## MPC Design Methods for Networked Systems

#### **Alberto Bemporad**

http://www.imtlucca.it/alberto.bemporad



IMT Institute for Advanced Studies Lucca

### What is a networked system ?



infrastructure)

• Real-life examples of networked systems abound !



traffic networks



water networks



logistic networks (supply chains)





networked components of a vehicle

### Main issues in controlling networked systems

- Dynamics are typically **spatially distributed** and **large-scale** (=many states)
- Centralizing all measurements can be difficult:
  - too many data to handle
  - too many transmissions
  - confidentiality issues
- Centralizing all computations can be difficult:
  - computations too complex (scalability issues)
  - big models difficult to setup and maintain
- Wireless communication is very flexible, but introduces further issues:
  - random packet dropouts
  - time-varying delays & jitter
  - battery energy consumption









### Outline of this talk

Quick review of MPC basics

MPC that limits the use of network resources

• MPC that tames model complexity

 MPC that takes into account communication imperfections







**Energy-aware MPC** 



**Stochastic MPC** 



### Model Predictive Control (MPC)



Use a dynamical **model** of the process to **predict** its future evolution and choose the "best" **control** action

- Prediction model = dynamics + network
- Models can be deterministic or stochastic, global or local

### MPC algorithm

• At time *t*: solve an optimal control problem over a future horizon of *N* steps



- Apply only the first optimal move  $u^*(t)$ , throw the rest of the sequence away
- At time *t*+1: Get new measurements, repeat the optimization. And so on ...

MPC transforms open-loop optimal control into feedback control

### MPC of linear systems

min

linear model

$$x'_{N}Px_{N} + \sum_{k=0}^{N-1} x'_{k}Qx_{k} + u'_{k}Ru_{k} \qquad x_{0} = x(t)$$

$$\lim_{\substack{U \\ U \\ U \\ S.t. \\ Min \\ Min$$

MPC implemented by solving a (convex) Quadratic Program (QP)

Routinely used in the process industries



### Model Predictive Control Toolbox

- MPC Toolbox 4.0 (The Mathworks, Inc.)
  - New QP solver (active set method)
  - New MPC Simulink Library (based on EML code)
  - MPC Graphical User Interface
  - Code generation [RTW, xPC Target, dSpace, etc.]
  - Linked to OPC Toolbox v2.0.1, SYS-ID Toolbox



#### Easy-to-use solution for linear MPC design based on QP

http://www.mathworks.com/products/mpc/

A. Bemporad

(Bemporad, Ricker, Morari, 1998-2011)

### Hybrid Toolbox for MATLAB

#### Features:

- Hybrid models: design, simulation, verification
- Control design for linear systems w/ constraints and hybrid systems (on-line optimization via QP/MILP/MIQP)
- Explicit MPC control (via multi-parametric programming)
- C-code generation
- Simulink library



3500+ download requests since October 2004

#### http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox/

(Bemporad, 2003-2011)



### Numerical complexity of MPC - An example

- Linear MPC of random square MIMO systems
  - n outputs, n inputs, 3n states
  - prediction horizon  $N\!\!=\!\!10$  , control horizon  $m\!=\!2$
  - constraints:  $-1 \leq u_k \leq 1, \ -1 \leq y_k \leq 1$
  - QP size: (mn+1) variables, (2Nn+2mn) constraints



| n   | #vars | # constraints | CPU time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n                                         |
|-----|-------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 1   | 3     | 24            | 0.00136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |
| 5   | 11    | 120           | 0.00149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Macbook Air 2.13 GHz (this macbook !)     |
| 20  | 41    | 480           | 0.00270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Inter Core 2 Duo 4GB RAM                  |
| 100 | 201   | 2400          | 0.06432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MPC Toolbox 4.0. MATLAB R2011b            |
| 150 | 301   | 3600          | 0.25873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Now active cat OD in FML (dance matrices) |
| 200 | ) 401 | 4800          | 0.64981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | New active set QP in EML (dense matrices) |
|     |       |               | Provide and Provide a state of the state of |                                           |

System with 200 inputs and 200 outputs w/ constraints: less than 1 s !

The example shows that **CPU time** is not a problem in many applications. Getting the **model** (off-line) and all **measurements** (on-line) is the largest effort !

### Outline of this talk

✓ Quick review of MPC basics

MPC that limits the use of network resources

• MPC that tames model complexity

• MPC that takes into account communication imperfections





#### Energy-aware control in wireless networks

- Control over wireless networks:
  - Pros: flexibility, low cost
  - Cons: wireless nodes are battery operated and have short lifetime





- How to save battery capacity:
  - Limit radio activity (idle listening and transmission), radio chip is the one consuming the most power
- Recent work to minimize energy consumption:
  - Consumption-efficient routing protocols (C. E. Jones et al., 2004)
  - Dynamic power management techniques (V. Raghunathan et al., 2005)

#### Goal: consider energy consumption problem in MPC control design

### Energy-aware control - Key idea

 Control strategy should keep the radio off (both Tx and Rx) as much as possible!



- <u>Trade-off</u>: closed-loop performance vs. transmission rate
- Key idea: provide a prediction ŷ(k) in advance to the sensor of the output y(k) it measures.
   The sensor only transmits when measurement and prediction differ enough:



y(k) is transmitted  $\Leftrightarrow |y(k) - \hat{y}(k)| > \varepsilon$ 

• Working assumption: no packet loss

### Energy-aware control - Key idea

- When the controller receives the measurement, it computes and transmits a new set of *M* predictions
- In the ideal case of no disturbances,
   i.e. ŷ(k) = y(k), ∀k, the overall
   transmission rate is 1/M



 <u>Note</u>: wireless communication protocols require a minimum frame size (e.g. 248 bits in ZigBee)



- Idea can be extended to multiple sensors and noisy measurements
- Asymptotic stability proofs are available (Bernardini, Bemporad, Automatica, to appear)

#### Energy-aware MPC over wireless networks

• Uncertain open-loop unstable system, 3 wireless sensor nodes



| Controller              | Performance | Tx Rate |
|-------------------------|-------------|---------|
| Standard Robust MPC     | 2.5025      | 100%    |
| Energy-Aware Robust MPC | 2.5514      | 51.8%   |



### Outline of this talk

✓ Quick review of MPC basics

✓ MPC that limits the use of network resources

• MPC that tames model complexity

 MPC that takes into account communication imperfections







### Centralized vs decentralized/distributed control

#### **Centralized control:**

- Need a **global model** of the overall networked system (and its maintenance)
- Complexity not scalable with model size
- Computation complexity may become prohibitive
- Control design hard to commission, start-up, and maintain (many tuning "knobs")
- High risk: a single controller is running the whole plant
- Good theoretical properties (e.g. closed-loop stability)



### Centralized vs decentralized/distributed control

#### **Decentralized control:**

- Local models of networked components are enough
- Computational tasks are **parallelized**, each task is simple
- Data gathering is simpler (local measurements used only locally)
- Commissioning, start-up, and maintenance more practical (controller updates do not require a whole system shutdown)
- **Global properties** (stability, performance) hard to assess, especially in the presence of input/state constraints



Careful cooperation of controllers is needed to ensure global properties (such as stability and constraint fulfillment)

### Typical decentralized approach

- Measure/estimate **local** states
- Compute control actions locally
- Exchange decisions with neighbors, possibly reiterate local computations
- Apply the current command input to local actuator(s)
- Possibly interact with upper level of decision making (hierarchical control) (Barcelli, Bemporad, Ripaccioli, IFAC'11)



A. Bemporad

"MPC Design Methods for Networked Systems" - IFAC World Congress, Milano, August 27, 2011

(centralized) supervisor controller controller controller #1 networked system

#### Decentralized linear control: Synthesis is easy !

#### global model

x(t+1) = Ax(t) + Bu(t)

 $\|x(t)\|_2 \le x_{\max}$  $\|u(t)\|_2 \le u_{\max}$ 

constraints

How to take into account network topology in synthesizing the control law u(t) = Kx(t)?



 $\lambda_{ij} = \begin{cases} 1 & \text{if sensor } s_j \text{ is linked to actuator } a_i, \\ 0 & \text{otherwise.} \end{cases}$ 

 $\Lambda = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} a & & & & & \text{actuator} \\ b & & \bullet & \text{sensor} \\ c & \checkmark & \text{network link} \end{bmatrix}$ 

z

b

impose on controller K the same structure of  $\Lambda$ 

$$\lambda_{ij} = 0 \rightarrow k_{ij} = 0$$



### Decentralized linear control: Synthesis is easy !

Main idea to **impose decentralized structure** on K

(Crusius, Trofino, IEEE TAC, 1999)

- let  $K = YQ^{-1}$ , Y and Q are the unknowns
- impose on Y same structure of adjacency matrix  $\Lambda$  Example:

• impose block-diagonal structure on  ${\cal Q}$ 

#### Decentralized linear control: Synthesis is easy !

**Theorem:** Given network topology  $\Lambda$ , a *decentralized* linear controller  $K = YQ^{-1}$  stabilizing the system under state and input constraints is obtained by solving the following semidefinite program:

 $\min_{\gamma,Q,Y} \;\; \gamma$ 

s.t. 
$$\begin{bmatrix} Q & * & * & * \\ AQ + BY & Q & * & * \\ Q_x^{1/2}Q & \mathbf{0} & \gamma I_n & * \\ Q_u^{1/2}Y & \mathbf{0} & \mathbf{0} & \gamma I_m \end{bmatrix} \succeq 0,$$
 decreasing condition on Lyapunov function  
$$\begin{bmatrix} Q & (AQ + BY)' \\ AQ + BY & x_{\max}^2 I_n \end{bmatrix} \succeq 0,$$
 state constraints satisfaction  
$$\begin{bmatrix} u_{\max}^2 I_m & Y \\ Y' & Q \end{bmatrix} \succeq 0,$$
 input constraints satisfaction  
$$\begin{bmatrix} 1 & v_i' \\ v_i & Q \end{bmatrix} \succeq 0, \ i = 1, \dots, n_v,$$
 initial condition  $x(0) \in \mathcal{X}_0 \quad v = \operatorname{vertex}(\mathcal{X}_0)$   
$$\begin{pmatrix} \lambda_{ij} = 0 \end{pmatrix} \Rightarrow y_{ij} = 0 \\ (\lambda_{ij} = 0) \land (\lambda_{ih} = 1) \Rightarrow q_{hj} = 0, \ q_{jh} = 0 \end{bmatrix} \begin{cases} i = 1, \dots, n, \\ j = 1, \dots, n, \\ h = 1, \dots, n \end{cases}$$
 decentralized structure

#### The idea can be extended to robust and stochastic case

(Barcelli, Bernardini, Bemporad, CDC 2010)

### Decentralized/distributed MPC

| submodels  | constraints  | intersampling<br>iterations | broadcast<br>prediction | state<br>constraints | stability<br>constraints | authors                        |
|------------|--------------|-----------------------------|-------------------------|----------------------|--------------------------|--------------------------------|
| coupled    | local inputs | no                          | no                      | no                   | none                     | Alessio, Barcelli,<br>Bemporad |
| coupled    | local inputs | yes                         | no                      | no                   | none                     | Venkat, Rawlings,<br>Wright    |
| coupled    | local inputs | yes                         | yes                     | no                   | none                     | Mercangöz, Doyle               |
| decoupled  | local inputs | no                          | yes                     | yes                  | compatibility            | Dunbar, Murray                 |
| decoupled  |              | no                          | yes                     | yes                  | none                     | Keviczy, Borrelli, Balas       |
| coupled    | local states | no                          | yes                     | yes                  | contractive              | Jia, Krogh                     |
| coupled/NL | local inputs | no                          | no                      | no                   | contractive              | Magni, Scattolini              |

**Alternative approach:** *distribute the optimization* problem associated with the centralized MPC formulation, instead of distributing the problem formulation

#### 

#### 



#### • General overview:

| Municipalities supplied | 23                  |
|-------------------------|---------------------|
| Supply area             | 424 km <sup>2</sup> |
| Population supplied     | 2.922.773           |
| Average demand          | 7 m <sup>3</sup> /s |

• Network parameters:

| Pipes length             | 4.645 km |  |  |
|--------------------------|----------|--|--|
| Pressure floors          | 113      |  |  |
| Sectors                  | 218      |  |  |
| • Facilities             |          |  |  |
| Remote stations          | 98       |  |  |
| Water storage tanks      | 81       |  |  |
| Valves                   | 64       |  |  |
| Flow meters              | 92       |  |  |
| Pumps / Pumping stations | 180 / 84 |  |  |
| Chlorine dosing devices  | 23       |  |  |
| Chlorine analyzers       | 74       |  |  |



**European FP7-ICT project WIDE** "<u>DE</u>centralized and <u>WI</u>reless Control of Large-Scale Systems"



A. Bemporad

"MPC Design Methods for Networked Systems" - IFAC World Congress, Milano, August 27, 2011

#### orks, directly applicable also to gas



- Benefits evaluated on 3 days historic data set
- Benefits evaluation is complicated by water accumulation (different final accumulation for different control strategies)
- To get comparable data MPC was forced to fill tanks to the same final levels as in historical data (sub-optimal)
- ~20% direct cost savings (pumping and water sources)
- Indirect savings by smooth MV's operation -> leakage prevention by small reduced pressure surges and equipment tear & wear



A. Bemporad

"MPC Design Methods for Networked Systems" - IFAC World Congress, Milano, August 27, 2011

25/57

#### A decentralized MPC approach

Consider a decentralization of the following MPC problem (with horizon N=1)

(Alessio, Barcelli, Bemporad, 2011)

$$V(x(t)) = \min_{\{u_k\}_{k=0}^{\infty}} \sum_{k=0}^{\infty} x'_k Q x_k + u'_k R u_k$$

$$= \min_{u_0} x'_k P x_1 + x(t)' Q (t) + u'_0 R u_0$$

$$s.t. \ x_1 = A x(t) + B u_0$$

$$u_{\min} \le u_0 \le u_{\max}$$

$$u_k = 0, \ \forall k \ge 1$$

$$det mind weight$$

$$P = A' P A + Q$$

Assumption 1: open-loop system is asymptotically stable

**Assumption 2:** only input constraints  $u_{\min} \leq u(t) \leq u_{\max}, u(t) \in \mathbb{R}^m$ 

#### A decentralized MPC approach

**Main idea**: replace a centralized MPC algorithm with M=m simpler decentralized MPC algorithms, one for each actuator (generalization: one per group of actuators)

**Prediction models:** assuming that certain components matrices A, B are negligible, form m local submodels

$$x^{i}(t+1) = A_{i}x^{i}(t) + B_{i}u^{i}(t), \ i = 1, \dots, m$$

where  $x^i$  and  $u^i$  collect local states and inputs of submodel #i



Note: The choice of decentralization scheme is a tuning knob of DMPC !

from fully centralized ( $x^i = x, u^i = u$ ) to fully decentralized ( $x^i = x_i, u^i = u_i$ )

#### Local DMPC problem



The commanded u(t) is the collection of all optimal inputs  $u^{11*}(t)$ , ...,  $u^{mm*}(t)$ 

### Stability issues in DMPC

Stability of each MPC sub-problem does not guarantee plant-wide stability !

Trajectory of state  $x_j(t+k)$  predicted by controller MPC #i at time t

Trajectory of state  $x_j(t+k)$  predicted by controller MPC #j at time t

Because of **prediction mismatch**, in general  $u^{ij*} \neq u^{jj*}$ ,  $j \neq i$ 

that is, the move  $u_0^{ji^*}$  optimized by local MPC controller #*i* for input  $u_j(t)$  is not exactly the control move  $u_j(t)=u_0^{jj^*}$  actually applied to the process

### Stability result

$$\begin{array}{l} \text{Input nismatch} & \text{state nismatch} \\ \text{Theorem Assume A and all matrices } A_i \text{ open-loop as. stable. Let } P_i = A_i'PA_i + Q_i, \\ \forall i = 1, \ldots, M. \text{ Define} \\ & \Delta u^i(t) \triangleq u(t) - Z_i u^{*i}_0(t), \quad \Delta x^i(t) \triangleq (I - W_i W_i') x(t) \\ & \Delta x^i \triangleq (I - W_i W_i') A, \quad \Delta B^i \triangleq B - W_i W_i'BZ_i Z_i' \\ \text{Also, let} & \text{nismatch} \\ & \Delta Y^i(x(t)) \triangleq W_i W_i' (A \Delta x^i(t) + BZ_i Z_i' \Delta u^i(t)) + \Delta A^i x(t) + \Delta B^i u(t) \\ \text{nismatch} \\ \text{and} \\ & \Delta S^i(x(t)) \triangleq (2(A_i W_i' x(t) + B_i u^{*i}_0(t))' + \Delta Y^i(x(t))' W_i) P_i W_i' \Delta Y^i(x(t)) \\ \text{If the condition} \\ & x' \left( \sum_{i=1}^M W_i W_i' Q W_i W_i' \right) x - \sum_{i=1}^M \Delta S^i(x) \ge 0, \ \forall x \in \mathbb{R}^n \\ \text{is satisfied then the decentralized MPC scheme is globally asymptotically stabilizing.} \\ & \text{(Alessio, Barcelli, Bemporad, 2011)} \\ \text{(Alessio, Barcelli, Bemporad, 2011)} \\ \text{(Alessio, Barcelli, Depinds on amount of mismatch between global and local models.} \\ & \Delta S_i(t) = 0 \text{ if no mismatch, i.e. all local models are also global (=full feedback)} \\ \end{array}$$

### Stability result

- Proof based on showing that  $V(x(t)) = \sum_{i=1}^{M} V_i(x(t))$  is a Lyapunov function:  $V_i(x(t+1)) \le V_i(x(t)) - x(t)W_iQ_iW'_ix(t) - u_0^{*i}(t)'R_iu_0^{*i}(t) + \Delta S^i(x(t))$  *quadratic fcn of x around the origin*
- Local asymptotic stability: check eigenvalues of nxn matrix
- Global asymptotic stability: compute explicit solution of local MPC controllers & test LMI relaxation of resulting PWA closed-loop
- Extension to open-loop unstable (unconstrained) systems: use terminal weight = Riccati matrix for local submodel.

#### A simple DMPC example



• DMPC law:

$$u(t) = \begin{bmatrix} 0.0771 & 0 & -0.6699\\ 0.6563 & 0.5627 & 0\\ 0 & 0.4398 & 0.1124 \end{bmatrix} x(t)$$



#### Extension to intermittent measurements

- Assume all data are exchanged on a wireless network
- The network may be congested and packets dropped out
- Assumption: when packets are lost at time t, by default  $u_i(t)=0$
- Assumption: at most N packets can be lost consecutively



- Model mismatch grows with the number of consecutive packet losses
- Stability under packet loss can be proved similarly to deterministic case

(Alessio, Barcelli, Bemporad, 2011)

• Note: Proof does **not** depend on **probability model** for packet loss !

#### Packet-loss probability model



#### Decentralized temperature control example

#### Temperature control in different passenger areas in a railcar



- Global model: 26 states, 16 inputs
- Decompose model into 16 submodels
- Each model has 5 states, 2 or 3 command inputs



#### DMPC - Simulation results (with packet loss)



### Outline of this talk

✓ Quick review of MPC basics

✓ MPC that limits the use of network resources

✓ MPC that tames model complexity

 MPC that takes into account communication imperfections





**Stochastic MPC** 





#### Stochastic models of networked systems

- Wireless communication infrastructure introduces **uncertainty**:
  - packet dropout
  - delays (induced for example by buffers)
- **Robust** control approaches do not model uncertainty (only assume that is bounded) and pessimistically consider the worst case
- Stochastic models provide additional information about uncertainty.

Examples:

- Network congestion dynamics modeled as a Markov chain, whose state determines the probability of losing a packet
- Transmission delay described by probability distribution function

#### Need to include **stochastic models** in control problem formulation

### Stochastic Model Predictive Control (SMPC)



# Use a **stochastic** dynamical **model** of the process to **predict** its possible future evolutions and choose the "best" **control** action

### Stochastic Model Predictive Control

• <u>At time *t*</u>: solve a **stochastic optimal control** problem over a finite future horizon of *N* steps:

$$\begin{array}{ll} \displaystyle \min_{u} & E_{w} \left[ \sum_{k=0}^{N-1} \ell(y_{k} - r(t+k), u_{k}) \right] \\ \text{s.t.} & x_{k+1} = f(x_{k}, u_{k}, w_{k}) \\ & y_{k} = g(x_{k}, u_{k}, w_{k}) \\ & u_{\min} \leq u_{t+k} \leq u_{\max} \\ & y_{\min} \leq y_{k} \leq y_{\max}, \ \forall w \\ & x_{0} = x(t) \end{array}$$

x(t) = process state u(t) = manipulated vars y(t) = controlled output w(t) = stochastic disturbances

- Only apply the first optimal move  $u^*(t)$ , discard  $u^*(t+1), u^*(t+2), \dots$
- <u>At time t+1</u>: Get new measurement x(t+1), repeat the optimization. And so on ...

#### Linear stochastic MPC w/ discrete disturbance

• Linear stochastic prediction model

x(t+1) = A(w(t))x(t) + B(w(t))u(t) + E(w(t))

• Discrete disturbance

$$w(t) \in \{w_1, \dots, w_s\}$$
  $p_j(t) = \Pr[w(t) = w_j]$   $\sum_{j=1}^s p_j(t) = 1$ 

• Probabilities  $p_j(k)$  can have their own dynamics. Example: Markov chain

$$\pi_{ih} = \Pr[z(t+1) = z_h \mid z(t) = z_i], \ i, h = 1, \dots, M$$

$$p_j(t) = \begin{cases} e_{1j} & \text{if } z(t) = z_1 \\ \vdots & \vdots \\ e_{Mj} & \text{if } z(t) = z_M \end{cases}$$

$$\pi_{11}$$

$$\pi_{21}$$

• Discrete distributions can be estimated from historical data (and adapted on-line)

#### Linear stochastic MPC formulation

• Performance index 
$$\min E_w \left[ x'_N P x_N + \sum_{k=0}^{N-1} x'_k Q x_k + u'_k R u_k \right]$$

- Goal: ensure mean-square convergence E[x'(t)x(t)] = 0 (for H=0)
- The existence of a stochastic Lyapunov function V(x) = x'Px

$$E_{w(t)}[V(x(t+1)] - V(x(t)) \le -x(t)'Lx(t), \quad \forall t \ge 0$$

(Morozan, 1983)

ensures mean-square stability

#### • Existing SMPC approaches:

| (Schwarme & Nikolaou, 1999)         | (Munoz de la Pena, Bemporad, Alamo, 2005) | (Ono, Williams, 2008)             |
|-------------------------------------|-------------------------------------------|-----------------------------------|
| (Wendt & Wozny, 2000)               | (Couchman, Cannon, Kouvaritakis, 2006)    | (Oldewurtel, Jones, Morari, 2008) |
| (Batina, Stoorvogel, Weiland, 2002) | (Primbs, 2007)                            | (Bernardini & Bemporad, 2009)     |
| (van Hessem & Bosgra 2002)          | (Bemporad, Di Cairano, 2005)              |                                   |

#### Stochastic program

- Enumerate all possible scenarios  $\{w_0^j, w_1^j, \dots, w_{N-1}^j\}, \ j = 1, \dots, S$
- Each scenario has probability  $p^j = \prod_{k=0}^{n-1} \Pr[w_k = w_k^j]$
- Each scenario has its own evolution  $x_{k+1}^j = A(w_k^j)x_k^j + B(w_k^j)u_k^j$
- Expectations become simple sums

$$\min E_w \left[ x'_N P x_N + \sum_{k=0}^{N-1} x'_k Q x_k + u'_k R u_k \right]$$
$$\min \sum_{j=1}^{S} p^j \left( (x_N^j)' P x_N^j + \sum_{k=0}^{N-1} (x_k^j)' Q x_k^j + (u_k^j)' R u_k^j \right)$$

This is again a (large & sparse) QP

#### Scenario tree



- Scenario = path on the tree
- Number *S* of scenarios = number of leaf nodes

 $\min \dots + p^{j} (x_{k}^{j})' Q x_{k}^{j} + \dots$  $y_{\min} \leq y_{k} \leq y_{\max}, \ \forall w$ 

- Some paths can be removed if their probability is very small (at your own risk)
- **Causality constraint:**  $u_k^j = u_k^h$  when scenarios j and h share the same node at prediction time k (for example:  $u_0^j \equiv u_0^h$  at root node k=0)

#### Linear stochastic stabilization

- Assume  $w(t) \in \{w_1, \ldots, w_s\}$  and **constant** probability  $p(t) \equiv p, \forall t$
- The stochastic convergence condition  $E_{w(t)}[V(x(t+1)) V(x(t)) \le -x(t)'Lx(t)]$ can be recast as the LMI condition

$$\begin{bmatrix} Q & Q & \sqrt{p_1}(A_1Q+B_1Y)' & \cdots & \sqrt{p_s}(A_sQ+B_sY)' \\ Q & W & 0 & \cdots & 0 \\ \sqrt{p_1}(A_1Q+B_1Y) & 0 & Q & & \\ \vdots & \vdots & \ddots & & \\ \sqrt{p_s}(A_sQ+B_sY) & 0 & & & Q \end{bmatrix} \succeq 0$$

- The Lyapunov function is  $V(x) = x'Q^{-1}x$
- Mean-square stability guaranteed by linear feedback  $u(k) = Kx(k), K = YQ^{-1}$
- A minimum decrease rate L can be imposed
- The approach can be extended to uncertain probabilities  $p(t) \in \mathcal{P}$ (for example time-varying probabilities)

### Stabilizing SMPC

(Bernardini, Bemporad, CDC'09)

• Impose stochastic stability constraint in SMPC problem (=quadratic constraint w.r.t.  $u_0$ )



- SMPC approach:
  - 1. Solve LMI problem off-line to find stochastic Lyapunov fcn  $V(x) = x'Q^{-1}x$
  - 2. Optimize stochastic performance based on scenario tree

**Theorem:** The closed-loop SMPC system is as. stable in the mean-square sense

• SMPC can be generalized to handle **input and state constraints** 

**Note:** recursive feasibility guaranteed by backup solution u(k) = Kx(k)

A. Bemporad "MPC Design Methods for Networked Systems" - IFAC World Congress, Milano, August 27, 2011

### A few sample applications of SMPC

• Financial engineering: dynamic hedging of portfolios replicating synthetic (Bemporad, Bellucci, Gabbriellini, 2009) (Bemporad, Gabbriellini, Puglia, Bellucci, 2010)

(Bemporad, Gabbriellini, Puglia, Bellucci, 2010) (Bemporad,Puglia, Gabbriellini, 2011)

• Energy systems: power dispatch in smart grids, optimal bidding on electricity markets (Patrinos, Trimboli, Bemporad, CDC 2011) (Puglia, Bernardini, Bemporad, CDC 2011)

 Automotive control: energy management in HEVs, adaptive cruise control (human-machine interaction)

(Bichi, Ripaccioli, Di Cairano, Bernardini, Bemporad, Kolmanovsky, CDC 2010)

• Networked control: improve robustness against communication imperfections (Bernardini, Donkers, Bemporad, Heemels, NECSYS 2010)

#### SMPC of networked systems

(Bernardini, Donkers, Bemporad, Heemels, NECSYS 2010)

- Plant model:  $\dot{x}(t) = Ax(t) + Bu(t)$
- **Disturbance models** for transmission intervals  $h_k$  and delays  $\tau_k$ 
  - ▶ Robust models:  $(h, \tau) \in [h_{min}, h_{max}] \times [\tau_{min}, \tau_{max}]$
  - Discrete stochastic models:  $(h, \tau) \in {\tilde{h}_1, \tilde{h}_2, \ldots, \tilde{h}_n} \times {\tilde{\tau}_1, \tilde{\tau}_2, \ldots, \tilde{\tau}_m}$
  - Stochastic models with continuous distribution:



• Packet dropouts in the sensor-to-controller channel can be modeled as prolongations of the sampling interval, by modifying the p.d.f.  $p(h,\tau)$ 

### SMPC of networked systems

• Problem: given a plant model and a distribution  $p(h,\tau)$ , design a controller to optimize closed-loop performance while providing stability in the mean-square sense

#### • Approach:

- Build a discrete-time model of the overall NCS by convex over-approximation techniques
   (Heemels, Bemporad, CDC 2011)
- Derive LMI conditions for stability based on quadratic Lyapunov functions
- Formulate the SMPC control problem incorporating performance optimization and stability constraints

### SMPC of networked systems

- SMPC-based control scheme:
- A new partition is defined by discretizing the parameter space
- A realization probability is associated to every region



 A prediction model based on the new partition is used by SMPC (decoupling between performance and stability)



A scenario-based control problem is solved at every k incorporating the minimization of a performance objective and constraints for mean-square stability



#### SMPC of networked systems - An example

• System model: 2nd-order linear system

$$\dot{x}(t) = \begin{bmatrix} 1 & 15 \\ -15 & 1 \end{bmatrix} x(t) + \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix} u(t)$$

- Sampling intervals: constant  $h_{nom} = 0.1$ s
- Delays: truncated normal distribution with  $\tau \in [0.02, \, 0.1]$
- Approximation:
  - pdf partitioned in 8 regions for performance optimization
  - pdf partitioned in 4 partitions for stability conditions



#### SMPC of networked systems - An example

• Comparison with a constant state-feedback controller that provides robust stability (no exploitation of stochastic disturbance model)



| Controller                | average<br>performance | standard<br>deviation |
|---------------------------|------------------------|-----------------------|
| Robust state-<br>feedback | 884.34                 | 382.19                |
| Stochastic MPC            | 678.01                 | 134.74                |

| Computation time per step: |       |  |  |
|----------------------------|-------|--|--|
| average:                   | 29 ms |  |  |
| maximum:                   | 41 ms |  |  |

#### **Demo Application in Wireless Automation**

(Bemporad, Di Cairano, Henriksson, Johansson, IJRNC, 2010)





- Telos motes provide wireless temperature feedback in MATLAB/Simulink
- xPC-Target link used for wired communication
- MPC algorithm adjusts belt speed and turns lamps on/off (HybTBX+CPLEX)
- <u>Objective</u>: track position and temperature references while enforcing safety constraints

#### Motivation



#### Laminating plastics



Shrink wrapping



#### Ink drying in printing

#### **Experimental results**



Hybrid MPC problem with 2 binary inputs (lamps), 1 continuous input (speed), piecewise linear state function (heating), 2 outputs (temperature and position)

#### Conclusions and open research issues



- **MPC** is a very rich control methodology, with many possible variants to handle different issues in control of networked systems, such as:
  - energy consumption of wireless sensors
  - large number of variables (states/inputs/outputs)
  - stochastic effects of network
- Decentralized and distributed MPC of networked systems:
  - some contributions exist, but theory not yet mature
  - a lot to gain from distributed optimization theory

#### • Stochastic MPC of networked systems:

- some theoretical contributions exists
- many ways to setup the stochastic MPC problem (=large space for new theories)

### WIDE Toolbox for N

- Networked control systems: modeling, stability analysis, linear control synthesis
- Model management of large-scale systems (model reduction, create submodels, ...)
- Data acquisition from physical WSN

   \* % sums steam flows from boilers to header
   (Telos motes, E-Senza's nodes)

- *mod.eps(6);* 

- WSN simulation (generate TrueTime code)
- **MPC control**: decentralized, hierarchical, network-aware

Available for public download on September 1st 2011
 <u>http://ist-wide.dii.unisi.it</u>

