RECENT ADVANCES IN EMBEDDED Model predictive control

Alberto Bemporad

http://cse.lab.imtlucca.it/~bemporad

www.odys.it

KTH, May 24, 2016

MODEL PREDICTIVE CONTROL (MPC)

Use a dynamical **model** of the process to **predict** its future evolution and choose the "best" **control** action

MODEL PREDICTIVE CONTROL (MPC)

• At time *t*: consider optimal control problem over a future horizon of *N* steps

- Apply the first optimal move $u(t) = u_0^{\prime}$, throw the rest of the sequence away
- At time *t*+1: Get new measurements, repeat the optimization. And so on ...

Used in process industries since the 80's

ONE OF THE FIRST PAPERS ON MPC

Discrete Dynamic Optimization Applied to On-Line Optimal Control

MARSHALL D. RAFAL and WILLIAM F. STEVENS Northwestern University, Evanston, Illinois

A general method has been developed for controlling deterministic systems described by linear or linearized dynamics. The discrete problem has been treated in detail. Step-by-step optimal controls for a quadratic performance index have been derived. The method accommodates upper and lower limits on the components of the control vector.

A small binary distillation unit was considered as a typical application of the method. The control vector was made up of feed rate, reflux ratio, and rebailer heat load. Control to a desired state and about a load upset was effected.

Calculations are performed quite rapidly and only grow significantly with an increase in the dimension of the control vector. Extension to much larger distillation units with the same controls thus seems practical.

The advent of high-speed computers has made possible the on-line digital control of many chemical engineering processes. In on-line control a three-step procedure is adhered to:

1. Sense the current state.

2. Calculate a suitable control action.

3. Apply this control for a period of time known as the sampling period,

The present study proposes a method for performing step 2. The technique developed is based on linearized dynamics. The strongly nonlinear binary distillation unit provides a suitable system for this study. While much has been published recently (2, 3, 8) on modeling distillation, little if anything has appeared on the optimal control of such units.

In recent years, a good deal has been published by Kalman, Lapidus, and others (4 to 7) on the control of linear or linearized nonlinear systems by minimizing a quadratic function of the states resulting from a sequence of control actions. Their controls are always unconstrained, although the introduction of a quadratic penalty function limits this effect somewhat. The general constrained problem has been treated numerically (1) for a single control variable. It was Wanninger (10, 11) who first chose to look at the problem on a one-step-at-a-time basis rather than

Marshall D. Rafal is with Esso Research and Engineering Company., Florham Park, New Jersey. considering a sequence of controls. However, he made no attempt to solve completely the resulting quadratic programming problem.

The approach taken in the present work is to set up the problem on a one-step basis. This is quite compatible with the on-line digital control scheme. The problem is then shown to be a special case of the quadratic programming problem and as such has a special solution. The particulars concerning the theory underlying the solution scheme and its implementation on a digital computer have been presented (9). In addition, a derivation of the theorems upon which the computational algorithm is based is presented in the Appendix.

The authors wish to be very careful to point out that optimal, as used herein, refers only to a single step of control. Even for truly linear systems, the step-by-step optimal control need not be overall optimal. A recent text by Athans and Falb (1a) presents both the virtues and defects of such a one-step method. In the present work, the one-step approach is taken because it is amenable to practical solution of the problem and is well suited to nonlinear situations where updating linearization is useful.

THE PROBLEM

The system under consideration is described by a set of matrix differential equations:

 $\dot{X}(t) = AX(t) + BM(t) + \delta(t)$

Vol. 14, No. 1

AJChE Journal

Page 85

(1)

(Rafal, Stevens, AiChE Journal, 1968)

AUTOMOTIVE APPLICATIONS OF MPC

Bemporad, Bernardini, Borrelli, Cimini, Di Cairano, Esen, Giorgetti, Graf-Plessen, Hrovat, Kolmanovsky, Levijoki, Ripaccioli, Trimboli, Tseng, Yanakiev, ... (2001-2016)

Powertrain

- direct-inj. engine control
- A/F ratio control
- magnetic actuators
- robotized gearbox
- power MGT in HEVs
- cabin heat control in HEVs
- electrical motors

Vehicle dynamics

- traction control
- active steering
- semiactive suspensions
- autonomous driving

MPC TOOLBOXES

• MPC Toolbox (The Mathworks, Inc.)

(Bemporad, Ricker, Morari, 1998-present)

- Part of Mathworks' official toolbox distribution
- Great for education and research

• Hybrid Toolbox

(Bemporad,	2003-present)
------------	---------------

- Free download: <u>http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox/</u>
- Great for research and education

ODYS Toolbox

(Bemporad, Bernardini, 2013-present)

- Provides flexible and customized MPC control design and seamless integration in production systems
- Real-time code written in plain C
- Designed for production

> 6k downloads

AEROSPACE APPLICATIONS OF MPC

MPC capabilities explored in new space applications

New MATLAB MPC Toolboxes developed (MPCTOOL and MPCSofT)

(Bemporad, 2010) (Bemporad, 2012)

powered descent

(Pascucci, Bennani, Bemporad, 2016)

cooperating UAVs

planetary rover (Krenn et. al., 2012)

EMBEDDED LINEAR MPC AND QUADRATIC PROGRAMMING

• Linear MPC requires solving a Quadratic Program (QP)

$$\min_{z} \quad \frac{1}{2}z'Hz + x'(t)F'z + \frac{1}{2}x'(t)Yx(t) \\ \text{s.t.} \quad Gz \leq W + Sx(t) \\ z = \begin{bmatrix} u \\ u \\ u \\ u_N \end{bmatrix}$$

ON MINIMIZING A CONVEX FUNCTION SUBJECT TO LINEAR INEQUALITIES

By E. M. L. BEALE

Admiralty Research Laboratory, Teddington, Middlesex

SUMMARY

THE minimization of a convex function of variables subject to linear inequalities is discussed briefly in general terms. Dantzig's Simplex Method is extended to yield finite algorithms for minimizing either a convex quadratic function or the sum of the *t* largest of a set of linear functions, and the solution of a generalization of the latter problem is indicated. In the last two sections a form of linear programming with random variables as coefficients is described, and shown to involve the minimization of a convex function.

(Beale, 1955)

A rich set of good QP algorithms is available today, still more research is required to have an impact in real applications !

MPC IN A PRODUCTION ENVIRONMENT

embedded model-based optimizer

Requirements for production:

- 1. Speed (throughput): solve optimization problem within sampling interval
- 2. Robustness (e.g., with respect to numerical errors)
- 3. Be able to run on limited hardware (e.g., 150 MHz) with little memory
- 4. Worst-case execution time must be (tightly) estimated
- Code simple enough to be validated/verified/certified (in general, it must be understandable by production engineers)

EMBEDDED SOLVERS IN INDUSTRIAL PRODUCTION

- Multivariable MPC controller
- Sampling frequency = 40 Hz (= 1 QP solved every 25 ms)
- Vehicle operating ~1 hr/day for ~360 days/year on average
- Controller may be run on 10 million vehicles
 - ~ 520,000,000,000,000 QP/yr

and none of them can fail !

FAST GRADIENT PROJECTION FOR (DUAL) QP

• Apply **fast gradient method** to dual QP:

(Nesterov, 1983) (Patrinos, Bemporad, IEEE TAC, 2014)

$$\min_{z} \frac{1}{2}z'Hz + x'F'z \\ \text{s.t.} \quad Gz \le W + Sx \\ \beta_{k} = \begin{cases} 0 & k = 0 \\ \frac{k-1}{k+2} & k > 0 \end{cases}$$

$$w_{k} = y_{k} + \beta_{k}(y_{k} - y_{k-1}) \\ z_{k} = -Kw_{k} - Jx \\ s_{k} = -Kw_{k} - Jx \\ s_{k} = \frac{1}{L}Gz_{k} - \frac{1}{L}(Sx + W) \\ y_{k+1} = \max\{y_{k} + s_{k}, 0\} \end{cases}$$

$$y_{-1} = y_{0} = 0 \\ K = H^{-1}G' \\ J = H^{-1}F'$$

- Termination criterion #1: primal feasibility
- Termination criterion #2: primal optimality

$$f(z_k) - f^* \leq f(z_k) - \phi(w_k) = -w'_k s_k L \leq \epsilon_V$$

dual function

feasibility tol
$$s_k^i \leq rac{1}{L} \epsilon_G^i, \; \forall i=1,\ldots,m$$

$$\begin{array}{l} \textbf{optimality tol} \\ -w_k's_k \leq \frac{1}{L}\epsilon_V \end{array}$$

FAST GRADIENT PROJECTION FOR (DUAL) QP

 Main on-line operations involve only simple linear algebra

• Convergence rate:

$$f(z_{k+1}) - f^* \le \frac{2L}{(k+2)^2} ||z_0 - z^*||^2$$

Tight bounds on maximum number of iterations

Can be used to warm-start other methods

Currently extended to mixed-integer problems

(Patrinos, Bemporad, IEEE TAC, 2014)

(Naik, Bemporad, work in progress)

EXPERIMENTS WITH EMBEDDED QP

TMS320F28335 controlCARD (Real-time Control Applications)

- 32-bit Floating Point (IEEE-754);
- 150MHz clock;
- 68KB Ram / 512KB Flash.

* GPAD = Dual Accelerated Gradient Projection
* FBN = Forward-Backwards Netwon (proximal method)
* ADMM = Alternating Directions Method of Multipliers
(Patrinos, Bemporad, 2014)
(Boyd et al., 2010)

FINITE-PRECISION ARITHMETICS

How about numerical robustness ?

• Fixed-point arithmetics is very attractive for embedded control:

- Pros:
 - Computations are fast and cheap
 - Hardware support in all platforms
- Cons:
 - Accumulation of quantization errors
 - Limited range (numerical overflow)

HARDWARE TESTS (FLOATING VS FIXED POINT)

• Gradient projection works in fixed-point arithmetics

(Patrinos, Guiggiani, Bemporad, 2013)

$$\max_{i} g_i(z_k) \leq \frac{2LD^2}{k+1} + L_v \epsilon_z^2 + 4D\epsilon_{\xi}$$
max constraint violation

exponentially decreasing with number p of fractional bits

Size [variables/constraints]	Time [ms]	Time per iteration $[\mu s]$	Code Size [KB]
10/20	22.9	226	15
20/40	52.9 fi	xed 867	17
40/80	544.9 pc	oint 3382	27
60/120	1519.8	7561	43

Table 2

60/120

Table 1

l'loati	ng-point hard	ware implementation		
Size [variables/constraints]	Time $[ms]$	Time per iteration $[\mu s]$	Code Size $[KB]$	32-
10/20	88.6	974	16	AR
20/40	220.1	oating 3608	21	uni
40/80	2240	pint 13099	40	84
60/120	5816	30450	73	an

bit Atmel SAM3X8E M Cortex-M3 processing it MHz, 512 KB of flash memory

and 100 KB of RAM

fixed-point about 4x faster than floating-point

CAN WE SOLVE QP'S USING LEAST SQUARES ?

The Least Squares (LS) problem is probably the most studied problem in numerical linear algebra

$$v = \arg\min \|Av - b\|_2^2$$

(Legendre, 1805)

(Gauss, <= 1809)

In MATLAB: >>
$$v=A \setminus b$$
 % (1 character !)

• Nonnegative Least Squares (NNLS):

$$\begin{array}{ll} \min_{v} \|Av - b\|_{2}^{2} \\ \text{s.t.} \ v \ge 0 \end{array}$$

ACTIVE-SET METHOD FOR NONNEGATIVE LEAST SQUARES

(Lawson, Hanson, 1974)

 $\begin{array}{ll} \min_v & \|Av - b\|_2^2\\ \text{s.t.} & v \ge 0 \end{array}$

NNLS algorithm: While maintaining primal var v feasible, keep switching active set until dual var w is also feasible

1)
$$\mathcal{P} \leftarrow \emptyset, v \leftarrow 0;$$

2) $w \leftarrow A'(Av - b);$
3) if $w \ge 0$ or $\mathcal{P} = \{1, \ldots, m\}$ then go to Step 11;
4) $i \leftarrow \arg\min_{i \in \{1, \ldots, m\} \setminus \mathcal{P}} w_i, \mathcal{P} \leftarrow \mathcal{P} \cup \{i\};$
5) $y_{\mathcal{P}} \leftarrow \arg\min_{z_{\mathcal{P}}} \|((A')_{\mathcal{P}})'z_{\mathcal{P}} - b\|_2^2, \forall_{\{1, \ldots, m\} \setminus \mathcal{P}} \leftarrow 0;$
6) if $y_{\mathcal{P}} \ge 0$ then $v \leftarrow y$ and go to Step 2;
7) $j \leftarrow \arg\min_{k \in \mathcal{P}: y_h \le 0} \left\{ \frac{v_h}{v_h - y_h} \right\};$
8) $v \leftarrow v + \frac{v_i}{v_j - y_j} (y - v);$
9) $\mathcal{I} \leftarrow \{h \in \mathcal{P}: v_h = 0\}, \mathcal{P} \leftarrow \mathcal{P} \setminus \mathcal{I};$
10) go to Step 5;
11) $v^* \leftarrow v$; end.

• NNLS algorithm is very simple (750 chars in Embedded MATLAB), the key operation is to solve a standard LS problem at each iteration (via QR, LDL, or Cholesky factorization)

SOLVING QP'S VIA NONNEGATIVE LEAST SQUARES

Use NNLS to solve strictly convex QP

(Bemporad, IEEE TAC, 2016)

SOLVING QP VIA NNLS: NUMERICAL RESULTS

(Bemporad, IEEE TAC, 2016)

* Step t=0 not considered for QPOASES not to penalize the benefits of the method with warm starting

- A rather fast and relatively simple-to-code QP solver
- Extended to solving mixed-integer QP's (Bemporad, NMPC 2015)

EMBEDDED MPC WITHOUT SOLVING QP'S ON LINE

• Can we implement MPC without an embedded optimization solver ?

EXPLICIT MODEL PREDICTIVE CONTROL AND MULTIPARAMETRIC QP

(Bemporad, Morari, Dua, Pistikopoulos, 2002)

The multiparametric solution of a strictly convex QP is **continuous** and **piecewise affine**

$$z^*(x) = \arg\min_z \frac{1}{2}z'Hz + xF'z$$

s.t. $Gz \le W + Sx$

while ((num<EXPCON_REG) && check) {

isinside=1:

Corollary: The linear MPC control law is continuous & piecewise affine !

$$z^{*} = \begin{bmatrix} u_{0}^{*} \\ u_{1}^{*} \\ \vdots \\ u_{N-1}^{*} \end{bmatrix} \qquad u(x) = \begin{cases} F_{1}x + g_{1} & \text{if } H_{1}x \leq K_{1} \\ \vdots & \vdots \\ F_{M}x + g_{M} & \text{if } H_{M}x \leq K_{M} \end{cases}$$

NNLS FOR MULTIPARAMETRIC QP

• A variety of mpQP solvers is available

(Bemporad *et al.*, 2002) (Baotic, 2002) (Tøndel, Johansen, Bemporad, 2003) (Spjøtvold *et al.*, 2006)(Patrinos, Sarimveis, 2010)

Most computations are spent in operations on polyhedra (=critical regions)

$$\widehat{G}z^*(x) \leq \widehat{W} + \widehat{S}x$$
 feasibility of primal solution $\widetilde{\lambda}^*(x) \geq 0$ feasibility of dual solution

- checking emptiness of polyhedra
- removal of **redundant inequalities**
- checking full-dimensionality of polyhedra

• All such operations are usually done via linear programming (LP)

NNLS FOR MULTIPARAMETRIC QP

• Key result:

A polyhedron
$$P = \{u \in \mathbb{R}^n : Au \leq b\}$$

is nonempty iff
 $(v^*, u^*) = \arg \min_{v,u} \|v + Au - b\|_2^2$
s.t. $v \geq 0, u$ free
has zero residual $\|v^* + Au^* - b\|_2^2 = 0$

(Bemporad, IEEE TAC 2015)

• Numerical results on elimination of redundant inequalities:

m	NNLS	LP			
2	0.0006	0.0046			
4	0.0019	0.0103			
6	0.0038	0.0193			
8	0.0071	0.0340			
10	0.0111	0.0554			
12	0.0178	0.0955			
14	0.0263	0.1426			
16	0.0357	0.1959			

random polyhedra of \mathbb{R}^m with 10m inequalities

NNLS = compiled Embedded MATLAB

LP = compiled C code (GLPK)

CPU time = seconds (this Mac)

• Many other polyhedral operations can be also tackled by NNLS

- New mpQP algorithm based on NNLS + dual QP formulation to compute active sets and deal with degeneracy
- Comparison with:
 - Hybrid Toolbox (Bemporad, 2003)
 - Multiparametric Toolbox 2.6 (with default opts)

(Kvasnica, Grieder, Baotic, 2006)

Included in MPC Toolbox 5.0 (≥R2014b)

The MathWorks (Bemporad, Morari, Ricker, 1998-2015)

-	q	m	Hybrid Tbx	MPT	NNLS
	4	2	0.0174	0.0256	0.0026
	4	3	0.0203	0.0356	0.0038
	4	4	0.0432	0.0559	0.0061
	4	5	0.0650	0.0850	0.0097
	4	6	0.0827	0.1105	0.0126
-	8	2	0.0347	0.0396	0.0050
	8	3	0.0583	0.0680	0.0092
	8	4	0.0916	0.0999	0.0140
	8	5	0.1869	0.2147	0.0322
	8	6	0.3177	0.3611	0.0586
-	12	2	0.0398	0.0387	0.0054
	12	3	0.1121	0.1158	0.0191
	12	4	0.2067	0.2001	0.0352
	12	5	0.6180	0.6428	0.1151
	12	6	1.2453	1.3601	0.2426
-	20	2	0.1029	0.0763	0.0152
	20	3	0.3698	0.2905	0.0588
	20	4	0.9069	0.7100	0.1617
	20	5	2 2978	1 9761	0.4395
	20	6	6.1220	6.2518	1.2853

HARDWARE (ASIC) IMPLEMENTATION OF EXPLICIT MPC

Technology: 90 nm, 9 metal-layer from Taiwan Semiconductor Manufacturing Company

Chip size: 1860x1860 µm²

Memory sizes: 24 KB (tree memory) ; 30 KB (parameter memory)

Power supply: 2.5V (ring); 1.2V (core)

Maximum frequency: 107.5 MHz (with two

inputs)

Power consumption: 38.08 mW@107.5MHz;

http://www.mobydic-project.eu/

EXPLICIT MPC FOR IDLE SPEED - EXPERIMENTS

(Di Cairano, Yanakiev, Bemporad, Kolmanovsky, Hrovat, 2011)

- Sampling time = 30 ms
- Explicit MPC implemented in dSPACE MicroAutoBox rapid prototyping unit
- **Observer tuning** as much important as tuning of MPC weights !

COMPLEXITY OF MULTIPARAMETRIC SOLUTIONS

• The number of regions depends (exponentially) on the number of possible **combinations of active constraints**

(weak dependence on the number of states and references)

• Explicit MPC gets less attractive when number of regions grows: too much **memory** required, too much **time** to locate state x(t)

• Fast on-line QP solvers may be preferable

When is implicit preferable to explicit MPC?

COMPLEXITY CERTIFICATION FOR ACTIVE SET QP SOLVERS

Consider a dual active-set QP solver

(Cimini, Bemporad, 2016)

(Goldfarb, Idnani, 1983)

$$z^*(x) = \arg \min_z \frac{1}{2}z'Hz + x'F'z$$

s.t. $Gz \le W + Sx$

• What is the worst-case number of iterations over x to solve the QP ?

• Key result:

The number of iterations to solve the QP is a piecewise constant function of the parameter \boldsymbol{x}

We can **exactly** quantify how many iterations (flops) the QP solver takes in the worst-case !

COMPLEXITY CERTIFICATION FOR ACTIVE SET QP SOLVERS

• Examples (from MPC Toolbox):

It is possible to combine explicit and on-line QP for best tradeoff

⁽Cimini, Bemporad, 2016)

MPC FOR POWER MANAGEMENT IN HEVS

Control problem: decide optimal generation of **mechanical power** (from engine) and **electrical power** (from battery) to satisfy **driver's power request**

What will the future power request from the driver be ?

 $P_{req}(w(t))$ = driver's power request

SIMULATION RESULTS ON REAL DRIVING DATA

- Driver's power request $w(k) \mod a$ s a **stochastic** process (Markov chain)

• Real-world driving cycles (acquired on vehicle)

	$\ \Delta P\ $	Fuel cons.	SoC gain/loss	Equiv. fuel cons.	impr. wrt FTMPC	deterministic MPC approach
	Trace	#1 - sr	nooth accel	erations		
$\begin{array}{c} \text{FTMPO}\\ \rightarrow \text{SMPCI}\\ \text{PMPC} \end{array}$	C 37.84kW L 14.32kW 14.08kW	243g 244g 223g	-0.05% 0.90% -0.08%	244g 225g 224g		stochastic MPC
	Trac	e #2 - s	steep accele	rations		
$\begin{array}{c} \text{FTMPO}\\ \rightarrow \text{SMPCI}\\ \text{PMPC} \end{array}$	C 80.61kW L 35.74kW 30.67kW	327g 320g 287g	0.11% 1.16% 0.17%	323g 287g 282g		best achievable

EMBEDDED MPC WITHOUT A MODEL

• Can we implement MPC without even a model of the process ?

DATA-DRIVEN DIRECT CONTROLLER SYNTHESIS

(Campi, Lecchini, Savaresi, 2002) (Formentin et al., 2015)

- Collect a set of observations $\{u(k), y(k), p(k)\}$, k=1,...,N
- Specify a desired closed-loop linear model $\mathcal M$ from r to y
- Compute $r_v(k) = \mathcal{M}^{\#}y(k)$ from pseudo-inverse model $\mathcal{M}^{\#}$ of \mathcal{M}
- Identify linear (LPV) model from $e_v = r_v y$ (virtual tracking error) to u

DATA-DRIVEN MPC SYNTHESIS OF CONTROLLERS

ullet Design a linear MPC controller (reference governor) to generate command r

MPC can handle constraints on inputs and outputs, and improve closed-loop performance

(Piga, Formentin, Bemporad, 2016)

DATA-DRIVEN MPC SYNTHESIS OF CONTROLLERS - AN EXAMPLE

• DC motor equations

$$\begin{bmatrix} \dot{\theta}(\tau) \\ \dot{\omega}(\tau) \\ \dot{I}(\tau) \end{bmatrix} = \left(\begin{bmatrix} 0 & 1 & 0 \\ 0 & -\frac{b}{J} & \frac{K}{J} \\ 0 & -\frac{K}{L} & -\frac{R}{L} \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ \frac{mgl}{J} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \underbrace{\frac{\sin(\theta(\tau))}{\theta(\tau)}}_{\theta(\tau)} \begin{bmatrix} \theta(\tau) \\ \frac{1}{L} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{1}{L} \end{bmatrix} V(\tau)$$
$$y(\tau) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \theta(\tau) \\ \omega(\tau) \\ I(\tau) \end{bmatrix}$$

• Desired closed-loop behavior \mathcal{M} (=first-order low-pass filter):

$$x_M(k+1) = 0.99x_M(k) + 0.01r(k)$$
$$\theta_M(k) = x_M(k)$$

• Chosen control structure for K_p :

$$\xrightarrow{e_{v}} \underbrace{\frac{z}{z-1}}_{k_{p}} \xrightarrow{e_{l}} K_{p}' \xrightarrow{u} K_{p}' : u(k) = \sum_{i=1}^{4} a_{i}(\theta(k))u(k-i) + \sum_{j=0}^{3} b_{j}(\theta(k))e_{l}(k-j)$$

• MPC design w/ soft constraints on inputs, outputs and input increments

DATA-DRIVEN MPC SYNTHESIS OF CONTROLLERS - AN EXAMPLE

• Experimental results

No model of open-loop process identified to design the MPC controller !

http://cse.lab.imtlucca.it/~bemporad/publications

CONCLUSIONS

- MPC can easily handle multivariable control problems with constraints in an optimized way, it's easy to design and reconfigure, it handles uncertainty
- Long history of success in the process industries since the 80's, now spreading in the automotive industry (and many others)

 MATLAB design/calibration tools and production-ready C-code are available

> Is MPC a mature technology for production in fast embedded applications ?

