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Motivation: typical control problems in practice

* Nonlinear and switching dynamics \} k \\&//»‘
¢
N N
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e Constraints on manipulated and state variables

e Fast dynamics = short sample time (e.g. milliseconds)

e Uncertainty

Hybrid systems & optimization-based control



Outline

* Modeling hybrid dynamical systems

e Optimization-based control

— Model Predictive Control (MPC)

— Piecewise Affine (PWA) control

e Applications




Hybrid dynamical systems

0 continuous
u(k) z (k)
1/_0\‘ — | dynamical |7/
( /j) system
1 )1 0
@\"/ < hybrid
1 dynamical
system
e Variables are discrete-valued e Variables are real-valued
r € {0,1}", u e {0,1}" r € R", ¢ e R™¢
e Dynamics = finite state machine e Difference/differential equations

* Logic constraints s Linear inequality constraints



Hybrid dynamical systems
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Abstract—A class of continuous time systems with part con-
tinuous, part discrete state is described by differential equations
combined with multistable elements. Transitions of these elements
between their discrete states are triggered by the continuous part of
the state and not directly by inputs. The dynamic behavior of such
systems, in response to piecewise continuous inputs, is defined under
suitable assumptions. A general Mayer-type optimization problem is
formulated. Conditions are given for a solution to be well-behaved,
80 that variational methods can be applied. Necessary conditions for
optimality are stated and the jump conditions are interpreted
geometrically.

INTRODUCTION
Q OME PHYSICAL objects evolve in time according

Sontag (1981
L.ee & Arapostathis (1987)
Ezzine & Haddad (1989)

Gollu & Varaiya (1989)
Peleties & DeCarlo (1991)
Nerode & Kohn (1993)

gates to process Boolean signals, 3) electronic analog
switches controlled by Boolean signals.

The objective of this paper is to give a precise de-
scription of such systems, to define their dynamics, to
formulate the problem of their optimum control, to
introduce the notion of well-behaved solution, and to
state necessary conditions for optimality (the jump con-
ditions),

A CrAss oF HYBRID SYSTEMS

The modifications required in otherwise continuous
systems described bv vector differential

armatinne

Brockett (1995)
Branicky (1994)

...many others (>1995)



Technological push for studying hybrid systems
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Computation-oriented models of hybrid systems



Piecewise affine systems

state+input space

x(k—+ 1)
y(k)

Az (k) + Bjpyulk) + fick)
C’Z(k)x(k) T Dz(k)u(k) T gz(k)

(2 1) H0)

Can approximate nonlinear and/or discontinuous dynamics arbitrarily well




Discrete Hybrid Automaton (DHA)

discrete

de(k)

Event Generator

Finite State Machine

(Torrisi, Bemporad, 2004)

ze(k)

Switched Affine System

ue(k) ze(k+1) =

1 Ajxc(k) + Bjuc(k) + fil —

laeg(k+ 1) = discrete . ) :L’c(k)
R R R time [ > 1 — 1
(k) fB(zo(k), ue(k), de(k)) e
O—' 0O zg(k)
- mode|i(k
___,| Mode Selector —1:3 1)
up(k) —_ —
> | )L'_- J
de(k . N
e(k) 1 = fM (x( Uy, Off) i
continuous
ry € {0,1}" = binary state rc € R" = real-valued state
up e {0,1}" = binary input uc € R™e¢ = real-valued input
de € {0,1}"e = event variable i€ {l,...,s} = current mode



Mixed Logical Dynamical (MLD) systems

e Any logic formula involving Boolean variables can be translated into a set
of integer linear (in)equalities (Raman, Grossmann, 1991)

_J = Example: 01 OR 6, = TRUE <@mmy 61+, > 1

[ — —

\ Mixed Logical Dynamical (MLD) system
HYSDEL r

. Tk+1 = Az + Biug + B2dg + B3z, + Bs
mod.e.lmg language < v, = Oz}, + Diug, + Dod), + D3z + Ds
(Torrisi, Bemporad, 2004) \ E25k + Ezz, < Egxy, + Equy, + Es

(Bemporad, Morari 1999)

e x,u,1,2,0 contain mixed-integer (=real and binary) components



Equivalence of hybrid models

e MLD systems and PWA systems are equivalent

(Bemporad, Ferrari-Trecate, Morari, IEEE TAC, 2000)

e Efficient algorithms for converting MLD models into PWA form exist
(Bemporad, IEEE TAC, 2004) (Geyer, Torrisi, Morari, HSCC, 2003)

e Further equivalences exist with other classes of hybrid dynamical

systems, such as Linear Complementarity (LC) systems
(Heemels, De Schutter, Bemporad, Automatica, 2001)



Example: Room temperature control

T
0, air conditioning
" !

| Ucold ‘
Uhot I # -
amb

Tl - 2" @ T2
heating a2 e
discrete dynamics continuous dynamics
e #1=cold — heater=on
L — —oy(T; — Tomp) + ki )
5 e iaes o i s
o #2=cold = heater=on unless #1=hot dt L bR LY Ol

e A/C activation has similar rules 1=1,2



Example: Room temperature control

SYSTEM heatcool {

INTERFACE {
{ REAL T1 [~-10,50);
REAL T2 [-10,50]:
)
{ REAL Tamb [-10,50]:
}
LR FR
REAL Ts, alphal, alpha2, k1, k2:
REAL Thotl, Tcoldl, Thot2, Tcoldz, Uc, Uh;
}
}
INPLEMENTATION {
. { REAL uhot, ucold;
BOOL hotl, hotZ, coldl, cold2:

{ hotl = T1>=Thotl;
hot2 = TZ2>=Thot2:;
coldl =~ Ti<~Tcold1l:
cold2 = TZ<=TcoldzZ:

{ uhor = {IF coldl | (cold2 £ ~hotl) THEN Uh ELSE 0}:
ucold = {IF hotl | thotZ2 & ~coldl) THEN Uc ELSE 0}):
H
{ T1 = Ti+Ts*(~alphal®*(T1-Tamb) +k1* {(uhot-ucold)):
T2 = T2+4Ts* (-alpha2® (TZ2-Tamd) +k2 ¥ (uhot-ucold) )’
H
}
)
L — T

e Equivalent PWA model consists
of 5 regions

e Model described in HYSDEL and
converted to MLD form
(20 mixed-integer inequalities)

Section for Tamb=25 0ocC
BO - omweermnrezmnnrennsnanny yosersnens poseessensees groseeseseees gressseeses: R R

C 1| e e .? B e,

1] : N ——

Temperature T2 (C)
&3

-2 -10 0 10 20 30 40 50 60
Temperature T, (C)

L —

heater on

both off




Are linear discrete-time hybrid models useful
for control design?



Model Predictive Control (MPC)

Th41 Az + Biug + Bdg + B3zp + Bs
Yk
FE50p

Cxy + Diug + D26y, + D3z, + Ds
B3z < Eqxp + Eqjug + Es

=5 el

control
reference input ) | — output
r(t) u(t) ~ | IS o)
— | process
model-based
optimizer measurements

Use a hybrid dynamical model of the process to predict its
future evolution and choose the “best” control action



MPC algorithm

e At time ¢, solve an optimal control problem over a future horizon of N steps

min

S.t.

N—-1

> Yk — Ttk Uit k)
k=0

Tiqht1 = f(Tpgrr Wetr)
Yitk = 9(@Tp4ks Utk)
constraints on w4k, Tyt k) Ytk

20

Manipulated

Inputs

Ui f,

\\ 4

N
7z

t+1 t+2

t+]IV+1

e Apply only the first optimal move u*(¢), trash.the rest of the optimal sequence

e At time t+1: Get new measurements, repeat the optimization. And so on ...

§
\\

MPC transforms open-loop optimal control into a feedback control law




MPC of linear systems

; == B ajO:m(t)
linear model { s et ka_l_ “k
YloiSs L
N-1 R = RG—20
performance index MinzyPry + > zj,Quy + upRuy, Q = Q=0
k=0 P = P >0
% - L / / 1, 7R | o
mUln §U HU 4+ 2" (t)F'U + 5% (t)¥x(t) | o
f> s.t. GU < W + Sz(t) | B
linear Umin < U < Umax
constraints Ymin < Czp < ymax

MPC implemented by solving a (convex) Quadratic Program (QP)

Honeywell

Routinely used in the process industries aspen "-“H;



MPC of hybrid systems

hybl’ld r Th41 Aa:k = Bluk -+ BQék -+ Bgzk =F B5 o = z(t)
MLD model <« Wine - — C:Ck i Dluk -+ DQ(Sk -+ D3Zk -+ Drs
| E20g -I- 15 = e A MO e O

N—1 R = oR&N0
performance index ~ min NPy + Y 1.Qzy + uiRuy, Q = Q=0
k=0 P = P >0

mine € HE + /(1) FE + ;M
ﬁ s.t. GE<W + Sz(t) , UN—1

linear and logic constraints

— &'_

MPC implemented by solving a Mixed-Integer Quadratic Program (MIQP)

Alternative: Mixed-Integer Linear Program (MILP) formulation



What are the stability properties of hybrid MPC?

@




Closed-loop properties

e Convergence result

Assume proper choice of weights and constraints on terminal state.
If MPC optimization problem is feasible at t=0, then:

e MPC problem is also feasible for all £>0

e The closed-loop system (MLD system + hybrid MPC controller)
converges asymptotically to the equilibrium

(Bemporad, Morari, 1999)

e Stability result

Lyapunov asymptotic stability and exponential stability can be
guaranteed by choosing a proper terminal cost and constraint set

(Lazar, Heemels, Weiland, Bemporad, 2006)



How about computational load ?
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Example: Room temperature control

Temperature T2

e MPC problem formulation oo T T T T
o\ NNy T
> S/ N I WY L U S W A W R W
min > |zo(k) — 7 | 0
k=1 M
S.T. :vl(k)225, k=12 : % 0 20 80 40 50 6 70 8 90 100

hyb”d dynamiCS % £ TemperatureT1,airconditioning
!'* ! ' ! ! T ! ! ! !
— N A T Y R\ RS PRy Sy

« MPC optimization problem (MILP) %o & & & & & % & &

Temperature Tamb

20 optimization variables
(8 continuous, 12 binary)

46 mixed-integer linear inequalities

CPU time = 1.3 ms per time step | (IBM CPLEX 11.2, this Mac)




Pros and cons of on-line optimization

g I I L a
Via De Orti
L >

tomtom

v Continuously update the best decision, reacting to
unexpected events (disturbances, faults, obstacles,...)

v Excellent QP and MILP/MIQP solvers exist today |
(http://plato.la.asu.edu/bench.html) e I e

CONS

¥ Computation time may be too long for large-problems/fast sampling

% Requires relatively expensive hardware (such as a microprocessor)

® Software complexity: solver code must be embedded in the control code

® Real-time: worst-case CPU time often hard to estimate



http://plato.la.asu.edu/bench.html
http://plato.la.asu.edu/bench.html

Explicit model predictive control

1
U

subj. to GU < W 4 Sx(t)

min 5U’HU + %' () F'U + ;az/(t z(t)

Idea: solve the QP for all x(t) within a given range of R” off-line
| > multi-parametric programming problem

Linear MPC is a continuous and piecewise affine control law !

u(z) =

Fix4g1 If Hiz < K3

| Fyz+gp It Hye < Ky

(Bemporad, Morari, et al., 2002)

wvhile ((num<EXPCON REG) && check) {

111111 de=1;
while ((11<=12) &4& 1isinside) {
aux=0;
for (j=0;)<EXPCON_NTH; j++)
aux+=(double ) EXPCON H[i)~
if (aux>(double)EXPCON ¥’
isinside=0; /* o > ,
else ) &
1]'0;
} b
AL (183" 0.
é ad 1 o)
o JM
£ Limi2e] /* g del
del

Hybrid MPC based on linear costs is a piecewise affine control law

(Borrelli, Baotic, Bemporad, Morari, 2005) (Mayne, Rakovic, 2002) (Alessio, Bemporad, ADHS 2006)




Example: Room temperature control

e Explicit solution

12 polyhedral regions
and linear gains

!

384 numbers to store
In memory

CPU time = 0.8 ms | (compiled C-code, this Mac)

Note: explicit form
does not change the
control law at all !



HYbrid TOOlbOX for MATLAB (Bemporad, 2003-2012)

Features:

e Hybrid models: design, simulation, verification
e MPC design for linear and hybrid systems

e Interfaces to several linear, quadratic and mixed-integer programming
solvers

e Explicit MPC (via multi-parametric programming)

e Simulink library

O00 \_ Library: hyblib
File Edit View Fomal Help

o C-code generation

Linear

o | 2 o
; I § 3 e b ) | B ]
Linear 7 Explicit t:uﬂuu.] g

Linear Constrained Explicrt Linexr Controller Hybekd MLD System

Hybrid PWA Syatem

Supported by

o Explicit |

Expicit Hyteid Controlier

4000+ downloads

http://cse.lab.imtlucca.it/~bemporad/hyvbrid/toolbox/



http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox/
http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox/

Is hybrid MPC (or its PWA form) applicable in
practice?




Automotive applications of MPC

homogeneous stratified

engine control

g gIECNETRRCOHE J AGUAR

FIAT

A s
suspension ir ¢/
. £33 l._ = |
deflection o
M, '

tire 24
deflection | L At

idle speed control semiactive suspensions




Automotive applications of MPC

1 L
dmin Ln2 0

dmax Tp1

€T

magnetic actuators

Inta m/\.la niod

W, \

Thiottls

Catalyst  AF Seasor
(HEGO

Fuol Injector (W)

rpm
) j A & o
Ar
Spark plug
’ L
A EF?;; '54;( Exhaust Manifold
Tadpipo
& Exhaust

air-to-fuel ratio

active steering

CENTRO Leonitpidcdn
RICERCHE
FIAT

robotized gearbox




Aerospace applications of MPC

Benloe 8o
|

-eSsa

)
ThalesAIenia

UAV guidance and control formation flying



H.ow to efficiently implement PWA controllers
(like explicit MPC) in hardware ?
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Complexity of explicit MPC

e Number of regions depends on number of possible
combinations of active constraints

Vi
e Weak dependence on number of states and references 'j
@
e On-line QP vs explicit MPC comparison:
2N | QP (ms) explicit (ms) regions [storage kb]
average worst average worst |
4 [ C11) 15 0.009 [Co.] (25) 16
8 3 1.9 0.023 1 5 78
20 2.5 2.6 0.038 3.3 | 1767 811
30 7.2 0.069 4.4 | 5162 2465
40 13.0 0.239 15.6)| 11519  (5598)
Q"/) 0 1.4 GHz

)

(Intel Centrin

Explicit MPC typically limited to 6-8 free control
moves and 8-12 states+references



PWA approximation of MPC over simplices

e Approximate a given linear MPC controller by using canonical PWA functions
over simplicial partitions (PWAS) (Bemporad, Oliveri, Poggi, Storace, IEEE TAC, 2011)

d e @ </

= wy 64(z) = W' ()
k=1

approximate MPC law

Weights wi optimized off-line

to best approximate a given MPC law
(Julian, Desages, Agamennoni, 1999)

http://www.mobydic-project.eu/ Iﬁ%

SEVENTH FRAMEWORK
PROGRAMME



http://www.mobydic-project.eu/
http://www.mobydic-project.eu/
http://livepage.apple.com/
http://livepage.apple.com/

PWA approximation of MPC over simplices

e Extremely cheap: PWAS functions can be directly implemented
on FPGA, or even ASIC (Application Specific Integrated Circuits)

e Extremely fast computations (10-100 nanoseconds)

GF ariteriosn | Control  p |Latency (A - B) [ns] ——— online Zime
—~ 7 170 GBL) to compiidte MPC
\ 31 238 - 45 Architecture A:  (Xilinx Spartan 3 FPGA)
63 272 - 46 mainly serial
‘\ 7 170 - 31 :
31 238 - 45 ﬁ:ﬁ;gggﬁ: B: MIMO system dynamics
\_ 2 1 ot
— 563 272 - 46 R e £ e
53 PQFZ(/‘Z(/‘Oh\f P

i B

subject to saturation on v and y

Exact explicit MPC: 52 regions
<383 ns (avg) - 486 ns (max)>

T — T

Zer dinrension

e Closed-loop stability certified a posteriori via a PWA Lyapunov function

% Curse of dimensionality (wrt to state dimension)



PWA approximation of MPC over rectangles

o Approximate a given linear MPC controller by using regular PWA functions

over hyper-rectangular partitions (PWAS)

39 regions 7

[ J
- 16 regions
‘;/\:\a"’- ":.': : |': ! -
2 :l ' .V\ ',_.. F.- 4 4 1-
~ l_"..'. , 0
1 X e
- / N
A v 2 : 05
NV _1
05 Ll N gEmT N gt ¥
- c - ' o
2 15 - os @

-1.5°

-1.5 -1 05 0 05 1

15

(Johansen, Gra;ﬁcharova, 2003)
e Key idea: use optimal PWA cost as a control Lyap. fnc

e Main features of suboptimal control law:

- Can be computed (off-line) by solving a linear program (LP)

- Closed-loop stability and degree of performance loss are guaranteed a priori
- Fulfillment of input and state constraints is guaranteed a priori

- Tradeoff between controller complexity and suboptimality is selectable

(Liang, Heemels, Bemporad, 2011)

Cumulated cost J

O ;
0 0.5
Y
Memory size
400 5
200Fr - —--—-—--- - - - --/‘ 1
0 ;
0 0.5 1
Y
# clock cycles —- mPWAR(B)
A0 ——————— S —
20t

0
0




Stability analysis of PWA closed-loop systems in

m

non-nominal conditions




Stability analysis of (perturbed) PWA systems

disturbance

explicit MPC l d(k)

u(k)| Linearpwa | z(k) x(k+1) = Aj(k)+ a; + Eid(k)
e process model e if (k) € X,

Closed-loop uncertain PWA model

e A priori stability certificates (if any is available) only hold for
nominal conditions (prediction model = process model)

e |s explicit MPC controller in closed-loop with a more realistic process
model stable (and robustly stable)?

e Trajectories may exit the domain of definition of the explicit MPC law.
Need to find a (possibly large) robustly positive invariant set




Stability analysis of (perturbed) PWA systems

(Rubagotti, Trimboli, Bemporad, 2011)

A new analysis method to check uniform ultimate boundedness

and evaluate the region of attraction based on PWA Lyapunov functions

x(k—l—l)pw(k), O<p<l1

domain of definition

extend to invariant set synthesize a PWA
by introducing “fake” dynamics Lyapunov function V'
via linear programming
w P, F =level sets of V

of closed-loop PWA system
(e.g.: domain of explicit MPC)

o P CX of Visinvariant for the original dynamics

e the system is uniformly ultimately bounded from P to F




Example: stability of switched linear MPC

switched linear MPC controller
(no a priori stability)

http: //WWW .mobvdic-project. eu/ MOBY"DIC TOOlbOX fOl' MATLAB

(Rubagotti, Trimboli, Bemporad, 2011)

....................................

...........................

.........................................

.....................

domain of attraction P and
set F of asymptotic convergence

(Oliveri et al., NMPC, 2012)


http://www.mobydic-project.eu/
http://www.mobydic-project.eu/
http://livepage.apple.com/
http://livepage.apple.com/

Can we include stochastic models in MPC
formulation?




Stochastic systems

e [n many control problems decisions must be taken under uncertainty

- o (
- ‘ ; Ol Prices, 1904-March 2008
¢ INYMEX Light Sweet'WT)
- —
B~ . ‘ = 120

—

Dolars por Damed
]
-

prices human (inter)action
wireless networks

e Robust control approaches do not model uncertainty (only assume
that is bounded) and pessimistically consider the worst case

e Stochastic models provide instead additional information about
uncertainty



Stochastic MPC formulation

e At each time ¢ solve a finite-time stochastic optimal control problem

Uu

N-1

. > y

min = Euw |} |lyiar — r(OI° + pllugprl
| k=0

Ytk = 9(Tpdks Uptho, Wit k) | u(t) = manipulated vars

Prob(ymin < Ytk < Ymax) > p
xt =x(t), k=0,....N—1

Umin < Uit < Umax y(t) = contrlled output

e Apply optimal move for current time ¢, repeat optimization at time ¢



Scenario-based stochastic MPC

Existing literature on stochastic MPC

(Schwarme & Nikolaou, 1999) (Munoz de la Pena, Bemporad, Alamo, 2005) (Oldewurtel, Jones, Morari, 2008)
(Wendt & Wozny, 2000) (Couchman, Cannon, Kouvaritakis, 2006) (Ono, Williams, 2008)
(Batina, Stoorvogel, Weiland, 2002) (Primbs, 2007) (van Hessem & Bosgra 2002) (Bemporad, Di Cairano, 2005)

Stochastic prediction model

:U(k + 1) = A(”w(k))a}(k) -+ B(w(k))u(k) + Hw(k) (Bernardini, Bemporad, IEEE TAC, 2012)

”LU(]*C) = {wl,wg, 2 ,ws}

Stochastic MPC features Plw(k) = w;| = p;(k)
e |ess conservative control action w.r.t. robust MPC

o Extremely general discrete probability distribution

* Guarantee stochastic convergence |im E[2'(k)z(k)] =0 (for H=0)
and recursive feasibility k=00

| — T

Main idea: decouple performance optimization and stability issues

43



Stochastic MPC for dynamic hedging

e Dynamic hedging of financial options
(Bemporad, Bellucci, Gabbriellini, Quant Finance, 2012)
(Bemporad, Gabbriellini, Puglia, Bellucci, CDC’10)

| vttt wagen N ) SMPCadiusts dynamically | 7Y
g/ | theportfolio so that

10_0/2‘/0/7//‘/@3 o \/ 1 wealth x(T) = payoﬁ‘ 7“(T) oo IREETS INY SN RN e

i ¢ 2 .. for any price realization wi(k) ! ¥ *

o el RGNS, J e B T

time (years) asset price at expiration

On-line optimization: very simple least squares problem with n variables

(n = number of traded assets)

CAPITAL SERVICES



SMPC for real-time market-based power dispatch

(Patrinos, Trimboli, Bemporad, CDC’11)

e We are a legal entity trading on the energy (PX) and ancillary service (AS)
markets

e Objective: Minimize costs via efficient use of intermittent resources, and
maximize profits by trading on electricity (PX, AS) markets

e Constraints: Grid capacity, rate limits, load balancing, AS balancing

power generators intermittent resources loads
M

power injection (decision)

\a; 7= reserve capacity (decision) /

7= intermittent generation (stochastic)

= demand (stochastic) Nl i

p*\= power exchanged (decision) - . &2

)= power exchanged (decision) : :

A™4 — required reserve for BRP (given) | eq\ , ’;::",'i'::

S

. (AS) Market
energy prices are also stochastic required
ik 2 g reserve capacity

Energy
Market




SMPC architecture

(

-

Market/System
operator

stochastic|prices

‘---------\

- ——

-----------------------------------------

~
- energy exchanged
) on the PX and AS
markets
L 3
‘ Rses— —{ QP solver }E -
Scenario Tree - - ;

\ Construction E \_ Hhakial by Aavald )

stochastic load and intermittent resources



SMPC for market-based optimal power dispatch

4
M
’_/ |
P, 2ul) \“\\
9 . >

\_.- "-.\

&
coal Il - &
\ Jt\\\l photovoltaic
"‘ \ j S

\ o\ 1 R;
\\ hydro- storage.:Lo
\ \ e T—I-
"'.. \ /__/ ,.f/:» /

!
G ~-—‘°’“““g+
wind farm ¥

natural gas

Gprloe http://www.e-price-project.eu/ 7

ENABLING THE FUTURE ENERGY SYSTEM S ROGRAMME X


http://www.e-price-project.eu
http://www.e-price-project.eu

SMPC for market-based optimal power dispatch

Exact knowledge

of future uncertainty  [__

>
2 ',"
=
_ i
4pﬂwﬂﬂwﬂﬂ#dﬂaﬂaﬂaﬂ“;’r :

Deterministic: time-
dependent
expectations used for
future uncertainty

Stochastic formulation

Algorithm Storage | No Storage
Cost Cost Avg 7 of nodes

-OC__ K ’ 6879741

__CE-MPC_____N_ 9819518
'SSMPC (eye] = 0.1) ||| 7134582 7245962 350
|SSMPC (e,o1 = 0.2) ||| 7144011 7249401 335
SSMPC (e,e1 = 0.3) {|| 7148494 7250207 172
SSMPC (e,e; = 0.4) ||| 7179848 7264505 87
SSMPC (e,e1 = 0.5) K 722491D | 7267497 50
SSMPC (ere1 = 0.6) §|| 7239985 7277410 38
SSMPC (ere; = 0.7) §|| 7259491 7298023 31
SSMPC (eye1 = 0.8) §|| 7255246 7312092 26
SSMPC (e.; = 0.9) ||| 7260424 7318643 22
'SSMPC (érel .0) {|| 7260424 7318642 20

power exchanged / -

L —

with grid

1000

500+

p*(k) (MW)

- Bought

50 100
PTU k (10 mins)

——

150



SMPC for hybrid electric vehicles (HEVs)

(Bichi, Ripaccioli, Di Cairano, Bernardini, Bemporad, Kolmanovsky, CDC’10)

Control problem:

Decide optimal generation of mechanical power (from engine) and
electrical power (from battery) to satisfy driver’s power request

s battery
What will the future power —
request from the driver be?
. A |eeeap gf\'\dél electrical
’ 7 - ' engine generator l
\ | & /,' 2 =~ £3E2
"*i."'
%
- : : g | H
H @
Series hybrid "NeY e I

R —




Learning a stochastic model of the driver

e Driver’s action (power request) modeled by a stochastic process w(k)

¢ Good model for control purposes: w(k) generated by a Markov chain

T)ij = Plw(k + 1) = wj|w(k) = w;]

Number of states in Markov chain
determines the trade-off between
complexity and accuracy

Transition probability matrix 7' is
easily estimated from driver’s data
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Stochastic MPC results

Deterministic:

future power

request = current one = constant

S _Comparison on a standard driving cycle

% Fuel improv.

FTMPC

SMPC (static)

PMPC

SMPC (adaptlve)

13.5%
29.2%

Stochastic formulation

29.9%

Exact knowledge
of future uncertainty




Conclusions

e Hybrid models (and in particular piecewise affine models)

v provide a very powerful modeling framework
v allow the setup of tractable optimization problems (MPC)
v powerful analysis and software tools are available

v stochastic switched affine models optimally describe uncertainty

e Hybrid MPC T it

v very good to study achievable performance limits
v directly implementable for controlling slow processes [ e
% rarely applicable to fast processes, unless suboptimal

solutions are adopted (switched linear MPC, LTV-MPC)

e Explicit MPC based on piecewise affine representations

v applicable to very fast processes
% limited to small-size processes (8-10 states, 1-2 inputs) A
% curse of dimensionality when using regular partitions 25




