

...

Fsz(k) + gs ifHsz(k) ≤ Ks

v(k) =
[
x(k+1)
y(k)

]
, z(k) =

[
x(k)
u(k)

]

f(z)

z

• Need to learn both the parameters {Fi, gi} of the affine submodels and the
partition {Hi, Ki} of the PWAmap from data (offline learning)

• Possibly updatemodel+partition as new data are available (online learning)

• AnyML technique can be applied that leads to PWAmodels, such as

(leaky)ReLU-NNs, decision trees, softmax regression,KNN, ...
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Approaches to PWA identification

• Mixed-integer linear or quadratic programming (Roll, Bemporad, Ljung, 2004)

• Partition of infeasible set of inequalities (Bemporad, Garulli, Paoletti, Vicino, 2005)

• K-means clustering in a feature space (Ferrari-Trecate, Muselli, Liberati, Morari, 2003)

• Bayesian approach (Juloski,Wieland, Heemels, 2004)

• Kernel-based approaches (Pillonetto, 2016)

• Hyperplane clustering in data space (Münz, Krebs, 2002)

• Recursivemultiple least squares & PWL separation (Breschi, Piga, Bemporad, 2016)

• Piecewise affine regression and classification (PARC) (Bemporad, 2021)
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PWA regression algorithm
(Breschi, Piga, Bemporad, 2016)

1. Estimatemodels {Fi, gi} recursively. Let ei(k) = y(k)− Fix(k)− gi and only

updatemodel i(k) such that

i(k)← arg mini=1,...,s ei(k)
′Λ−1

e ei(k)︸ ︷︷ ︸
one-step prediction error
of model #i

+(x(k)− ci)
′
R−1

i (x(k)− ci)︸ ︷︷ ︸
proximity to centroid
of cluster #i

using recursive LS and inverseQR decomposition (Alexander, Ghirnikar, 1993)

This also splits the data points x(k) in clustersCi = {x(k) : i(k) = i}

2. Compute a polyhedral partition {Hi, Ki} of the
regressor space viamulti-category linear separation

ϕ(x) = max
i=1,...,s

{w′
ix− γi}
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PWA regression examples
(Breschi, Piga, Bemporad, 2016)

• Identification of piecewise-affine ARXmodel[
y1(k)
y2(k)

]
=

[
−0.83 0.20
0.30 −0.52

] [
y1(k−1)
y2(k−1)

]
+

[
−0.34 0.45
−0.30 0.24

] [
u1(k−1)
u2(k−1)

]
+

[
0.20
0.15

]
+max

{[
0.20 −0.90
0.10 −0.42

] [
y1(k−1)
y2(k−1)

]
+

[
0.42 0.20
0.50 0.64

] [ u1(k−1)
u2(k−1)

]
+

[
0.40
0.30

]
,
[
0
0

]}
+ eo(k),

• Quality of fit: best fit rate (BFR) =max
{
1− ∥yo,i−ŷi∥2

∥yo,i−ȳo,i∥2
, 0
}
, i = 1, 2

yo =measured, ŷ = open-loop simulated, ȳ = samplemean of yo

N = 4000 N = 20000 N = 100000

y1

(offline) RLP 96.0 % 96.5 % 99.0 %
(Offline) RPSN 96.2 % 96.4 % 98.9 %
(Online) ASGD 86.7 % 95.0 % 96.7 %

y2

(offline) RLP 96.2 % 96.9 % 99.0 %
(offline) RPSN 96.3 % 96.8 % 99.0 %
(online) ASGD 87.4 % 95.2 % 96.4 %

BFR on validation data, open-loop validation

RLP = Robust linear programming

(Bennett, Mangasarian, 1994)

RPSN = Piecewise-smooth Newtonmethod

(Bemporad, Bernardini, Patrinos, 2015)

ASGD=Averaged stochastic gradient descent

(Bottou, 2012)

• CPU time for computing the partition: N = 4000 N = 20000 N = 100000

(Offline) RLP 0.308 s 3.227 s 112.435 s
(Offline) RPSN 0.016 s 0.086 s 0.365 s
(Online) ASGD 0.013 s 0.023 s 0.067 s
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PARC - Piecewise affine regression and classification
(Bemporad, 2021)

• New Piecewise Affine Regression and Classification (PARC) algorithm

• Training dataset:

– feature vector z ∈ Rn (categorical features one-hot encoded in {0, 1})

– target vector vc ∈ Rmc (numeric), vdi ∈ {w1
di, . . . , w

mi
di } (categorical)

• PARC iteratively clusters training data inK sets and fit linear predictors

1. fit vc = ajz + bj by ridge regression (=ℓ2-regularized least squares)

2. fit vdi = wh∗
di , h∗ = argmax{ah

dihz + bhdi} by softmax regression

3. fit a convex PWL separation function by softmax regression

Φ(z) = ωj(z)z + γj(z), j(z) = min

{
arg max

j=1,...,K
{ωjz + γj}

}
• Data reassigned to clusters based onweighted fit/PWL separation criterion

• PARC is a block-coordinate descent algorithm⇒ (local) convergence ensured
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PARC - Piecewise Affine Regression and Classification
(Bemporad, 2021)

• Simple PWA regression example:

– 1000 samples of y = sin(4x1 − 5(x2 − 0.5)2) + 2x2 (use 80% for training)

– Look for PWA approximation overK = 10 polyhedral regions
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• Code download: http://cse.lab.imtlucca.it/~bemporad/parc/
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PARC - Cart & Bumpers Example

• Example: moving cart and bumpers +

heat transfer during bumps.

Spring and viscous forces are nonlinear.

• Categorical inputF ∈ {−F̄ , 0, F̄} and
categorical output c ∈ {green, yellow, red}

• Continuous-time system simulated for 2,000 s,

sample time = 0.5 s (=4000 training samples)

• Feature vector zk = [yk, ẏk, Tk, Fk]

• Target vector vk = [yk+1, ẏk+1, Tk+1, ck]

• Hybridmodel learned by PARC (K = 5 regions)
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PARC - Cart & Bumpers Example
• Open-loop simulation on 500 s test data:

0
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continuous-time system
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force switch

discrete-time PWA model

• Model fit is good enough forMPC design purposes (see later ...)
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Hybrid model predictive control



MIQP formulation of Hybrid MPC
(Bemporad,Morari, 1999)

• Finite-horizon optimal control problem (regulation)

min

N−1∑
k=0

y′kQyk + u′
kRuk

s.t.


xk+1 = Axk +B1uk +B2δk +B3zk +B5

yk = Cxk +D1uk +D2δk +D3zk +D5

E2δk + E3zk ≤ E4xk + E1uk + E5

x0 = x(t)

Q = Q′ ≻ 0,R = R′ ≻ 0

• Treat uk, δk, zk as free decision variables, k = 0, . . . , N − 1

• Predictions can be constructed exactly as in the linear case

xk = Akx0 +

k−1∑
j=0

Aj(B1uk−1−j +B2δk−1−j +B3zk−1−j +B5)
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MIQP formulation of Hybrid MPC
(Bemporad,Morari, 1999)

• After substituting xk , yk the resulting optimization problem becomes the

followingMixed-Integer Quadratic Programming (MIQP) problem

minξ
1
2ξ

′Hξ + x′(t)F ′ξ + 1
2x

′(t)Y x(t)

s.t. Gξ ≤W + Sx(t)

• The optimization vector ξ = [u0, . . . , uN−1, δ0, . . . , δN−1, z0, . . . , zN−1] has

mixed real and binary components

uk ∈ Rmc × {0, 1}mb

δk ∈ {0, 1}rb
zk ∈ Rrc

ξ ∈ RN(mc+rc) × {0, 1}N(mb+rb)

• Closed-loop convergence, asymptotic stability can be guaranteed by terminal

cost/constraints (Bemporad,Morari, 1999) (Lazar, Heemels,Weiland, Bemporad, 2006)
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MILP formulation of Hybrid MPC
(Bemporad, Borrelli, Morari, 2000)

• Finite-horizon optimal control problem using infinity norms

minξ

N−1∑
k=0

∥Qyk∥∞ + ∥Ruk∥∞

s.t.


xk+1 = Axk +B1uk +B2δk +B3zk +B5

yk = Cxk +D1uk +D2δk +D3zk +D5

E2δk + E3zk ≤ E4xk + E1uk + E5

x0 = x(t)

Q ∈ Rmy×ny

R ∈ Rmu×nu

• Introduce additional variables ϵyk, ϵ
u
k , k = 0, . . . , N − 1{

ϵyk ≥ ∥Qyk∥∞
ϵuk ≥ ∥Ruk∥∞

{
ϵyk ≥ ±Qiyk
ϵuk ≥ ±Riuk

Qi = ith row of Q
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MILP formulation of Hybrid MPC
(Bemporad, Borrelli, Morari, 2000)

• After substituting xk , yk the resulting optimization problem becomes the

followingMixed-Integer Linear Programming (MILP) problem

minξ

N−1∑
k=0

ϵyk + ϵuk

s.t. Gξ ≤W + Sx(t)

• ξ = [u0, . . . , uN−1, δ0, . . . , δN−1, z0, . . . , zN−1, ϵ
y
0, ϵ

u
0 , . . . , ϵ

y
N−1, ϵ

u
N−1]

is the optimization vector, withmixed real and binary components

uk ∈ Rmc × {0, 1}mb

δk ∈ {0, 1}rb
zk ∈ Rrc

ϵyk, ϵ
u
k ∈ R

ξ ∈ RN(mc+rc+2) × {0, 1}N(mb+rb)

• Same approach applies to any convex piecewise affine stage cost
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Hybrid MPC – Temperature control
>> refs.x=2; % just weight state #2
>> Q.x=1; % unit weight on state #2
>> Q.rho=Inf; % hard constraints
>> Q.norm=Inf; % infinity norms
>> N=2; % prediction horizon
>> limits.xmin=[25;-Inf];

>> C=hybcon(S,Q,N,limits,refs);

>> C

Hybrid controller based on MLD model S <heatcoolmodel.hys> [Inf-norm]

2 state measurement(s)
0 output reference(s)
0 input reference(s)
1 state reference(s)
0 reference(s) on auxiliary continuous z-variables

20 optimization variable(s) (8 continuous, 12 binary)
46 mixed-integer linear inequalities
sampling time = 0.5, MILP solver = 'glpk'

Type "struct(C)" for more details.
>>

>> [XX,UU,DD,ZZ,TT]=sim(C,S,r,x0,Tstop);

min

2∑
k=1

∥x2k − r(t)∥∞

s.t.

{
x1k ≥ 25, k = 1, 2

MLDmodel
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Hybrid MPC – Temperature control

• Average CPU time to solveMILP:≈ 1ms/step

(Macbook Pro 3GHz Intel Core i7 using GLPK)
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Mixed-Integer Programming solvers
• Binary constraints makeMixed-Integer Programming (MIP) a hard problem

(NP-complete)

• However, excellent general purpose branch & bound / branch & cut solvers

available forMILP andMIQP (Gurobi, CPLEX, FICOXpress, GLPK, CBC, ...)

(more solvers/benchmarks: see http://plato.la.asu.edu/bench.html)

• MIQP approaches tailored to embedded hybridMPC applications:

– B&B + (dual) active set methods for QP

(Leyffer,  Fletcher,  1998) (Axehill,  Hansson,  2006) (Bemporad, 2015) (Bemporad, Naik, 2018)

– B&B + interior point methods: (Frick,  Domahidi,  Morari,  2015)

– B&B + fast gradient projection: (Naik, Bemporad, 2017)

– B&B +ADMM: (Stellato, Naik, Bemporad, Goulart, Boyd, 2018)

• No need to reach global optimum (see convergence proof), although

performancemay deteriorate
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Branch & bound method for MIQP
(Dakin, 1965)

• Wewant to solve the followingMIQP

min V (z) ≜ 1
2z

′Qz + c′z

s.t. Az ≤ b

zi ∈ {0, 1}, ∀i ∈ I

z ∈ Rn

Q = Q′ ⪰ 0

I ⊆ {1, . . . , n}

• Branch & Bound (B&B) is the simplest (andmost popular) approach to solve the

problem to optimality

• Key idea:

– for each binary variable zi, i ∈ I , either set zi = 0, or zi = 1, or zi ∈ [0, 1]

– solve the correspondingQP relaxation of theMIQP problem

– useQP result to decide the next combination of fixed/relaxed variables
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Fast gradient projection for MIQP
(Naik, Bemporad, 2017)

• Consider again theMIQP problemwith HessianQ = Q′ ≻ 0

min
z

V (z) ≜ 1

2
z′Qz + c′z

s.t. ℓ ≤ Az ≤ u

Gz = g

Āiz ∈ {ℓ̄i, ūi}, i = 1, . . . , p

wk = yk + βk(y
k − yk−1)

zk = −Kwk − Jx

sk = . . .

yk+1
i = max

{
wk

i + ski , 0
}
, i ∈ Iineq

• Use B&B and fast gradient projection to solve dual of QP relaxation

constraint is relaxed Āiz ≤ ūi → yk+1
i = max

{
wk

i + ski , 0
}

(yi ≥ 0)

constraint is fixed Āiz = ūi → yk+1
i = wk

i + ski (yi ≶ 0)

constraint is ignored Āiz = ℓ̄i → yk+1
i = 0 (yi = 0)
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Fast gradient projection for MIQP
(Naik, Bemporad, 2017)

• Same dual QPmatrices at each node, preconditioning computed only once

• Warm-start exploited, dual cost used to stopQP relaxations earlier

• Criterion based on Farkas lemma to detectQP infeasibility

• Numerical results (time inms):

n m p q miqpGPAD GUROBI
10 100 2 2 15.6 6.56
50 25 5 3 3.44 8.74
50 150 10 5 63.22 46.25

100 50 2 5 6.22 26.24
100 200 15 5 164.06 188.42
150 100 5 5 31.26 88.13
150 200 20 5 258.80 274.06
200 50 15 6 35.08 144.38

n = # variables

m = # inequality constraints

p = # binary constraints

q = # equality constraints

CPU timemeasured on Intel Core i7-4700MQCPU 2.40 GHz
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Explicit hybrid MPC (MLD formulation)

minξ J(ξ, x(t) ) =

N−1∑
k=0

∥Qyk∥∞ + ∥Ruk∥∞

subject to



xk+1 = Axk +B1uk +B2δk +B3zk +B5

yk = Cxk +D1uk +D2δk +D3zk +D5

E2δk + E3zk ≤ E4xk + E1uk + E5

x0 = x(t)

• Online optimization: solve the problem for a given state x(t) as theMILP

minξ

N−1∑
k=0

ϵyk + ϵuk

s.t. Gξ ≤W + S x(t)

• Offline optimization: solve theMILP in advance for all states x(t)

multiparametricMixed-Integer Linear Program (mp-MILP)
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Multiparametric MILP
• Consider themp-MILP

minξc,ξd f ′
cξc + f ′

dξd
s.t. Gcξc +Gdξd ≤W + S x

ξc ∈ Rnc

ξd ∈ {0, 1}nd

x ∈ Rm

• Amp-MILP can be solved by alternatingMILPs andmp-LPs

(Dua, Pistikopoulos, 1999)

• Themultiparametric solution ξ∗(x) is PWA (but possibly discontinuous)

• TheMPC controller is piecewise affine in x = x(t)

u(x) =


F1x+ g1 if H1x ≤ K1

...
...

FMx+ gM if HMx ≤ KM

x-space

1

2

3

M

4

5 6

(More generally, the parameter vector x includes states and reference signals)
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Explicit hybrid MPC (PWA formulation)

• Consider theMPC formulation using a PWApredictionmodel

minξ J(ξ, x(t)) =

N−1∑
k=0

∥Qyk∥∞ + ∥Ruk∥∞

subject to


xk+1 = Ai(k)xk +Bi(k)uk + fi(k)

yk = Ci(k)xk +Di(k)uk + gi(k)

i(k) such thatHi(k)xk +Wi(k)uk ≤ Ki(k)

x0 = x(t)

• Method #1: The explicit solution can be obtained by using a combination of

dynamic programming (DP) andmpLP (Borrelli, Baotic, Bemporad,Morari, 2005)

• Clearly the explicit hybridMPC law is again piecewise affine, as PWA systems≡
MLD systems
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Explicit hybrid MPC (PWA formulation)

• Method #2: (Bemporad, Hybrid Toolbox, 2003)

(Alessio, Bemporad, 2006) (Mayne, ECC 2001) (Mayne, Rakovic, 2002)

1 Use backwards (=DP) reachability analysis for enumerating

all feasible mode sequences I = {i(0), i(1), . . . , i(N)}

2 For each fixed sequence I , solve the explicit finite-time

optimal control problem for the corresponding linear

time-varying system (mpQP ormpLP)

3a Case of 1 /∞-norms or convex PWA costs: Compare value

functions and split regions

3b Case of quadratic costs: the partitionmay not be fully

polyhedral, better keep overlapping polyhedra and compare

online quadratic cost functions when overlaps are detected

• Comparison of quadratic costs can be avoided by lifting the

parameter space (Fuchs, Axehill, Morari, 2015)
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Explicit hybrid MPC – Temperature control
>> E=expcon(C,range,options);

>> E

Explicit controller (based on hybrid controller C)
3 parameter(s)
1 input(s)
12 partition(s)
sampling time = 0.5

The controller is for hybrid systems (tracking)
This is a state-feedback controller.

Type "struct(E)" for more details.
>>

384 numbers to store in memory

min

2∑
k=0

∥x2k − r(t)∥∞

s.t.

{
x1k ≥ 25, k = 1, 2

hybridmodel

(T1, T2) section forTref = 30
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Explicit hybrid MPC – Temperature control

generated 
C-code

utils/expcon.h
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y

M
F

T

1

2

3

position [m]

10

20

30

40

50 temperature [oC]

0 20 40 60 80 100
time (s)

1

0

1
force switch

PARC - Cart & Bumpers Example

• MPC problemwith prediction horizonN = 9:

minF0,...,FN−1

N−1∑
k=0

|ck − 1|+ 0.25|Fk|

s.t. Fk ∈ {−F̄ , 0, F̄}
PWAmodel equations

• MILP solution time: 0.15-0.29 s (CPLEX)

• Data-driven hybridMPC controller can keep

temperature in yellow zone

• Approximate explicitMPC: fit a decision tree on 10,000 samples

(accuracy: 99.9%). CPU time = 52÷67 µs. Closed-loop trajectories very similar.
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Stochastic model predictive control



Optimize decisions under uncertainty

• Inmany control problems decisionsmust be taken under uncertainty

renewable power

prices

demand

human interaction

?
? ??

water

?

• Robust control approaches do not model uncertainty (only assume that is

bounded) and pessimistically consider the worst case

• Stochasticmodels provide instead additional information about uncertainty

• Optimality is often sought (ex: minimize expected economic cost)
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t t+1 t+N

min
u

Ew

2

4
N�1X

k=0
`(yk, uk, wk)

3

5

s.t. xk+1 = A(wk)xk +B(wk)uk + f(wk)

yk = C(wk)xk +D(wk)uk + g(wk)

umin  uk  umax

ymin  yk  ymax, 8w
x0 = x(t)
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Stochastic Model Predictive Control

�4

• At	time	  t:	solve	a	stochastic	optimal	control	problem	over	a	finite	future	
horizon	of	N	steps:

x(t)	=	process	state	

u(t)	=	manipulated	vars	

y(t)	=	controlled	output	

w(t)	=	stochastic	disturbances

•	Apply	the	first	optimal	move	u(t)= u0*,	throw	the	rest	of	the	sequence	away

•	At	time	t+1:	Get	new	measurements,	repeat	the	optimization.	And	so	on	…	

• Solve	stochastic	optimal	control	problem	w.r.t.	future	input	sequence

uk

yk

rk

feedback

robustness

Stochastic Model Predictive Control
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Linear stochastic model w/ discrete disturbance
• Linear stochastic predictionmodel{

xk+1 = A(wk)xk +B(wk)uk + f(wk)

yk = C(wk)xk + g(wk)

possibly subject to stochastic output constraints ymin(wk) ≤ yk ≤ ymax(wk)

• Stochastic discrete disturbance

wk ∈ {w1, . . . , ws}

with discrete probabilities pj = Pr
[
wk = wj

]
, pj ≥ 0,

s∑
j=1

pj = 1

• (A,B,C) can be sparsematrices (e.g., network of interacting subsystems)

• Oftenwk is low-dimensional (e.g., driver’s power request, obstacle velocities,

electricity price, weather, …)
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↵ � 0

min
u

N�1X

k=0
Ew

h
(yk � rk)

2
i

min
u

N�1X

k=0

(Ew [yk � rk])
2 + ↵Varw [yk � rk]

Varw [yk � rk] = Ew
⇥
(yk � rk)

2
⇤
� (Ew [yk � rk])

2
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Cost functions for SMPC to minimize

�7

•Expected	performance

•Tradeoff	between	expectation	&	risk

•Note	that	they	coincide	for	α=1,	since

t t+1 t+N

uk

yk

rk

Cost functions for SMPC to minimize
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•Conditional Value-at-Risk (CVaR)

= minimize expected loss when things go wrong (convex !)

p(w)

|y-r|

β=95%

things go wrongok

α

|y-r|≥α

5%

•Min-max = minimize worst case performance

average loss

risk

exp

CVaR

min max

VaR

= expected shortfall

(Rockafellar, Uryasev, 2000)

Cost functions for SMPC to minimize
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min
u,↵

N�1X

k=0

↵k +
1

1� �
Ew [max {|yk � rk|� ↵k,0}]

minu,z,↵

N�1X

k=0

↵k +
1

1� �

SX

j=1

pjzjk

s.t. zjk � yjk � rjk � ↵k

zjk � rjk � yjk � ↵k

zjk � 0
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Stochastic optimal control problem

�11

CVaR	optimization	becomes	a	linear	programming	problem

•CVaR	optimization (Rockafellar,	Uryasev,	2000)

Cost functions for SMPC to minimize
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scenario #j

Stochastic optimal control problem

• Enumerate all possible scenarios {wj
0, w

j
1, . . . , w

j
N−1}, j = 1, . . . , S

• Scenario = path on the tree

• NumberS of scenarios = number of leaf nodes

• Each scenario has probability pj =
N−1∏
k=0

Pr[wk = wj
k]
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scenario #j

Stochastic optimal control problem
• Each scenario has its own evolution

xj
k+1 = A(wj

k)x
j
k +B(wj

k)u
j
k + f(wj

k)

(=linear time-varying system)

• Expectations become simple sums!

Example:minEw

[
x′
NPxN +

N−1∑
k=0

x′
kQxk + u′

kRuk

]

min

S∑
j=1

pj

(
(xj

N )′Pxj
N +

N−1∑
k=0

(xj
k)

′Qxj
k + (uj

k)
′Ruj

k

)

Expectations of quadratic costs remain quadratic costs
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w0 w1 w2  w3   w4

Scenario tree generation from data
• Scenario trees can be generated by clustering sample paths

• Paths can be obtained byMonte Carlo simulation of (estimated) models, or

from historical data

• The number of nodes can be decided a priori

k

wk

N

Heuristic

Multilevel

Clustering

(Heitsch, Römisch, 2009)

• Alternatives (simpler but less accurate): use histograms (only forwk ∈ R) or
K-means (also in higher dimensions), within a recursive algorithm
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Free control variables
Stochastic control (scenario tree)

Causality constraints: uj
k = uh

k when scenarios j and h

share the same node at prediction time k (in particular,

uj
0 ≡ u0 at root node k = 0)

Decision uk only depends on past disturbance realizationsw0, . . . , wk−1

Stochastic control (scenario fan)
No causality in prediction: only uj

0 ≡ u0 at root node.

Decision uk depends on future disturbance realizations.

Deterministic control (single disturbance sequence)
• frozen-time: wk ≡ w(t), ∀k (causal prediction)

• prescient: wk = w(t+ k) (non-causal)

• certainty equivalence: wk = E[w(t+ k|t)] (causal)

Tradeoff between complexity (=number of nodes) and performance (=accuracy

of stochastic modeling)
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Open-loop vs closed-loop prediction

closed-loop prediction

A different move uk is optimized to counteract each

outcome of the disturbancewk

u0 u1

open-loop prediction

Only a sequence of inputs u0, . . . , uN−1 is optimized, the

same uk must be good for all possible disturbanceswk

• Intuitively: OL prediction is more conservative than CL in handling constraints

• OL problem =CL problem + additional constraints (=less degrees of freedom)
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Linear stochastic MPC formulation

• A rich literature on stochasticMPC is available

(Schwarme, Nikolaou, 1999) (Munoz de la Pena, Bemporad, Alamo, 2005) (Primbs, 2007)
(Oldewurtel, Jones, Morari, 2008) (Wendt,Wozny, 2000) (Couchman, Cannon, Kouvaritakis, 2006)
(Ono,Williams, 2008) (Batina, Stoorvogel,Weiland, 2002) (van Hessem, Bosgra 2002)
(Bemporad, Di Cairano, 2005) (Bernardini, Bemporad, 2012)

See also the survey paper (Mesbah, 2016)

• Performance index:minEw

[
x′
NPxN +

∑N−1
k=0 x′

kQxk + u′
kRuk

]
• Goal: ensuremean-square convergence lim

t→∞
E[x′(t)x(t)] = 0 (f(w(t)) = 0)

• Mean-square stability ensured by stochastic Lyapunov function V (x) = x′Px

Ew(t) [V (x(t+ 1))]−V (x(t)) ≤ −x′(t)Lx(t), ∀t ≥ 0
P = P ′ ≻ 0

L = L′ ≻ 0

(Morozan, 1983)
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Stabilizing SMPC

�18

• Impose	stochastic	stability	constraint	in	SMPC	problem	 
(=quadratic	constraint	w.r.t.	u0)

Theorem:	The	closed-loop	system	is	as.	stable	in	the	mean-square	sense

min
u

Ew

2

4
N�1X

k=0
`(xk, uk)

3

5

s.t. xk+1 = A(wk)xk +B(wk)uk
E [V (A(w0)x0 +B(w0)u0)]  x00(Q

�1 � L)x0
x0 = x(t)

performance and 
stability are decoupled

•SMPC	approach:	
1. Solve	LMI	problem	off-line	to	find	stochastic	Lyapunov		fcn	
2. Optimize	stochastic	performance	based	on	scenario	tree

V (x) = x0Q�1x

Note:	recursive	feasibility	guaranteed	by	backup	solution	u(k) =  Kx(k)

• SMPC	can	be	generalized	to	handle	input	and	state	constraints

(Bernardini,	Bemporad,	2012)

Stabilizing stochastic MPC
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Complexity of stochastic optimization problem
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SMPC for hybrid electric vehicles (HEVs)

�68

Preq (w(t)) =	driver’s	power	request

(Bichi,	Ripaccioli,	Di	Cairano,	Bernardini,	Bemporad,	Kolmanovsky,	CDC	2010)Control	problem:		

Decide	optimal	generation	of	mechanical	power	(from	engine)	and	
electrical	power	(from	battery)	to	satisfy	driver’s	power	request

Series	hybrid

What	will	the	future	power	 
request	from	the	driver	be	?

? ?
? ?

SMPC for hybrid electric vehicles (HEVs)

©2022 A. Bemporad - MPC: Fundamentals and Frontiers 119/170



Several	model	improvements	are	possible	(e.g.,	multiple	Markov	chains)
07 -(C)	2018	A.	Bemporad	-	“Model	Predictive	Control”	course

Learning a stochastic model of the driver
• The	driver	action	on	the	vehicle	is	modeled	by	the	stochastic	process	w(k)	

• Assume	that	the	realization	w(k)	can	be	measured	at	every	time	step	k 

• Depending	on	the	application,	w(k)	may	represent	different	quantities  
(e.g.,	power	request	in	an	HEV,	acceleration,	velocity,	steering	wheel	angle,	…)

Good	model	for	control	purposes:	w(k) =	Markov	chain

Number	of	states	in	Markov	chain 
determines	the	trade-off	between 
complexity	and	accuracy

69

w(k) w(k +1)

p

Transition	probability	matrix	T		is  
easily	estimated	from	driver’s	data

Learning a stochastic model of the driver


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Preq(k) = Pel(k) + Pmec(k)� Pbr(k)

�P (k), Pel(k), Pbr(k)
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SMPC problem for HEV power management

�70

sample	time	Ts=1 s

+

Manipulates	inputs

Controlled	output

State-space	equations

Constraints

SoC(k + 1) = SoC(k)�KTsPel(k)

Pmec(k + 1) = Pmec(k) +�P (k)

s

s

Uncertainty

Preq (w(k))

SMPC problem for HEV power management
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“Frozen-time”	MPC	(FTMPC)

No	stochastic	disturbance	model,	 
simply	ZOH	along	prediction	horizon

Future	disturbance	sequence	Preq (w(t+k|k))  
known	in	advance

�71

Comparison with deterministic MPC

T=I	

“Prescient”	MPC	(PMPC)

Preq (w(t+k|k))= Preq (w(k))

Comparison with deterministic MPC
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Simulation results: controller comparison

�73

Comparison	on	different	driving	cycles																																														

pretty	close	to	having	
the	crystal	ball.		
But	we	don’t,	we	just		
model	uncertainty	carefully
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with s = 16 states is used. The Markov Chain transition
probabilities are initialized by (4), using power request profiles
(Preq) from standard driving cycles (NEDC, FTP-75, FTP-
Highway, Mode 10-15), and online learning (7), (8) is executed
with λ̄ = 0.01, which implies that 99.2% of the memory
vanishes in approximately 8 min. In the SMPCL problem, the
prediction of Preq implies the prediction of Pref as well, which
then varies along the prediction horizon, so that the disturbance
modeled by the Markov chain is actually vector valued.

VI. SIMULATION RESULTS ON STANDARD AND

REAL-WORLD DRIVING CYCLES

The SMPCL controller for energy management designed in
Section V is connected to the SHEV QSS simulation model
described in Section IV for closed loop simulations on several
driving cycles. Indeed, the simulation model and the MPC
prediction model are not the same. For instance, the simulation
model of the battery is nonlinear and the inverse efficiency
function in (25) is only an approximation of the actual inverse
efficiency. Thus, the closed-loop simulations also assess the
SMPCL robustness to modeling errors and uncertainties.

According to what we described in Section IV, the power
request, that is the main disturbance for the energy man-
agement controller, is obtained from the velocity profile of
the cycles. We have used standard driving cycles where the
velocity profile is specified, and real-word driving cycles
where velocity data have been recorded by an acquisition
system during regular driving. In what follows we compare
the SMPCL controller with a prescient MPC (PMPC) that
knows the future power request along the entire prediction
horizon, and with a frozen-time MPC (FTMPC) where the
power request is assumed constant over the prediction horizon.
A FTMPC solution has been tested experimentally on a fully
functional vehicle in [38], and it has shown significant fuel
economy improvement with respect to baseline strategies. The
cost functions of PMPC and FTMPC are the same as the one
of SMPCL, and their predictions horizons are set to nmax.

A. Simulations on Standard Driving Cycles

We report simulations on three standard driving cycles,
NEDC, FTP 75, and FTP-Highway. Even though fuel con-
sumption is not explicitly minimized, the cost function (13a),
with weights as in (26), forces the engine to operate close
to its optimal operation point by using the battery power
for smoothing the aggressive engine power transients that are
inefficient. This results in improved fuel economy.

The results of SMPCL, FTMPC, and PMPC are shown
in Table I, in terms of norm of variations of generator
power (i.e., engine operation smoothness), fuel consumption,
battery charge difference ("SoC) between the end and the
beginning of the driving cycle, equivalent fuel consumption,
and equivalent fuel consumption improvement with respect to
FTMPC. The equivalent fuel consumption is computed by con-
verting "SoC into fuel and adding it to the fuel consumption.
Specifically the equivalent fuel consumption ED,C is

ED,C = FD,C − αD"SoCD,C (27)

TABLE I

SHEV ENERGY MANAGEMENT SIMULATION RESULTS ON

STANDARD DRIVING CYCLES

P

where FD,C and "SoCD,C are the fuel consumption and the
difference of SoC from initial condition at the end of the
cycle D obtained with controller C, respectively. In (27),
αD ∈ R+ is the cycle-dependent coefficient that maps battery
charge into fuel, computed as

αD = FD,PMPC

βD + "SoCD,PMPC
(28)

where βD is the battery consumption obtained on cycle D when
no mechanical power is provided by the ICE, i.e., Preq(k) =
Pbat(k), for all k ∈ Z0+. For testing the SMPCL algorithm,
the Markov chain is initialized by batch estimation (4) using
data from four standard driving cycles (FTP-75, FTP-Highway,
NEDC, Mode10-15), then each cycle is run twice before
measuring the performance, so that the controller has the
possibility of learning the pattern of the cycle. Plots related to
NEDC, FTP 75, and FTP-Highway are reported in Figs. 7–9,
respectively.

The results show that SMPCL improves fuel economy
with respect to FTMPC by taking advantage of the learned
power request patterns to perform more accurate predictions.
The advantage of the SMPCL strategy over FTMPC is smaller
for the NEDC cycle. This is due to the “piecewise linear”
nature of the NEDC velocity profile, which makes the predic-
tion of the power request often straightforward or alternatively
extremely difficult.

Larger fuel economy improvements with SMPCL over
FTMPC are noticeable in FTP-75 and FTP-Highway cycles.
In these cases, the vehicle velocity, and as a consequence
the power request, has a more varied pattern that cannot
be predicted by FTMPC, while its statistics is learned and
exploited by SMPCL.

B. Simulations on Real-World (Off-Cycle) Driving

SMPCL appears capable of outperforming standard deter-
ministic MPC and gets close to PMPC when tested on
standard driving cycles. However, we want to verify the
same capabilities in off-cycle driving, that is, in real-world

Simulation results: controller comparison
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Learning-based nonlinear MPC



Machine Learning (ML)

• Massive set of techniques to extract mathematical models from data

Machine 

Learning
Supervised 

Learning

Unsupervised 

Learning

Reinforcement

Learning

Classification
Dimensionality

Reduction

Clustering
Regression

- Linear PCA

- Nonlinear PCA

- Autoencoders

- …

- K-means clustering

- Density-based spatial clustering

- …

- Ridge classification

- Logistic regression

- Naïve Bayes classification

- …

- Linear regression (least-squares, 

ridge regression, Lasso, elastic-net)

- Kernel least-squares

- Support vector regression

- Gaussian process regression

- …

- Support vector machines

- K-nearest neighbors

- Decision trees

- Ensemble methods (bagging, 

bootstrap, random forests) 

- Neural networks

- …
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Machine Learning (ML)

• Goodmathematical foundations from artificial intelligence, statistics,

optimization

• Works verywell in practice (despite training is most often a nonconvex

optimization problem ...)

• Used inmyriads of very diverse application domains

• Availability of excellent open-source software tools also explains success

scikit-learn, TensorFlow/Keras, PyTorch, JAX, Flux.jl, ...
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Learning prediction models for MPC



Control-oriented nonlinear models
• Black-boxmodeling: purely data-driven. Use training data to fit a prediction

model that can explain them

prediction 
model

x y
data

• Physics-basedmodeling: use physical principles to create a predictionmodel

(e.g.: weather forecast, chemical reaction, mechanical laws, ...)

Boyle

Faraday

Newton

Gauss

Pascal

Maxwell

Galileo prediction 
model

x y

• Gray-boxmodeling is a mix of the two. It can be quite effective

"All models are wrong, but some are useful."

(George E. P. Box)©2022 A. Bemporad - MPC: Fundamentals and Frontiers 126/170



Models for control systems design
• Predictionmodels formodel predictive control:

– Complexmodel = complex controller

→model must be as simple as possible

– Easy to linearize (to get Jacobianmatrices

for nonlinear optimization)

• Predictionmodels for state estimation:

– Complexmodel = complex Kalman filter

– Easy to linearize

• Models for virtual sensing:

– No need to use simplemodels

(except for computational reasons)

• Models for diagnostics:

– Usually a classification problem to solve

– Complexity is also less of an issue

Linear models
- linear I/O models (ARX, ARMAX,...)
- subspace linear SYS-ID
- linear regression

(ridge, elastic-net, Lasso)

Piecewise linear models
- decision-trees
- neural nets + (leaky)ReLU
- K-means + linear models

Nonlinear linear models
- basis functions + linear regression
- neural networks
- K-nearest neighbors
- support vector machines
- kernel methods
- random forests
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Nonlinear SYS-ID based on Neural Networks
• Neural networks proposed for nonlinear system identification since the ’90s

(Hunt et al., 1992) (Suykens, Vandewalle, DeMoor, 1996)

• NNARXmodels: use a feedforward neural network to approximate the

nonlinear difference equation yt ≈ N (yt−1, . . . , yt−na , ut−1, . . . , ut−nb
)

• Neural state-spacemodels:

– w/ state data: fit a neural networkmodel xt+1 ≈ Nx(xt, ut), yt ≈ Ny(xt)

– I/O data only: set xt = value of an inner layer of the network (Prasad, Bequette, 2003)

• Alternative forMPC: learn entire prediction (Masti, Smarra, D'Innocenzo, Bemporad, 2020)

yt+k = hk(xt, ut, . . . , ut+k−1), k = 1, . . . , N

• Recurrent neural networks aremore appropriate for accurate open-loop

predictions, but more difficult to train (see later ...)
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Nonlinear state-space models via autoencoders
• Idea: use autoencoders and artificial neural networks to learn a nonlinear

state-spacemodel of desired order from input/output data

ANN with hourglass structure
(Hinton, Salakhutdinov, 2006)

dead-beat 
observer

output 
map

state map

Ok = [y′
k . . . y′

k−m]′ (Masti, Bemporad, 2021)

Ik = [y′
k . . . y′

k−na+1 u
′
k . . . u′

k−nb+1]
′

• Quasi-LPV structure forMPC: set

(Aij , Bij , Cij = feedforward NNs)

xk+1 = A(xk, uk) [
xk
1 ] +B(xk, uk)uk

yk = C(xk, uk) [
xk
1 ]
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Learning nonlinear state-space models for MPC
• Training problem: choose na, nb, nx and solve

min
f,d,e

N−1∑
k=k0

α
(
ℓ1(Ôk, Ok) + ℓ1(Ôk+1, Ok+1)

)
+βℓ2(x⋆

k+1, xk+1) + γℓ3(Ok+1, O
⋆
k+1)

s.t. xk = e(Ik−1), k = k0, . . . , N

x⋆
k+1 = f(xk, uk), k = k0, . . . , N − 1

Ôk = d(xk), O
⋆
k = d(x⋆

k), k = k0, . . . , N

dead-beat 
observer

output 
map

state map

• Model complexity reduction: add group-LASSO penalties on subsets ofweights

• Quasi-LPV structure forMPC: set

(Aij , Bij , Cij = feedforward NNs)

f(xk, uk) = A(xk, uk) [
xk
1 ] +B(xk, uk)uk

yk = C(xk, uk) [
xk
1 ]

• Different options for the state-observer:

– use encoder e tomap past I/O into xk (deadbeat observer)

– design extended Kalman filter based on obtainedmodel f, d

– simultaneously fit state observer x̂k+1 = s(xk, uk, yk)with loss ℓ4(x̂k+1, xk+1)
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LTV MPC

● The performance achieved with the derivative-based controller suggests that 
an LTV-MPC formulation might also works well. We also assess its 
robustness using a model achieving 61% BFR in open loop 

ODYS CONFIDENTIAL

Computation time per step: ~40ms

LTV-MPC results

Learning nonlinear neural state-space models for MPC

• Example: nonlinear two-tank benchmark problem

www.mathworks.com


x1(t+ 1) = x1(t)− k1

√
x1(t) + k2u(t)

x2(t+ 1) = x2(t) + k3
√

x1(t)− k4
√

x2(t)

y(t) = x2(t) + u(t)

Model is totally unknown to learning algorithm

• Artificial neural network (ANN): 3 hidden layers

60 exponential linear unit (ELU) neurons

• For given number of model parameters,

autoencoder approach is superior to NNARX

• Jacobians directly obtained fromANN structure

for Kalman filtering &MPC problem construction
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Training feedforward neural networks
• Feedforward neural networkmodel:

yk = fy(xk, θ) =



v1k = A1xk + b1
v2k = A2f1(v1k) + b2

...
...

vLk = ALyfL−1(v(L−1)k) + bL
ŷk = fL(vLk)

x

v1
v2

vL
y

θ = (A1, b1, . . . , AL, bL)

Examples: xk =measured state, or xk = (yk−1, . . . , yk−na
, uk−1, . . . , uk−nb

)

• Training problem: given a dataset {x0, y0, . . . , xN−1, yN−1} solve

min
θ

r(θ) +

N−1∑
k=0

ℓ(yk, f(xk, θ))

• It is a nonconvex, unconstrained, nonlinear programming problem that can be

solved by stochastic gradient descent, quasi-Newtonmethods, ... and EKF !
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Training feedforward neural networks by EKF
(Singhal,Wu, 1989) (Puskorius, Feldkamp, 1994)

• Key idea: treat parameter vector θ of the feedforward neural network as a

constant state {
θk+1 = θk + ηk
yk = f(xk, θk) + ζk

and use EKF to estimate θk on line from a streaming dataset {xk, yk}

• RatioVar[ηk]/Var[ζk] is related to the learning-rate

• Initial matrix (P0|−1)
−1 is related to quadratic regularization on θ

• Implemented inODYSDeep Learning library

• Extended to rather arbitrary convex loss functions/regularization terms

(Bemporad, 2021 - https://arxiv.org/abs/2111.02673)
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Recurrent neural networks

• Recurrent Neural Network (RNN)model:

xk+1 = fx(xk, uk, θx) fx, fy = feedforward neural network
yk = fy(xk, θy)

• Training problem: given a dataset {u0, y0, . . . , uN−1, yN−1} solve

min
θx, θy

x0, x1, . . . , xN−1

r(x0, θx, θy) +

N−1∑
k=0

ℓ(yk, fy(xk, θy))

s.t. xk+1 = fx(xk, uk, θx)

• Main issue: xk are hidden states, i.e., are unknowns of the problem
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Training RNNs online by EKF
(Bemporad, 2021 - https://arxiv.org/abs/2111.02673)

• Estimate both hidden states xk and parameters θx, θy by EKF based on
xk+1 = fx(xk, uk, θxk) + ξk[

θx(k+1)

θy(k+1)

]
=

[
θxk
θyk

]
+ ηk

yk = fy(xk, θyk) + ζk

• RNN and its hidden state xk can be estimated on line from a streaming dataset

{uk, yk}, and/or offline by processingmultiple epochs of a given dataset

• Can handle general smooth strictly convex loss functions/regularization terms

• Can add ℓ1-penalty λ
∥∥∥[ θx

θy

]∥∥∥
1
to sparsify θx, θy by changing EKF update into[

x̂(k|k)
θx(k|k)
θy(k|k)

]
=

[
x̂(k|k−1)
θx(k|k−1)
θy(k|k−1)

]
+M(k)e(k)−λP (k|k − 1)

[
0

sign(θx(k|k−1))
sign(θy(k|k−1))

]
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Training RNNs by EKF - Examples

• Dataset: 3499 I/O data ofmagneto-rheological fluid damper (Wang et al., 2009)

• N=2000 data used for training, 1499 for testing themodel

• Same data used in NNARXmodeling demo of SYS-ID Toolbox forMATLAB

• RNNmodel: 4 hidden states

shallow state-update and output functions

6 neurons each, leaky-ReLU activation

• Compare with gradient descent (AMSGrad)

• Training timemeasured onMATLAB+CasADi implementation of EKF/AMSGrad
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Training RNNs by EKF - Examples

• Compare NRMSE1 wrt NNARXmodel (SYS-ID TBX):

EKF = 91.97, AMSGrad = 85.58, NNARX(6,2) = 88.18 (training)
EKF = 90.54, AMSGrad = 80.95, NNARX(6,2) = 85.15 (test)

• Repeat training with ℓ1-penalty λ
∥∥∥[ θx

θy

]∥∥∥
1
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accuracy [%]
σ training test

0.000 99.20 98.90

0.001 99.30 98.90

0.010 99.20 98.70

0.100 96.50 97.00

0.200 93.00 93.80

Training RNNs by EKF - Examples
• Dataset: 2000 I/O data of linear systemwith binary outputs

x(k + 1) =
[
.8 .2 −.1
0 .9 .1
.1 −.1 .7

]
x(k) +

[−1
.5
1

]
u(k) + ξ(k) Var[ξi(k)] = σ2

y(k) =

{
1 if [−2 1.5 0.5 ]x(k)− 2 + ζ(k) ≥ 0

0 otherwise
Var[ζ(k)] = σ2

• N=1000 data used for training, 1000 for testing themodel

• Train linear state-spacemodelwith 3 states

and sigmoidal output function

fy
1 (y) = 1/(1 + e−Ay

1 [x
′(k) u(k)]′−by1 )

• Training loss: (modified) cross-entropy loss

ℓCEϵ(y(k), ŷ) =

ny∑
i=1

−yi(k) log(ϵ+ ŷi)− (1− yi(k)) log(1 + ϵ− ŷi)
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Training RNNs by Sequential Least-Squares
(Bemporad, 2021 - http://arxiv.org/abs/2112.15348)

• RNN training problem = optimal control problem:

minθx,θy,x0,x1,...,xN−1
r(x0, θx, θy) +

N−1∑
k=0

ℓ(yk, ŷk)

s.t. xk+1 = fx(xk, uk, θx)

ŷk = fy(xk, θy)

– θx, θy, x0 =manipulated variables, ŷk = output, yk = reference signal

– r(x0, θx, θy) = input penalty, ℓ(yk, ŷk) = output penalty

– N = prediction horizon, control horizon = 1

• Linearizedmodel:

∆xk+1 = (∇xfx)
′∆xk + (∇θxfx)

′∆θx
∆yk = (∇xk

fy)
′∆xk + (∇θyfy)

′∆θy

• Idea: take 2nd-order expansions of the loss ℓ and regularization term r

and use sequential least-squares + line search tominimize wrt x0, θx, θy
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Training RNNs by Sequential LS and ADMM
(Bemporad, 2021 - http://arxiv.org/abs/2112.15348)

• Fluid-damper example:

50 100 150 200 250
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102
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M
S
E

EKF
AMSGrad
Seq. LS

0 2 4 6 8 10 12
training time (s)

102

104

M
S
E

EKF
AMSGrad
Seq. LS

• Wewant to also handle non-smooth (and non-convex) regularization terms

minθx,θy,x0 r(x0, θx, θy) +
∑N−1

k=0 ℓ(yk, fy(xk, θy)) + g(θx, θy)

s.t. xk+1 = fx(xk, uk, θx)

• Idea: use alternating directionmethod ofmultipliers (ADMM) by splitting

minθx,θy,x0,νx,νy
r(x0, θx, θy) +

∑N−1
k=0 ℓ(yk, fy(xk, θy)) + g(νx, νy)

s.t. xk+1 = fx(xk, uk, θx)

[ νx
νy ] =

[
θx
θy

]
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Training RNNs by Sequential LS and ADMM
(Bemporad, 2021 - http://arxiv.org/abs/2112.15348)

• ADMM+ Seq. LS =NAILS algorithm (Nonconvex ADMM Iterations and Sequential LS)[
xt+1
0

θt+1
x

θt+1
y

]
= argminx0,θx,θy V (x0, θx, θy) +

ρ
2

∥∥∥[ θx−νt
x+wt

x

θy−νt
y+wt

y

]∥∥∥2
2

(sequential) LS[
νt+1
x

νt+1
y

]
= prox 1

ρ
g(θ

t+1
x + wt

x, θ
t+1
y + wt

y) proximal step[
wt+1

x

wt+1
y

]
=

[
wh

x+θt+1
x −νt+1

x

wh
y+θt+1

y −νt+1
y

]
update dual vars

• Fluid-damper example: group-Lasso regularization g(νgi ) = τ
∑nx

i=1 ∥ν
g
i ∥2

to zero entire rows and columns and reduce state-dimension automatically
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Training RNNs by Sequential LS and ADMM
(Bemporad, 2021 - http://arxiv.org/abs/2112.15348)

• Fluid-damper example: quantization of θx, θy for simplifyingmodel arithmetic

+ReLU activation function

g(θi) =

{
0 if θi ∈ Q

+∞ otherwise
Q =multiples of 0.1 between -0.5 and 0.5

– NRMSE = 83.10 (training), 80.51 (test)

– NRMSE = 8.83 (training), 2.69 (test) ← no ADMM, just quantize after training

– Training time: ≈ 5 s

• Note: no convergence to a global minimum is guaranteed

• NAILS = very flexible & efficient learning algorithm for control-oriented RNNs
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Training RNNs

• Computation time (Intel Core i9-10885HCPU@2.40GHz):

EKF /time step seq. LS /epoch
language autodiff CPU time CPU time

Python 3.8.1 PyTorch ≈ 30 ms (N/A)
Python 3.8.1 JAX ≈ 9 ms ≈ 1.0 s
Julia 1.7.1 Flux.jl ≈ 2 ms ≈ 0.8 s

• Several sparsity patterns can be exploited in EKF updates

(supported byODYS EKF andODYSDeep Learning libraries)

• Note: Extension to gray-box identification + state-estimation is immediate

• Note: RNN training by EKF can be used to generalize output disturbance

models for offset-free set-point tracking to nonlinear I/O disturbancemodels
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Nonlinear MPC based on neural networks

• Neural predictionmodels can speed up theMPC design a lot

• Experimental data need to well cover the operating range

(as in linear system identification)

• No need to define linear operating ranges with NN’s,

it is a one-shotmodel-learning step

• Physical modeling can help driving the choice of the

nonlinearmodel structure to use (gray-boxmodels)

• Neural nonlinearMPC requires advanced technical software to run efficiently

and reliably (model learning, problem construction, optimization)
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Deep Nonlinear MPC for Autonomous Driving
• Goal: track desired longitudinal speed (vy), lateral

displacement (ey) and orientation (∆Ψ)

• Inputs: wheel torque Tw and steering angle δ

• Constraints: on ey and lateral displacement s (for

obstacle avoidance) andmanipulated inputs Tw , δ

• Sampling time: 100ms

• Model: gray-box bicycle model

- kinematics is simple tomodel (white box)

- tire forces harder tomodel + stiffwheel slip ratio

dynamics (kf , kr)⇒ small integration step required

- learn a black-box neural-networkmodel !

(Boni, Capelli, Frascati @ODYS, 2021)
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vehicle body states

time [s]

ω [rad/s]

vy [m/s]

vx [m/s]

Deep Nonlinear MPC for Autonomous Driving

• ODYSDeep Learning Toolset used to learn a neural-network with input

(vx, vy, ω, kf , kr, Tw, δ)@k and output (vx, vy, ω, kf , kr)@k + 1

• Data generated from high-fidelity simulationmodel with noisy measurements,

sampled@10Hz

• Neural networkmodel: 2 hidden layers, 55 neurons each

• Advantages of black-box (neural network) model:

– No physical model required describing

tire-road interaction

– directly learn themodel in discrete-time

(Ts = 100ms)
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Deep Nonlinear MPC for Autonomous Driving
• Model validation on test data:

one-step ahead prediction on test data open-loop predictions

sample time [s]

• C-code (network+Jacobians) automatically generated for ODYSMPC

automatic 
C-code gen

Tensorflow
Keras
PyTorch
scikit-learn

ODYS-NN training

Embedded MPC
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Deep Nonlinear MPC for Autonomous Driving
• Closed-loopMPC: overtake vehicle #1, keep safety distance from vehicle #2

± [deg] Tw [Nm] tot #QP iterations SQP iterations

¢Ã [deg] ey [m] vx [m/s]

time [s] time [s] time [s]

• Good reference tracking, constraints on ey , vx satisfied,

smooth command action 
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Direct Data-driven MPC



Direct data-driven MPC

prediction model

model-based optimizer

set-points outputsinputs

measurements

r(t) u(t) y(t)

optimization 

algorithm

process

(aecdiagnostics.com)

• Canwe design anMPC controllerwithout first identifying amodel of the

open-loop process ?
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Data-driven direct controller synthesis
(Campi, Lecchini, Savaresi, 2002) (Formentin et al., 2015)Virtual reference feedback tuning

G

p

yo
Kp

r
�

y
d

ue

M

M
rv y

Collect a sequence of data {u(k), y(k), p(k)}Nk=1

Specify a desired closed-loop behaviour M. Compute the reference signal rv(k)
such that the y(k) is the output of M when fed by a reference signal rv(k) (i.e.,
rv(k) = M†y(k)).

Compute the virtual tracking error ev(k) = rv(k)� y(k). When the observed
input sequence u(k) is applied to the plant, the output signal will be (in a
noise-free scenario) the observed sequence y(k). Then, a “good” controller is the
one that generates the observed sequence u(k) when fed by the virtual tracking
error ev(k).

Compute the dynamical system (i.e., the designed controller) describing the
dynamic relation between ev(k) and u(k).

5 / 15

r y yrve u
d

p

M

• Collect a set of data {u(t), y(t), p(t)}, t = 1, . . . , N

• Specify a desired closed-loop linearmodelM from r to y

• Compute rv(t) =M#y(t) from pseudo-inversemodelM# ofM

• Identify linear (LPV) modelKp from ev = rv − y (virtual tracking error) to u
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Direct data-driven MPC

• Design a linearMPC (reference governor) to generate the reference r

(Bemporad,Mosca, 1994) (Gilbert, Kolmanovsky, Tan, 1994)

Linear prediction model 
(totally known !)

desired
reference

r ye u
d

p

M 

r0

y

p

r0

M’

y

u

r

• MPC designed to handle input/output constraints and improve performance

(Piga, Formentin, Bemporad, 2017)
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Direct data-driven MPC - An example
• Experimental results: MPC handles soft constraints on u,∆u and y

(motor equipment by courtesy of TUDelft)

Time [s]
5 10 15 20 25 30

θ
 [r

ad
]

2

2.5

3

3.5

4

4.5
θ

r
with MPC
without MPC

desired tracking
performance achieved

5 10 15 20 25 30

u
 [

V
]

-5

0

5

u

Time [s]

5 10 15 20 25 30

∆
 u

 [
V

]

-0.5

0

0.5

∆  u

constraints on input
increments satisfied

No open-loop process model is identified to design theMPC controller!
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Optimal direct data-driven MPC

• Question: How to choose the referencemodelM ?

Hierarchical control architecture

Can we improve the closed-loop performance and impose input/output constraints?

G

p

yo
Kp

r
�

y
d

ue

M

MPCro

The model M describes the relation between r and y !

Control design scheme: MMPCro y

�

r

Kp u

p

M0

11 / 15

?
r

yu

p

• Canwe chooseM from data so thatKp is an optimal controller ?
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Optimal direct data-driven MPC
(Selvi, Piga, Bemporad, 2018)

• Idea: parameterize desired closed-loopmodelM(θ) and optimize

min
θ

J(θ) =
1

N

N−1∑
t=0

Wy(r(t)− yp(θ, t))
2 +W∆u∆u2

p(θ, t)︸ ︷︷ ︸
performance index

+ Wfit(u(t)− uv(θ, t))
2︸ ︷︷ ︸

identification error

• Evaluating J(θ) requires synthesizingKp(θ) from data and simulating the
nominal model and control law

yp(θ, t) =M(θ)r(t) up(θ, t) = Kp(θ)(r(t)− yp(θ, t))

∆up(θ, t) = up(θ, t)− up(θ, t− 1)

• Optimal θ obtained by solving a (non-convex) nonlinear programming problem
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Optimal direct data-driven MPC
(Selvi, Piga, Bemporad, 2018)

• Results: linear process

G(z) =
z − 0.4

z2 + 0.15z − 0.325

Data-driven controller only 1.3%worse than

model-based LQR (=SYS-ID on same data +

LQR design)

• Results: nonlinear (Wiener) process

yL(t) = G(z)u(t)

y(t) = |yL(t)| arctan(yL(t))

The data-driven controller is 24% better than

LQR based on identified open-loopmodel !
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Learning optimal MPC calibration



x1

x3

x2
x4

MPC calibration problem
• The design depends on a vector x ofMPCparameters

• MPC parameters are intuitive to set (e.g., weights)

• Still, can we auto-calibrate them ?

• Define a performance index f over a closed-loop simulation or real experiment.

For example:

f(x) =

T∑
t=0

∥y(t)− r(t)∥2

(tracking quality)

• Auto-tuning = find the best combination of parameters by solving

the global optimization problem

min
x

f(x)
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Auto-tuning - Global optimization algorithms
• Several derivative-free global optimization algorithms exist: (Rios, Sahidinis, 2013)

– Lipschitzian-based partitioning techniques:

• DIRECT (DIvide in RECTangles) (Jones, 2001)

• Multilevel Coordinate Search (MCS) (Huyer, Neumaier, 1999)

– Response surfacemethods

• Kriging (Matheron, 1967),DACE (Sacks et al., 1989)

• Efficient global optimization (EGO) (Jones, Schonlau,Welch, 1998)

• Bayesian optimization (Brochu, Cora, De Freitas, 2010)

– Genetic algorithms (GA) (Holland, 1975)

– Particle swarm optimization (PSO) (Kennedy, 2010)

– ...

• Newmethod: radial basis function surrogates + inverse distanceweighting

(GLIS) (Bemporad, 2020) cse.lab.imtlucca.it/~bemporad/glis
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GLIS vs Bayesian Optimization
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problem n BO [s] GLIS [s]

ackley 2 29.39 3.13

adjiman 2 3.29 0.68

branin 2 9.66 1.17

camelsixhumps 2 4.82 0.62

hartman3 3 26.27 3.35

hartman6 6 54.37 8.80

himmelblau 2 7.40 0.90

rosenbrock8 8 63.09 13.73

stepfunction2 4 11.72 1.81

styblinski-tang5 5 37.02 6.10

Results computed on 20 runs per test

BO = MATLAB's bayesopt fcn
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MPC Autotuning Example
(Forgione, Piga, Bemporad, 2020)

• LinearMPC applied to cart-pole system: 14 parameters to tune

L

m

'

M
F

– sample time

– weights on outputs and input increments

– prediction and control horizons

– covariancematrices of Kalman filter

– absolute and relative tolerances of QP solver

• Closed-loop performance score: J =

∫ T

0

|p(t)− pref(t)|+ 30|ϕ(t)|dt

• Performance tested with simulated cart on two hardware platforms

(PC, Raspberry PI)
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MPC Autotuning Example
MPC optimized for desktop PC MPCoptimized forRaspberry PI

MPC Calibration Example

Optimized MPC on the PC
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Optimized MPC on the Raspberry PI
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Position and angle control tighter on the PC

Faster loop update on the PC ⇒ more effective disturbance rejection

Calibration squeezes max performance out of the hardware!

(IDSIA) Efficient Calibration of Embedded MPC IFAC 2020 11 / 15

optimal sample time = 6 ms optimal sample time = 22 ms

• Auto-calibration can squeezemax performance out of the available hardware

• MPC parameters tuned byGLIS global optimizer

• Bayesian optimization gives similar results, but with larger computation effort
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Auto-tuning: Pros and Cons

• Pros:

 Selection of calibration parameters x to test is fully automatic

 Applicable to any calibration parameter (weights, horizons, solver tolerances, ...)

 Rather arbitrary performance index f(x) (tracking performance, response time,

worst-case number of flops, ...)

• Cons:

 Need to quantify an objective function f(x)

 No room for qualitative assessments of closed-loop performance

 Often havemultiple objectives, not clear how to blend them in a single one
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Active preference learning
(Bemporad, Piga,Machine Learning, 2021)

• Objective function f(x) is not available (latent function)

• We can only express a preference between two choices:

π(x1, x2) =


−1 if x1 “better” than x2 [f(x1) < f(x2)]

0 if x1 “as good as” x2 [f(x1) = f(x2)]

1 if x2 “better” than x1 [f(x1) > f(x2)]

• Wewant to find a global optimum x⋆ (=“better” than any other x)

find x⋆ such that π(x⋆, x) ≤ 0, ∀x ∈ X , ℓ ≤ x ≤ u

• Active preference learning: iteratively propose a new sample to compare

• Key idea: learn a surrogate of the (latent) objective function from preferences
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Semi-automatic tuning by preference-based learning

• Use preference-based optimization (GLISp) algorithm for semi-automatic

tuning ofMPC (Zhu, Bemporad, Piga, 2021)

• Latent function = calibrator’s (unconscious) score

of closed-loopMPC performance

• GLISp proposes a new combination xN+1 ofMPC

parameters to test

• By observing test results, the calibrator expresses a

preference, telling if xN+1 is “better”, “similar”, or

“worse” than current best combination

• Preference learning algorithm: update the

surrogate f̂(x) of the latent function, optimize the

acquisition function, ask preference, and iterate

control
parameters

testing &
assessment

preference

preference-
based learning 
algorithm

©2022 A. Bemporad - MPC: Fundamentals and Frontiers 163/170



Preference-based tuning: MPC example
(Zhu, Bemporad, Piga, 2021)

• Example: calibration of a simpleMPC for lane-keeping (2 inputs, 3 outputs)


ẋ = v cos(θ + δ)

ẏ = v sin(θ + δ)

θ̇ = 1
Lv sin(δ)

±

µ

L

v

x

y

• Multiple control objectives:

“optimal obstacle avoidance”, “pleasant drive”, “keep CPU time small”, …
not easy to quantify in a single function

• 5MPC parameters to tune:

– sampling time

– prediction and control horizons

– weights on input increments∆v,∆δ
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Preference-based tuning: MPC example

• Preference query window:
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Preference-based tuning: MPC example
• Convergence after 50 GLISp iterations (=49 queries):
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Optimal MPC parameters:

– sample time = 85 ms (CPU time = 80.8 ms)

– prediction horizon = 16

– control horizon = 5

– weight on∆v = 1.82

– weight on∆δ = 8.28

• Note: no need to define a closed-loop performance index explicitly!

• Extended to handle also unknown constraints (Zhu, Piga, Bemporad, 2021)
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Conclusions



controller

desired

torque

torque
actuators

sensors

engine

(aecdiagnostics.com)

2022 2023 2024

2023 2024 2025 2026 2027 20282022

Do we really need MPC?

Perspective of the automotive industry:

• Increasingly demanding requirements (emissions/consumption, passenger

safety and comfort, …)

• Better control performance only achieved
by better coordination of actuators:

– increasing number of actuators

(e.g., due to electrification)

– take into account limited range of actuators

– resilience in case of some actuator failure

• Shorter development time for control solution

(market competition, changing legislation)
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u1

u1 max

u1 min

(courtesy of J. Verdejo)

Do we really need MPC?

• Classical control approach:

– many single PID loops

– anti-windup for actuator saturation

– many lookup tables

• Long design & calibration time due to:

– complexity of anti-windup due to interactions

– difficulty to recover from actuator failure

– design space increases exponentially

(e.g.: 5 inputs, 10 values each→ 105 entries)

– hard to coordinatemultiple actuators optimally

– porting to different vehicle models may require substantial recalibration
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Conclusions

• MPC is a universal control methodology:

– to coordinatemultiple inputs/outputs, arbitrarymodels (linear, nonlinear, ...)

– to optimize performance index subject to constraints

– it is intuitive to design/calibrate and easy to reconfigure

• After a long history of success in the process industries, MPC is now amature
technology for the automotive industry too:

– modern ECUs can solveMPC problems in real-time

– increasingly tight requirements ask for advancedmultivariable control solutions

– advancedMPC software tools are available for design/calibration/deployment
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manipulated inputs

past

Conclusions
• Learning-basedMPC is a formidable combination for advanced control:

– MPC / on-line optimization is an extremely powerful control methodology

– ML extremely useful to get control-orientedmodels and control laws from data

• IgnoringML tools would be amistake (a lot to “learn” frommachine learning)

• ML cannot replace control engineering:

– Black-boxmodeling can be a failure. Better use gray-boxmodels when possible

– Approximating the control law can be a failure. Don’t abandon on-line optimization

– Pure AI-based reinforcement learningmethods can be also a failure

• Awide spectrum of research opportunities

and new practices is open !
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