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Model Predictive Control (MPC)

dynamical	model
(based	on	data)

2

embedded	model-based	optimizer
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Use	a	dynamical	model	of	the	process	to	predict	its	future	
evolution	and	choose	the	“best”	control	action
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Model Predictive Control (MPC)
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•	Apply	the	first	optimal	move	u(t)= u0*,	throw	the	rest	of	the	sequence	away

predicted	outputs

manipulated	inputs

t t+k t+N

uk

r(t)

t+1  t+1+k t+N+1

•	At	time	t+1:	Get	new	measurements,	repeat	the	optimization.	And	so	on	…	

yk

•	At	time	 t:	consider	optimal	control	problem	over	a	future	horizon	of	N	steps
past

feedback !

optimization	problem

• Solve	problem	w.r.t.	{u0,...,u N-1}

penalty on
tracking error

penalty on
actuation

Used	in	process	industries	since	the	80's



One of the First papers on MPC
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(Rafal,	Stevens,	AiChE	Journal,	1968)

1968:	The	Beatles	published	the	White	Album



tire	
deflection

suspension
deflection

Automotive applications of MPC
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Advanced Controls & Optimization

Bemporad,	Bernardini,	Borrelli,	Cimini,	Di	Cairano,	Esen,	Giorgetti,	Graf-Plessen,	Hrovat,	Kolmanovsky,	Levijoki,	
Ripaccioli,	Trimboli,	Tseng,	Yanakiev,	...	(2001-2016)

Ford Motor Company

DENSO Automotive

General Motors

Jaguar

FIAT

Vehicle	dynamics
•traction	control
•active	steering	
•semiactive	suspensions
•autonomous	driving

Powertrain
•direct-inj.	engine	control
•A/F	ratio	control
•magnetic	actuators
•robotized	gearbox	
•power	MGT	in	HEVs
•cabin	heat	control	in	HEVs
•electrical	motors



MPC TOOLBOXES
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• MPC Toolbox (The Mathworks, Inc.)
(Bemporad, Ricker, Morari, 1998-present)

‣ Part of Mathworks’ official toolbox distribution
‣ Great for education and research

• ODYS Toolbox
(Bemporad, Bernardini, 2013-present)

‣ Provides flexible and customized MPC control design 
and seamless integration in production systems

‣ Real-time code written in plain C
‣ Designed for production

Kalman
filter

MPC

• Hybrid Toolbox 
(Bemporad, 2003-present)

‣ Free download:
‣ Great for research and education

http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox/

>	6k	downloads

http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox/
http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox/


powered	descent

Aerospace applications of MPC

(Bemporad,	Rocchi,	2011)

• MPC	capabilities	explored	in	new	space	applications	

• New	MATLAB	MPC	Toolboxes	developed	(MPCTOOL	and	MPCSofT)
(Bemporad,	2010)	(Bemporad,	2012)

planetary	rover

cooperating	UAVs

(Pascucci,	Bennani,	Bemporad,	2016)

(Krenn	et.	al.,	2012)



Embedded Linear MPC and Quadratic programming
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min
z

1

2
z0Hz + x0(t)F 0z +

1

2
x0(t)Y x(t)

s.t. Gz  W + Sx(t)

• Linear	MPC	requires	solving	a	Quadratic	Program	(QP)

z =

2

6664

u0
u1
...

uN�1

3

7775

(Beale,	1955)

A	rich	set	of	good	QP	algorithms	is	available	today,	still	more	research	is	
required	to	have	an	impact	in	real	applications	!	



MPC in a production environment
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embedded	model-based	optimizer
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1. Speed	(throughput):	solve	optimization	problem	within	sampling	interval

2. Robustness	(e.g.,	with	respect	to	numerical	errors)

3. Be	able	to	run	on	limited	hardware	(e.g.,	150	MHz)	with	little	memory	

4.Worst-case	execution	time	must	be	(tightly)	estimated	

5. Code	simple	enough	to	be	validated/verified/certified
(in	general,	it	must	be	understandable	by	production	engineers)

Requirements	for	production:



Embedded Solvers in industrial Production
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•Multivariable	MPC	controller	

• Sampling	frequency	=	40	Hz	(=	1	QP	solved	every	25	ms)

• Vehicle	operating	~1	hr/day	for	~360	days/year	on	average

• Controller	may	be	run	on	10	million	vehicles	

 ≈ 520,000,000,000,000 QP/yr

and none of them can fail !

Advanced Controls & Optimization



sik 
1
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�w0
ksk 
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L
�V
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z
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z0Hz + x0F 0z

s.t. Gz  W + Sx

Fast gradient projection for (dual) QP

y-1 =y0=0

K = H�1G0

J = H�1F 0

wk = yk + �k(yk � yk�1

)

zk = �Kwk � Jx

sk =

1

LGzk � 1

L(Sx+W )

yk+1

= max {yk + sk,0}

•Apply	fast	gradient	method	to	dual	QP:

• Termination	criterion	#1:	primal	feasibility

• Termination	criterion	#2:	primal	optimality

f(zk)� f⇤  f(zk)� ⇥(wk) = �w0
kskL  �V

dual function

(Nesterov,	1983)

feasibility tol

optimality tol

(Patrinos,	Bemporad,	IEEE	TAC,	2014)

�k =

(
0 k = 0
k�1
k+2 k > 0
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Fast gradient projection for (dual) QP
(Patrinos,	Bemporad,	IEEE	TAC,	2014)•Main	on-line	operations	involve	only	

simple	linear	algebra

• Convergence	rate:

theoretical

experimental

• Currently	extended	to	mixed-integer	problems

f(zk+1)� f⇤ 
2L

(k +2)2
kz0 � z⇤k2

• Tight	bounds	on	maximum	number	of	iterations

12(Naik,	Bemporad,	work	in	progress)

• Can	be	used	to	warm-start	other	methods



var ⇥ constr. GPAD AS ADMM FBN

4⇥ 16 332 µs (18) 120 µs (3) 1.42 ms (62) 208 µs (2)

8⇥ 24 1.1 ms (22) 446 µs (5) 4 ms (77) 396 µs (2)

12⇥ 32 2.59 ms (27) 1.19 ms (7) 8.25 ms (82) 652 µs (2)

Experiments with embedded QP
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• Active	set	(AS)	methods	are	usually	the	best	on	small	problems:
- excellent	quality	solutions	within	few	iterations
- less	sensitive	to	preconditioning	(=	behavior	is	more	predictable)
- no	need	for	advanced	linear	algebra	packages

(Patrinos,	Guiggiani,	Bemporad,	2014)*	FBN	=	Forward-Backwards	Netwon	(proximal	method)

*

*	GPAD	=	Dual	Accelerated	Gradient	Projection (Patrinos,	Bemporad,	2014)

*	ADMM	=	Alternating	Directions	Method	of	Multipliers (Boyd	et	al.,	2010)

Numerical Results - DSP Implementation

TMS320F28335 controlCARD
(Real-time Control Applications)

32-bit Floating Point (IEEE-754);

150MHz clock;

68KB Ram / 512KB Flash.

Benchmarking Problem: Brushless DC Motor Control

May 10, 2014 4 / 6



Finite-precision arithmetics

• Fixed-point	arithmetics	is	very	attractive	for	embedded	control:

• Pros:
– Computations	are	fast	and	cheap
– Hardware	support	in	all	platforms

• Cons:	
– Accumulation	of	quantization	errors	
– Limited	range	(numerical	overflow)

How	about	numerical	robustness	?

14



Hardware tests (floating vs fixed point)

32-bit	Atmel	SAM3X8E	
ARM Cortex-M3	processing	
unit
84	MHz,	512	KB	of	flash	memory	
and	100	KB	of	RAM

(Patrinos,	Guiggiani,	Bemporad,	2013)

fixed
point

floating
point

fixed-point about 4x faster than floating-point

15

•Gradient	projection	works	in	fixed-point	arithmetics	

max

i
gi(zk)  2LD2

k+1

+ Lv✏
2

z +4D✏⇠ exponentially decreasing with 
number p of fractional bits

max constraint violation



In	MATLAB:		>> v=A\b % (1 character ! )

• Nonnegative	Least	Squares	(NNLS):

v = argmin kAv � bk22

Can we solve QP’s using least squares ?
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minv kAv � bk22
s.t. v � 0

The	Least	Squares	(LS)	problem	is	probably	the	
most	studied	problem	in	numerical	linear	algebra

(Legendre,	1805) (Gauss,	<=	1809)



Active-set method for Nonnegative Least Squares

•NNLS	algorithm	is	very	simple	(750 chars in Embedded MATLAB),	
the	key	operation	is	to	solve	a	standard	LS	problem	at	each	
iteration	(via	QR,	LDL,	or	Cholesky	factorization)

17

(Lawson,	Hanson,	1974)
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i) The set X
f

of parameters x for which the problem is
feasible is a polyhedron;

ii) The optimizer function z⇤ : X
f

! Rn is piecewise affine
and continuous over X

f

;
iii) If in addition matrix

h

Q F

0

F Y

i

is symmetric and positive
semidefinite, the value function V ⇤

: X
f

! R associating
with every x 2 X

f

the corresponding optimal value of (3)
is continuous, convex, and piecewise quadratic.

When X ⇢ Rn, the results of Theorem 1 hold by replacing
X

f

with X
f

\X .
An immediate corollary of Theorem 1 is that the explicit

version of the MPC control law u in (4), being the first n
u

components of the optimal vector z(x), is also a continuous
and piecewise-affine state-feedback law defined over a parti-
tion of the set X

f

\X of states into M polyhedral cells

u⇤
(x) =

8

>

<

>

:

K1x+ h1 if E1x  e1

...
...

KMx+ hM if EMx  eM .

(8)

An example of such a partition is reported in Figure 1 of
Section VI-B. The explicit representation (8) has mapped the
MPC law (4) into a lookup table of affine gains, meaning that
for each given x the values computed by solving the QP (3)
on-line and those obtained by evaluating (8) are exactly the
same.

B. Generalization of the MPC formulation
The explicit approach described above can be extended to

the following MPC setting:
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are, respectively, the
prediction, control, and constraint horizons. The extra variable
✏ is introduced to soften output constraints via the relaxation

vectors V
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> 0 of Rn

y and penalized by the (usually
large) weight ⇢

✏

in the cost function (9a).
Everything marked in bold-face in (9) can be treated as a

parameter with respect to which solve the mpQP problem and
obtain the explicit form of the MPC controller. For example,
for a tracking problem with no anticipative action (rk ⌘ r

0

,
8k = 0, . . . , N�1), no measured disturbance, fixed upper and
lower bounds, the explicit solution is a continuous piecewise
affine function of the parameter vector [x0

0
r0

0
u�1

0
]

0.

III. POLYHEDRAL COMPUTATIONS BASED ON NNLS

Finding a solution to the mpQP problem (3) requires solv-
ing several problems of computational geometry, as will be
detailed in Section IV. The goal of this section is to provide
an alternative to existing methods that rely on the availability
of a linear programming (LP) solver, building upon a standard
and easy-to-code solver for the Non-Negative Least-Squares
(NNLS) problem

r⇤ = min

v

kAv � bk2
2

s.t. v � 0,
(10)

where v 2 Rn, A 2 Rm⇥n, b 2 Rm, and r⇤ 2 R is the mini-
mum squared Euclidean norm of the residual w⇤

= Av⇤�b. A
well-known and simple, yet very effective, active-set method
for solving the NNLS problem (10) is described in [19, p.161]
and is summarized in Algorithm 1. At convergence after a
finite number of steps, the algorithm provides the optimal
solution vector v⇤, with v⇤

i

> 0, 8i 2 P , and v⇤
i

= 0,
8i 2 {1, . . . ,m} \ P .

Algorithm 1 NNLS solver [19, p.161]
Input: Matrices A, b.

1) P  ;, v  0;
2) w  A0

(Av � b);
3) if w � 0 or P = {1, . . . ,m} then go to Step 11;
4) i argmin

i2{1,...,m}\P w
i

, P  P [ {i};
5) yP  argmin

zP k((A0
)P)

0zP � bk2
2

, y{1,...,m}\P  0;
6) if yP � 0 then v  y and go to Step 2;
7) j  argmin

h2P: y

h

0

n

v

h

v

h

�y

h

o

;
8) v  v +

v

j

v

j

�y

j

(y � v);
9) I  {h 2 P : v

h

= 0}, P  P \ I;
10) go to Step 5;
11) v⇤  v; end.

Output: A vector v⇤ solving (10)

Algorithm 1 can be easily modified to warm-start from a
set P 6= ; of active constraints, see, e.g., [21, Algorithm 2].
Moreover, since solving Step 5 is the most time consum-
ing operation of Algorithm 1, iterative methods have been
proposed for QR factorization [19, Chap. 24] and LDLT

factorization [20] to exploit the incremental changes of the
active set P in Steps 4 and 9.

In the sequel, we will also refer to the unconstrained
problem

r⇤ = min

v

kAv � bk2
2

(11)

minv kAv � bk22
s.t. v � 0

NNLS	algorithm:	While	maintaining	
primal	var	v	feasible,	keep	switching	
active	set	until	dual	var	w	is	also	
feasible
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Solving QP’s via nonnegative least squares

•Use	NNLS	to	solve	strictly	convex	QP
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(Bemporad,	IEEE	TAC,	2016)

complete the squares

Least	
Distance	
Problem

Nonnegative	Least	Squares

QP

retrieve primal solution

residual	
= 0	?

yes

no

QP problem infeasible
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Solving QP via NNLS: Numerical results
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QP-NNLS

• A	rather	fast	and	relatively	simple-to-code	QP	solver

(Bemporad,	IEEE	TAC,	2016)

worst-case	over	100	random	QP	instances worst-case	occurred	during	entire	simulation*

*	Step	t=0	not	considered	for	QPOASES	not	to	penalize	the	
benefits	of	the	method	with	warm	starting

(Bemporad,	NMPC	2015)• Extended	to	solving	mixed-integer	QP’s



Embedded MPC without SOLVING QP’s ON LINE

dynamical	model
(based	on	data)
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embedded	model-based	optimizer

min
z

1

2
z0Qz + c0z

s.t. Az  b

reference outputinput

measurements

r(t) u(t) y(t)

optimization	algorithm

process

m
in

1
2
x

0 Q
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+
c

0 x

s.t
.
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x
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•Can	we	implement	MPC	without	an	embedded	optimization	solver	?

YES !



Explicit model predictive control and multiparametric QP

The	multiparametric	solution	of	a	strictly	convex	QP	is	continuous	
and	piecewise	affine	

Corollary:	The	linear	MPC	control	law	is	continuous	&	piecewise	affine	!

(Bemporad,	Morari,	Dua,	Pistikopoulos,	2002)

z⇤ =

2

6664

u⇤0
u⇤1...

u⇤N�1

3

7775

z⇤(x) = argminz 1
2z

0Hz + x0F 0z
s.t. Gz  W + Sx

It’s
 jus

t a 
while 

loop
!

21



• A	variety	of	mpQP	solvers	is	available

• Most	computations	are	spent	in	operations	on	polyhedra	(=critical	regions)

- checking	emptiness	of	polyhedra
- removal	of	redundant	inequalities
- checking	full-dimensionality	of	polyhedra

• All	such	operations	are	usually	done	via	linear	programming	(LP)

NNLS for multiparametric QP
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x0•	

(Bemporad	et	al.,	2002)
(Tøndel,	Johansen,	Bemporad,	2003)

(Baotic,	2002)

(Spjøtvold	et	al.,	2006)(Patrinos,	Sarimveis,	2010)

feasibility of primal solution
feasibility of dual solution

Ĝz

⇤(x)  Ŵ + Ŝx

�̃

⇤(x) � 0



A	polyhedron
is	nonempty	iff

has	zero	residual	

m NNLS LP
2 0.0006 0.0046
4 0.0019 0.0103
6 0.0038 0.0193
8 0.0071 0.0340
10 0.0111 0.0554
12 0.0178 0.0955
14 0.0263 0.1426
16 0.0357 0.1959

Aju
 bj

Aiu  bi

NNLS for multiparametric QP
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(Bemporad,	IEEE	TAC	2015)

redundant non 
redundant

• Key	result:	
P = {u 2 Rn : Au  b}

(v⇤, u⇤) = argminv,u kv +Au� bk22
s.t. v � 0, u free

kv⇤ +Au⇤ � bk22 = 0

• Numerical	results	on	elimination	of	redundant	inequalities:
random	polyhedra	of	Rm	with	10m	inequalities

NNLS	=	compiled	Embedded	MATLAB
LP	=	compiled	C	code	(GLPK)

CPU	time	=	seconds	(this	Mac)

• Many	other	polyhedral	operations	can	be	also	tackled	by	NNLS	

Au  b



q m Hybrid Tbx MPT NNLS

4 2 0.0174 0.0256 0.0026
4 3 0.0263 0.0356 0.0038
4 4 0.0432 0.0559 0.0061
4 5 0.0650 0.0850 0.0097
4 6 0.0827 0.1105 0.0126
8 2 0.0347 0.0396 0.0050
8 3 0.0583 0.0680 0.0092
8 4 0.0916 0.0999 0.0140
8 5 0.1869 0.2147 0.0322
8 6 0.3177 0.3611 0.0586
12 2 0.0398 0.0387 0.0054
12 3 0.1121 0.1158 0.0191
12 4 0.2067 0.2001 0.0352
12 5 0.6180 0.6428 0.1151
12 6 1.2453 1.3601 0.2426
20 2 0.1029 0.0763 0.0152
20 3 0.3698 0.2905 0.0588
20 4 0.9069 0.7100 0.1617
20 5 2.2978 1.9761 0.4395
20 6 6.1220 6.2518 1.2853

NNLS for solving mpQP problems

• New	mpQP	algorithm	based	on	NNLS	+	dual	QP	formulation	to	compute	
active	sets	and	deal	with	degeneracy

• Comparison	with:	

– Hybrid	Toolbox
– Multiparametric	Toolbox	2.6	(with	default	opts)

• Included	in	MPC	Toolbox	5.0	(≥R2014b)

24

(Bemporad,	2003)

(Kvasnica,	Grieder,	Baotic,	2006)

(Bemporad,	IEEE	TAC,	2015)

(Bemporad,	Morari,	Ricker,	1998-2015)
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107.5 MHz
= 9.3 ns

Hardware (ASIC) implementation of explicit MPC

http://www.mobydic-project.eu/

25

http://www.mobydic-project.eu/
http://www.mobydic-project.eu/
http://livepage.apple.com/
http://livepage.apple.com/


Explicit MPC for idle speed - Experiments

baseline	controller	(linear)

explicit	MPC

set-point

Load	torque	(power	steering)

peak reduced by 50% convergence 10s faster

(Di	Cairano,	Yanakiev,	Bemporad,	Kolmanovsky,	Hrovat,	2011)

• Observer	tuning	as	much	important
as	tuning	of	MPC	weights	!

• Sampling	time	=	30	ms

• Explicit	MPC	implemented	in	dSPACE	
MicroAutoBox	rapid	prototyping	unit
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Complexity of multiparametric solutions

•The	number	of	regions	depends	(exponentially)	on	the	number	of	
possible	combinations	of	active	constraints	

(weak	dependence	on	the	number	of	states	and	references)

?•Explicit	MPC	gets	less	attractive	when	number	
of	regions	grows:	too	much	memory	required,	
too	much	time	to	locate	state	x(t)

•Fast	on-line	QP	solvers	may	be	preferable

27

When	is	implicit	preferable	to	explicit	MPC	?



Complexity Certification for Active Set QP solvers
• Consider	a	dual	active-set	QP	solver

28

z⇤(x) = argminz 1
2z

0Hz + x0F 0z
s.t. Gz  W + Sx

(Goldfarb,	Idnani,	1983)

• Key	result:	

(Cimini,	Bemporad,	2016)
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Figure 1. Results of the explicit certification algorithm: Partition of the
parameter set ⇥ based on the number of iterations required by the GI QP
solver (same color = same number of QP iterations). From top to bottom:
inverted pendulum, DC motor, heat exchange, AFTI 16.

0 100 200 300 400 500 600

3,400

3,600

3,800

4,000

Memory AB:[Occupancy] (kB)

N
um

be
r

of
flo

ps

nmax
imp (15.4 kB) nmax

exp (586.9 kB) nmax
W

point 1

point 2

0 500 1,000 1,500

0.6

0.8

1

·104

Memory AB:[Occupancy] (kB)

N
um

be
r

of
flo

ps

nmax
imp (19.7 kB) nmax

exp (1676.5 kB) nmax
W

point 1

Figure 2. Results of the WCPE-MPC approach for inverted pendulum
problem (top) and heat exchange problem (bottom). Computational complexity
(yellow line) of WCPE-MPC is plotted as function of the memory occupancy
required to store an increasing number of regions, from 1 to nr � 1, along
with the complexity of implicit (blue line) and explicit (red line) MPC, and
the corresponding memory requirements. The best tradeoff points between
memory and worst-case execution time are circled.
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We	can	exactly	quantify	how	
many	iterations	(flops)	the	QP	
solver	takes	in	the	worst-case	!

The	number	of	iterations		to	solve	the	QP	is	a	
piecewise	constant	function	of	the	parameter	x	

•What	is	the	worst-case	number	of	iterations	over	x	to	solve	the	QP	?



inv. pend. DC motor nonlin. demo AFTI 16

# vars 5 3 6 5

# constraints 10 10 18 12

# params 9 6 10 10

Explicit MPC

# regions 87 67 215 417

max flops 3382 1689 9184 16434

max memory (kb) 55 30 297 430

Implicit MPC

max iters 11 9 13 16

max flops 3809 2082 7747 7807

sqrt 27 9 37 33

max memory (kb) 15 13 20 16

Complexity Certification for Active Set QP solvers

• Examples	(from	MPC	Toolbox):

29
(Cimini,	Bemporad,	2016)

explicit MPC is faster
in the worst-case

online QP is faster
in the worst-case

• It	is	possible	to	combine	explicit	and	on-line	QP	for	best	tradeoff



MPC for power management in HEVs
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Preq (w(t)) =	driver’s	power	request

(Di	Cairano,	Bernardini,	Bemporad,	Kolmanovsky,	IEEE	CST,	2014)

Control	problem:		decide	optimal	generation	of	mechanical	power	(from	
engine)	and	electrical	power	(from	battery)	to	satisfy	driver’s	power	request

Series	hybrid

What will the future power 
request from the driver be ?

? ?
? ?



Simulation results on real driving data

best 
achievable

stochastic 
MPC

deterministic 
MPC approach

31

DI CAIRANO et al.: SMPCL FOR DRIVER-PREDICTIVE VEHICLE CONTROL 1029

Fig. 11. SMCL for HEV energy management: results on real-world Trace 2. (a) Vehicle velocity. (b) Driver power request and generator power. (c) Battery
state of charge. (d) Generator power variation.

TABLE II

SIMULATION RESULTS ON REAL-WORLD DRIVING CYCLES

TABLE III

PERCENTAGE IMPROVEMENT OF SMPCL STRATEGY DUE TO

ONLINE LEARNING OF THE MARKOV CHAIN

PMPC that exploits full knowledge of the future power request.
Also in this case, the advantages of PMPC and SMPCL are
more evident in the driving profile with steeper accelerations
(Trace 2), which is expected according to the power smoothing
objective of the control strategy.

Finally, in Table III we provide an indication of the com-
ponent of the SMPCL improvement that is exclusively due to

TABLE IV

COMPUTATION TIME OF SMPCL IN THE SHEV ENERGY

MANAGEMENT SIMULATIONS

online driver model learning. The reported percentage is the
ratio of the difference between the equivalent fuel consumption
of SMPCL and FTMPC and the difference between equivalent
fuel consumption of SMPCL with (λ̄ = 0.01) and without
(λ̄ = 0) online learning. In some cases, the benefits exclusively
due to learning are small, because the initial Markov chain is
already representative of the driving pattern, whereas in the
case of more varied driving cycles the benefits of the learning
algorithm are significant, indicating that overall learning is
useful in driving conditions with complex patterns.

C. Complexity and Computational Issues

Algorithm 2 requires the solution of (13), which is a QP
with nu(nmax − nleaf) variables and nmax(3nx + 3ny + 2nu) −
2nunleaf − 3ny − 2 constraints. Thus, the computational load
of (13) depends also on the transition matrix T (k), which
determines the structure of the scenario tree at each time
step k. In a case where there are few transitions with high
probability, the tree will include few scenarios with long
prediction horizons, and a small number of leaf nodes, which
results in more variables and constraints. On the other hand,
if the transitions are almost equiprobable, the tree has a large

• Real-world	driving	cycles	(acquired	on	vehicle)

w(k +1)
w(k)

• Driver’s	power	request	w(k) modeled	as	a	
stochastic	process	(Markov	chain)



Embedded MPC without A MODEL

dynamical	model
(based	on	data)

32

embedded	model-based	optimizer

min
z

1

2
z0Qz + c0z

s.t. Az  b

reference outputinput

measurements

r(t) u(t) y(t)

optimization	algorithm

process

m
in

1
2
x

0 Q
x

+
c

0 x

s.t
.

A

x


b

•Can	we	implement	MPC	without	even	a	model	of	the	process	?

YES !



Data-driven Direct Controller Synthesis
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(Formentin	et	al.,	2015)
(Campi,	Lecchini,	Savaresi,	2002)

•	Collect	a	set	of	observations	{u(k), y(k), p(k)}, k =1,..., N

•	Specify	a	desired	closed-loop	linear	model	M	from	r	to	y

•	Compute	rv(k)=M#y(k)	from	pseudo-inverse	model	M#	of	M

•	Identify	linear	(LPV)	model	from	ev=rv  - y	(virtual	tracking	error)	to	u

Virtual reference feedback tuning

G

p

y
o

Kp
r

�

y
d

ue

M

M
r
v

y

Collect a sequence of data {u(k), y(k), p(k)}Nk=1

Specify a desired closed-loop behaviour M. Compute the reference signal r

v

(k)

such that the y(k) is the output of M when fed by a reference signal r

v

(k) (i.e.,

r

v

(k) = M†
y(k)).

Compute the virtual tracking error e

v

(k) = r

v

(k)� y(k). When the observed

input sequence u(k) is applied to the plant, the output signal will be (in a

noise-free scenario) the observed sequence y(k). Then, a “good” controller is the

one that generates the observed sequence u(k) when fed by the virtual tracking

error e

v

(k).

Compute the dynamical system (i.e., the designed controller) describing the

dynamic relation between e

v

(k) and u(k).

5 / 15



Data-driven MPC Synthesis of Controllers

34
(Piga,	Formentin,	Bemporad,	2016)

•Design	a	linear	MPC	controller	(reference	governor)	to	generate	command	r

Hierarchical control architecture

Can we improve the closed-loop performance and impose input/output constraints?

G

p

y
o

Kp
r

�

y
d

ue

M

MPCr
o

The model M describes the relation between r and y !

Control design scheme:

MMPCr
o

y

�

r

Kp u

p

M0
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Hierarchical control architecture

Can we improve the closed-loop performance and impose input/output constraints?
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The model M describes the relation between r and y !

Control design scheme:
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r
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Linear prediction model 
(totally known !)

MPC	can	handle	constraints	on	inputs	and	
outputs,	and	improve	closed-loop	performance

(Bemporad,	1997)

desired
reference
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Data-driven MPC Synthesis of Controllers - An Example

•DC	motor	equations	
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Simulation example: control of a DC motor
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For frozen ✓, the system is LTI
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•Desired	closed-loop	behavior	M	(=first-order	low-pass	filter):

Simulation example: control of a DC motor
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The input/output signals are measured with a sampling time Ts = 10 ms

The output signal observations ✓(k) are corrupted by an additive measurement

noise (SNR = 35 db)

Desired closed-loop behavior M:

xM(k + 1) = 0.99xM(k) + 0.01r(k)

✓M(k) = xM(k)

1st-order LTI model

Chosen control structure:

z
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Simulation example: control of a DC motor
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• Chosen	control	structure	for	Kp 	:

•MPC	design	w/	soft	constraints	on	inputs,	outputs	and	input	increments

(not 
used

 !)
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Data-driven MPC Synthesis of Controllers - An Example

•Experimental	results
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No	model	of	open-loop	process	identified	to	design	the	MPC	controller	!



• MPC	can	easily	handle	multivariable	control	problems	with	constraints	in	an	
optimized	way,	it’s	easy	to	design	and	reconfigure,	it	handles	uncertainty

Conclusions
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• Long	history	of	success	in	the	process	industries	since	the	80‘s,	
now	spreading	in	the	automotive	industry	(and	many	others)

http://cse.lab.imtlucca.it/~bemporad/publications

Is	MPC	a	mature	technology	
for	production	in	fast	
embedded	applications	? YES.

•MATLAB	design/calibration	tools	and	production-ready	C-code	
are	available	

http://cse.lab.imtlucca.it/~bemporad/publications
http://cse.lab.imtlucca.it/~bemporad/publications

