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MODEL PREDICTIVE CONTROL (MPC)

optimization algorithm .

dynamical model : 1, a—
(based on data) : Ai11 QZ s :
. s.t. Az <db

\ embedded model-based optimizer
process

reference

—
r(t)

measurements

Use a dynamical model of the process to predict its future
evolution and choose the “best” control action




MODEL PREDICTIVE CONTROL (MPC)

e At time t: consider optimal control problem over a future horizon of N steps

t
penally on penally on pas ]
ackuation S )
Eracking Q_QQA / :
min > (] )]
k=0 e | R
s.t. w1 = f(zp, upt) teN | .
Y = g(xp, ug, t)
constraints on wuyg, y. L O
(1)) €—feedbacie !
optimization problem
t+]IV+1,

e Solve problem w.r.t. {uo,...,un1}

e Apply the first optimal move u(t):uo*, throw the rest of the sequence away

e At time t+1: Get new measurements, repeat the optimization. And so on....

Used in process industries since the 80's
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NE OF THE FIRST PAPERS ON MPC

Discrete Dynamic Optimization
Applied to On-Line Optimal Control

MARSHALL D. RAFAL and WILLIAM F. STEVENS
Neorthwestern University, Evanston, Illinois

A gesersl methad hos been developed for contrelling deterministic systems described by
limeor ar lineorized dynamics. The disceete peoblem has been treated in detoil. Step-dy-step
eptimal controls for o quodiotic performance index hove been derived. The method cccom-

modetes vpper and Jower limits on the companents of the contrel vecter.

A small bisary distilletion unit wes considered a3 o Yypicel epplicarion of the method.
The contrel vecter wos made wp of feed rate, reflux rotio, ond reboiler heot load. Conmol to

0 desired stote and abovut o lood vpset was efiecred.

Celculations are perlormed quite ropidly and only grow sigaificant)

with ea increose In

the dimension of the control vector. Extension to much lorger distillovien wnits with the

same controls thes seoms procticel,

The advent of high-speed computers has made possible
the onsline digital control of many chemical enginecting
processes. Im on-line control & threc-step procedure 15 ade
hered to:

1. Scnse the curtent state,

2. Calculate a suitable control action,

3. Apply this control for a penod of time known as the
sampling penod.

The present stady proposes a method for pedforming
step 2. The wechnigeue developed is based on linearized
dynamics, The swrongly sonlinear binary distillation unit
provides a suitable system for this stedy, While much has
been published recently (2, 3, 8) on modeling distiliation,
little «f anythisg has appeared on the optimal comtrol of
such unats,

In recent years, a good deal has been published by Kalke
man, Lapgides, and others (¥ 10 7) on the control of linear
or \mecanzed nonlinear systems by mimimizing a quadiatic
function of the states resulting from a sequence of control
actioms, Thewr comtrols are always uncoostrained, alk
though the introdaction of a quadsatic penalty femctron
limits this offect somewhat, The general constrained prob=
lem has been treated numerically (1) for & single control
variable. It was Wanninger (0, 1]) who fast ¢hose 1w look
at the problem on 3 one-step-at-a~tame basis rather than

Marshall D. Rafal is with Esso Rescarch and Engineering
Company., Florham Park, New Jersey.

considering a sequence of controls, However, he made no
attermpt 10 solve completely the resulting quadratic pro=
graming peoblem,

The approach taken in the peesent work 1s 10 set up the
problem on & onc-step basis. This is Quite compatible
with the oo-line digital control scheme. The problem is
then shown 1o be a special case of the quadratic program=
ming peoblem and as swch has a special solution. The
particelars concerning the theory enderlymng the solution
scheme and its implementation oo a3 digital computer have
been presented (7). In addition, a derivalion of the theo-
rems upon which the computational algocithm is based is
presented in the Appendix.

The asthors wish to be very carefel 10 pomnt out that
optemal, as used herein, refers oaly 10 & single step of
comtrol, Even for uely lincar svstems, the stepsby-step
optimal ¢control need not be overall optimal. A recent text
by Athans and Falb (Ja) peesents both the virtues and de-
fects of such a cac-sicp method. In the present work, the
one-step approach is taken because 11 s amenable 1o
practical solution of the peoblem and is well suited o non-
lincar situations where updating lincanization s wseful,

THE PROBLEM

The system under consideration 15 described by a set of
matrix differential eguations:

X(0) » AX () « BM(D) « 8(D m

Vol. 14, No. 1 AIChE Joumol Page 85

(Rafal, Stevens, AiChE Journal, 1968)
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AUTOMOTIVE APPLICATIONS OF MPC

Bemporad, Bernardini, Borrelli, Cimini, Di Cairano, Esen, Giorgetti, Graf-Plessen, Hrovat, Kolmanovsky, Levijoki,
Ripaccioli, Trimboli, Tseng, Yanakiev, ... (2001-2016)

Powertrain

e direct-inj. engine control

¢ A/F ratio control

* magnetic actuators

e robotized gearbox

e power MGT in HEVs

e cabin heat control in HEVs
e electrical motors

Vehicle dynamics

e traction control

* active steering

e semiactive suspensions
e autonomous driving

Ford Motor Company
Jaguar

DENSO Automotive
FIAT

General Motors
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MPC TOOLBOXES

e MPC Toolbox (The Mathworks, Inc.)
(Bemporad, Ricker, Morari, 1998-present)

v
MATLAB

» Part of Mathworks’ official toolbox distribution
» Great for education and research

e Hybrid Toolbox > 6k downloads
(Bemporad, 2003-present)

» Free download: http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox
» Great for research and education

e ODYS Toolbox 2
(Bemporad, Bernardini, 2013-present)

SRRRTY
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» Provides flexible and customized MPC control design
and seamless integration in production systems

» Real-time code written in plain C
» Designed for production

C)D\’S

Advanced Controls & Optimization
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AEROSPACE APPLICATIONS OF MPC

e MPC capabilities explored in new space applications CcSd

e New MATLAB MPC Toolboxes developed (MPCTOOL and MPCSofT)

(Bemporad, 2010) (Bemporad, 2012)

powered descent t&» r

I\

cooperating UAVs
2 7?’_‘_ (l?’ascucci, Bennani, Bemporad, 2016)

& )
&
&
&
planetary rover

(Bemporad, Rocchi, 2011) (Krenn et. al., 2012)




EMBEDDED LINEAR MPC AND QUADRATIC PROGRAMMING

e Linear MPC requires solving a Quadratic Program (QP)

ON MINIMIZING A CoNvVEX FUNCTION SUBJECT TO LINEAR INEQUALITIES

By E. M. L. BEaLE

Admiralty Research Laboratory, Teddington, Middlesex

SUMMARY

THE minimization of a convex function of variables subject to linear inequalities is
discussed briefly in general terms. Dantzig's Simplex Method is extended to yield
finite algorithms for minimizing either a convex quadratic function or the sum of
the 1 largest of a set of linear functions, and the solution of a generalization of the
latter problem is indicated. In the last two sections a form of lincar programming
with random variables as coefficients is described, and shown to involve the minimiza-
tion of a convex function.

Arich set of good QP algorithms is available today, still more research is

(Beale, 1955)

required to have an impact in real applications !




MPC IN A PRODUCTION ENVIRONMENT

embedded model-based optimizer

2. Robustness (e.g., with respect to numerical errors)
3. Be able to run on limited hardware (e.g., 150 MHz) with little memory
4. Worst-case execution time must be (tightly) estimated

5. Code simple enough to be validated/verified/certified
(in general, it must be understandable by production engineers)




EMBEDDED SOLVERS IN INDUSTRIAL PRODUCTION

e Multivariable MPC controller
e Sampling frequency = 40 Hz (= 1 QP solved every 25 ms)
e Vehicle operating ~1 hr/day for ~360 days/year on average

e Controller may be run on 10 million vehicles
X §20,000,000,000,000 QP/yr

and none of them can fail!

10



FAST GRADIENT PROJECTION FOR (DUAL) QP

(Nesterov, 1983)

e Apply fast gradient method to dual QP: (Patrinos, Bemporad, IEEE TAC, 2014)
min 1z/H,z—I—:I:’F/z
no3 wy = Yk + Bre(yr — Yr—1) -1 =1yo=>0
S.t. Gz < W + Sz
2z, = —Kwp—Jx
— 1w
S — %sz — %(SQZ -|— W) K= H_lG/
0 - J = HF
ﬁk:{ S Ye+1 = Max{yy + sg, 0}
k+2
feasibility tol
* Termination criterion #1: primal feasibility 1 J
(2 N
s, < —€, Vi=1,...,m
L
e Termination criterion #2: primal optimality optimality tol
\Y
flar) — f* < Fzp) - qucwk) = —wjsL < ey —wlsp < —ey
L

duai. function
11



FAST GRADIENT PROJECTION FOR (DUAL) QP

e Main on-line operations involve only
while keepgoing && (i<maxiter),

(Patrinos, Bemporad, IEEE TAC, 2014)

beta=(i-1)/(i-2).*(i>0);

simple linear algebra
w=y+beta* (y-y0);

2=-(1MG*w+iMc);
s=GLz~bL;

y0=y;
® COnvergence rate: - Check termination conditions
if all(s<=epsGL),
gapL=-w'*s;
if gapL<=epsVL,
* 2 l return
end

end

flzpg1) — 7 < it Q)QHZO

imi+l;
end

e Tight bounds on maximum number of iterations
theoretical

: Ly
= 31*
=104 P @ lliligiiiil ®----

\
2l experime.m&ai.

e Can be used to warm-start other methods

10 7 9 11 13 15

Horizon N

e Currently extended to mixed-integer problems
(Naik, Bemporad, work in progress) o



EXPERIMENTS WITH EMBEDDED QP

TMS320F28335 control CARD
(Real-time Control Applications)

@ 32-bit Floating Point (IEEE-754);
@ 150MHz clock;
@ 68KB Ram / 512KB Flash.

var x constr. GPAD AS ADMM FBN
4% 16 332 s (18) | 120 us (3) | 1.42 ms (62) | 208 us (2)
8 x 24 1.1 ms (22) 446 us (5) 4 ms (77) 396 us g)
12 x 32 2.59 ms (27) | 1.19 ms (7) | 8.25 ms (82) | 652 us (2)

e Active set (AS) methods are usually the best on small problems:
- excellent quality solutions within few iterations
- less sensitive to preconditioning (= behavior is more predictable)
- no need for advanced linear algebra packages

* GPAD = Dual Accelerated Gradient Projection (Patrinos, Bemporad, 2014)
* FBN = Forward-Backwards Netwon (proximal method) (Patrinos, Guiggiani, Bemporad, 2014)
* ADMM = Alternating Directions Method of Multipliers (Boyd etal,, 2010) 13



FINITE-PRECISION ARITHMETICS

How about numerical robustness ?

e Fixed-point arithmetics is very attractive for embedded control:

Fraction length

A

~

b5 | Bocs b | by | bs | by b4 ] b

\

Sign be Rodix pdim Leost si;jnifimm bit

* Pros:
— Computations are fast and cheap
— Hardware support in all platforms

e Cons:
— Accumulation of quantization errors

— Limited range (numerical overflow)
14



HARDWARE TESTS (FLOATING VS FIXED POINT)

e Gradient projection works in fixed-point arithmetics

max 9;(zx)

EF1 TN

< 2LD2 | /7

/L

max conskraink violakion

(Patrinos, Guiggiani, Bemporad, 2013)

axpome.m&mttj decreasing with
number p of fractional bits

Table 1
["ixed-point bardware ymplementation
Size [variables/constraints| | Time [ms| | Time per iteration [us| | Code Size |[K B|
10/20 22.9 226 15
20/40 @ fiked 867 17
40/80 544.9 po ik 3382 27
60/120 1519.8 7561 43
Table 2
[loating-point hardware implementation
Size [variables/constraints| | Time [ms] | Time per iteration [us| | Code Size K B| l
10/20 88.6 974 16
20/40 C20D floating 3608 21
40/80 2240 po ik 13099 40
60/120 5816 30450 73

{:E,xedmpoénﬁ about 4x faster than aftoa&msmpoim&

32-bit Atmel SAM3X8E

ARM Cortex-M3 processing
unit

84 MHz, 512 KB of flash memory
and 100 KB of RAM

15



CAN WE SOLVE QP’S USING LEAST SQUARES ?

The Least Squares (LS) problem is probably the
most studied problem in numerical linear algebra

v = arg min ||Av — bH%

— T

(Legendre, 1805)~

In MATLAB: >> V=A\b ¢ (1 character ! )

e Nonnegative Least Squares (NNLS):

min, ||[Av — b3
s.t. v>0

T— —

10



ACTIVE-SET METHOD FOR NONNEGATIVE LEAST SQUARES

min, ||[Av — b3
s.t. v>0

NNLS algorithm: While maintaining
primal var v feasible, keep switching
active set until dual var w is also
feasible

1) P+ 0, v+ 0

2) w<+ A'(Av —b);

3) ifw>00r P=1{1,..., m} then go to Step 11;

4) i« argminiegy  m\p Wi, P PU{i};

5&TP < argmin., ||[((A)p)"2p — bllzzw(1,...mpp ¢ 0;
6) if yp = O tiggro==7y"ad go o ;
7) j < argmingep. 4, <o {thfyh };

8) v v+ Ujvyj (y —v);

N Z+{heP v,=0}, P+ P\
10) go to Step p;
11) v* « v; edd.

e NNLS algorithm is very simple (750 cha in Embedded MATLAB),
the key operation is to solve a standard LS problem at each
iteration (via QR, LDL, or Cholesky factorization)

17



SOLVING QP’S VIA NONNEGATIVE LEAST SQUARES

. . |
e Use NNLS to solve strictly convex QP (Bemporad, [EEE TAC, 2016)

A —T
= Lz —|— L C | t
1 / u 12 eas
min = min 5
In 52Qz+cz N Sllul Distance
S't_'_f Gz < g‘_ tam[ni.e&e the squares S-E; MUE d Problem
QP Q=1L
M=GL 1!
d=b+ GQ 1c
QP problem infeasible PASE
— /_ _ 2
min LM ], 419
yo 2| & |7 1],
s.t. y>0
U S 0-1c no Nonnegative Least Squares
T 14 dy Y

| ee— —

retrieve Fxrimat solukbion

18



SOLVING QP VIA NNLS: NUMERICAL RESULTS

worst-case over 100 random QP instances

(Bemporad, IEEE TAC, 2016)

worst-case occurred during entire simulation*®

10° : : l . : ’1
TR T ] e = 10" b
10k S
() / Vo4 ()
E0'E--- 7 =
- 7 ‘7 S L0
o [ 12 — QPNNLS-LDL = 100+t
®) ——Dantzig o
GPAD
0 ——ADMM
107 QUADPROG (IP) |-
— - QUADPROG (AS) ——QPNNLS
, — - GUROBI (IP) — Dantzig
| ——GUROBI (AS) - - QPOASES
QP-NNLS |- - QPOASES . ——GUROBI (AS)
-1 1 1 1 | 1 1 1 1 N
107, 20 40 60 80 100 0 5 10 15 20 25 30

number of variables

prediction horizon

* Step t=0 not considered for QPOASES not to penalize the
benefits of the method with warm starting

e Arather fast and relatively simple-to-code QP solver

e Extended to solving mixed-integer QP’s  (Bemporad, NMPC 2015)

19



EMBEDDED MPC WITHOUT SOLVING QP'S ON LINE

"y optimization algorithm .+

dynamical model
(based on data)

reference

—
r(t)

measurements

e Can we implement MPC without an embedded optimization solver

YES |
, ,

20



EXPLICIT MODEL PREDICTIVE CONTROL AND MULTIPARAMETRIC QP

(Bemporad, Morari, Dua, Pistikopoulos, 2002)

The multiparametric solution of a strictly convex QP is continuous
and piecewise affine

z*(x) = arg min, %z’Hz +@F’z
s.t. Gz<W @

L —

|
P e :;:-231‘31f.‘;i?f?ff?,-?';fff.i';' 100?
\ ) 1 F]. T + '(']1 |f I_[ll‘ S I\’l :’.::.—lP;:('[mP u)}/{l , e _olates
. S ; . {10+ 0_
2= : \ u(x) = ¢ : : 'I/Lét
- —1- | FJ.\/;L + gn if I]‘,\[ll, o 16 M £ | aeeemrcon Lestauml; [+ get next deliniter i3
|

2



NNLS FOR MULTIPARAMETRIC QP

e Avariety of mpQP solvers is available

e Most computations are spent in operations on polyhedra (=critical regions)

< W+ Sz E feasébiﬁ&v of primal solution
M(z) > 0

& feasib&i&j of dual solution

- checking emptiness of polyhedra
- removal of redundant inequalities
- checking full-dimensionality of polyhedra

e All such operations are usually done via linear programming (LP)

22



NNLS FOR MULTIPARAMETRIC QP

e Key result:

A polyhedron P = {u € R™:

is nonempty iff

(v*,u*) = argmingy |lv+ Au — b||3
v>0,u free

has zero residual ||[v* + Au* —b]|3 = 0

S.T.

o

dundank
reciea redw\do\mﬁ

~

Au < b}

e Numerical results on elimination of redundant inequalities:

NNLS

LP

™m
2
4
6)
8
10
12
14
16

0.0006
0.0019
0.0038
0.0071

0.0046
0.0103
0.0193
0.0340
0.0554
0.0955

random polyhedra of R™ with 10m inequalities

NNLS = compiled Embedded MATLAB
LP = compiled C code (GLPK)

CPU time = seconds (this Mac)

e Many other polyhedral operations can be also tackled by NNLS

23



NNLS FOR SOLVING MPQP PROBLEMS

e New mpQP algorithm based on NNLS + dual QP formulation to compute
active sets and deal with degeneracy

e Comparison with: T

— Hybrid Toolbox
— Multiparametric Toolbox 2.6 (with default opts)

¢ Included in MPC Toolbox 5.0 (2R2014b)
‘\ The MathWorks

NNDNNNRPRPRPRrRPR PR
OO O0OOONNNN N OO~ »A~pbp

O A W NO O PSP, WNOOPL,WNO O A
&)
=
[
N
[y
&)
=
=
Ol
00
&)
-
[
O
[
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HARDWARE (ASIC) IMPLEMENTATION OF EXPLICIT MPC

Technology: 90 nmmg metal-layer from Taiwan
Semiconductor Manufacturing
Company

Chip size: 1860x1860 um?

Memory sizes: 24 KB (tree memory); 30 KB

(parameter memory)

Power sué@fyf 2.5V (ring); 1.2V (core)

Maximum frequency: 107.5 MHz (with two 1

| = 9.3 ns Y <. 7
inputs) = 7 107.5 MHz “«M""g

Power consumption: 38.08 mW@107.5MHz,

SEVENTH FRAMEWORK
PROGRAMME

http://www.mobydic-project.eu/

20
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EXPLICIT MPC FOR IDLE SPEED - EXPERIMENTS

yrpmlipm]

N
peak reduced bv 50%

(Di Cairano, Yanakiev, Bemporad, Kolmanovsky, Hrovat, 2011)

e Sampling time =30 ms

e Explicit MPCimplemented in dSPACE
MicroAutoBox rapid prototyping unit

e Observer tuning as much important
as tuning of MPC weights !

convergence 10s faster

explicit MPC

baseline controller (linear)

set-point

20



COMPLEXITY OF MULTIPARAMETRIC SOLUTIONS

e The number of regions depends (exponentially) on the number of
possible combinations of active constraints

(weak dependence on the number of states and references)

o Explicit MPC gets less attractive when number ? I
of regions grows: too much memory required, Yy 4 %)
too much time to locate state z () , Y |

\d >
w;
e Fast on-line QP solvers may be preferable —

When is implicit preferable to explicit MPC?

27



COMPLEXITY CERTIFICATION FOR ACTIVE SET QP SOLVERS

e Consider a dual active-set QP solver

z*(x) = arg min; %z’Hz—I-:I:’F’z
s.t. Gz<W + Sz

e What is the worst-case number of iterations over x to solve the QP ?

e Key result: The number of iterations to solve the QP is a
piecewise constant function of the parameter x

We can exactly quantify how
many iterations (flops) the QP
solver takes in the worst-case !

28



COMPLEXITY CERTIFICATION FOR ACTIVE SET QP SOLVERS

e Examples (from MPC Toolbox):
inv. pend. DC motor nonlin. demo AFTI 16
# vars 5 3 6 5
# constraints 10 10 18 12
+# params 9 6 10 10
Explicit MPC
# regions 87 215
max flops 3382 9184
max memory (kb) 55 297
Implicit MPC
max iters 13
max flops 7747
sqrt 37
max memory (kb) 20

explicit MPC is faster
it the worst-case

online QP is faster
it the worsk-case

e |t is possible to combine explicit and on-line QP for best tradeoft

(Cimini, Bemporad, 2016) -



MPC FOR POWER MANAGEMENT IN HEVS

Control problem: decide optimal generation of mechanical power (from
engine) and electrical power (from battery) to satisfy driver’s power request

battery
What will the future power ‘ ,3
requ&s& fyom the driver be ? Ll

\14/ .
4 |emep g\ '/g._, electrical
& 71 &“ bus

“ ‘ ‘ “ éhgine generator l

- P

: ' WV = o o= Ty g §=

777 ) Z ‘* “'ﬂ‘f,‘.:,l -

» _ A —
5 ;;;’3 Py

° ° ‘ & ‘

I J Series hybrid "y Y e otor R

Preq(w(t)) = driver’s power request Preq(k) = Pei(k) + Pmec(k) — Por(k)

(Di Cairano, Bernardini, Bemporad, Kolmanovsky, IEEE CST, 2014) 30



SIMULATION RESULTS ON REAL DRIVING DATA

e Driver’s power request w(k) modeled as a
stochastic process (Markov chain)

e Real-world driving cycles (acquired on vehicle)

IAP| Fuel SoC Equiv. impr. wrt deterministic
cons. gain/loss  fuel cons. FTMPC MPC O\F?F‘T‘OO\CP\
Trace #1 - smooth accelerations /
FTMPC 37.84kW 243g  -0.05% Ceddg. | — skochastic
— SMPCL  1432kW 244g  090% (22355 ) &8t N
PMPC  14.08kW 223g  -0.08% : 8.19% MPC

Trace #2 - steep accelerations \\
FTMPC 80.61kW 327¢  0.11% 323g — best

— SMPCL  35.74kW  320g  1.16% 287¢g 11.34% i bl
PMPC  30.67kW 287g  0.17% 282g 12.73% achlevabie

31



"y optimization algorithm .+

7
£

EMBEDDED MPC WITHOUT A MODEL

reference

—
r(t)

measurements

e Can we implement MPC without even a model of the process?

YES !

32



DATA-DRIVEN DIRECT CONTROLLER SYNTHESIS

(Campi, Lecchini, Savaresi, 2002)
(Formentin et al., 2015)

o Collect a set of observations {u(k),y(k),p(k)}, k=1,...,N

e Specify a desired closed-loop linear model M from r to y
e Compute r(k)=M#y(k) from pseudo-inverse model M# of M

o |[dentify linear (LPV) model from e,=ry - y (virtual tracking error) to u

33



DATA-DRIVEN MPC SYNTHESIS OF CONTROLLERS

¢ Design a linear MPC controller (reference governor) to generate command r
(Bemporad, 1997)

LYy
ro | >
desired L
‘”@-‘f erence Linear yredia&om model

(totally known 1)
p v
o i
ro — MPC F—711 M | Y
| O Ko —5—) u
| M |

MPC can handle constraints on inputs and

outputs, and improve closed-loop performance (Piga, Formentin, Bemporad, 2016)
34



DATA-DRIVEN MPC SYNTHESIS OF CONTROLLERS - AN EXAMPLE

e DC motor equations

F@)]({g G ox ] & ‘,\)in;‘)(ﬂ))[z((?)] o v
I(7) 0 % wﬁ@- U | (7) I(7) %
(\V\Q )
y(r)=| U W(T)‘
{ I(7)

e Desired closed-loop behavior M (=first-order low-pass filter):

2y (k4 1) = 0.992,(k) + 0.01r(k)
O (k) = zpr (k)

e Chosen control structure for K, :

v Z el u

e I K,;:u(k):Za;(H(k))u(k—i)+ij(9(k))e/(k—j)

e MPC design w/ soft constraints on inputs, outputs and input increments
35



DATA-DRIVEN MPC SYNTHESIS OF CONTROLLERS - AN EXAMPLE

e Experimental results

0 [rad]

with MPC

without MPC |

N

2 1 | 1 1 1
5 10 15 20
' Time [s]
desired tracking

per{c—rmo\nta achieved

25

30

15 20 25 30

15 20 25 30
Time [s]

constraints on input
increments sakisfied

No model of open-loop process identified to design the MPC controller!

36



CONCLUSIONS

e MPC can easily handle multivariable control problems with constraints in an
optimized way, it’s easy to design and reconfigure, it handles uncertainty

e Long history of success in the process industries since the 80°s,
now spreading in the automotive industry (and many others)

e MATLAB design/calibration tools and production-ready C-code C
are available

ODNS

Is MPC a mature technology
for production in fast
embedded applications ?

YES.
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