
http://cse.lab.imtlucca.it/~bemporad

Recent Advances in Embedded
MODEL Predictive Control

Alberto Bemporad

!"#$%&'#()*+,*-#./#01"2*345)*672*896: 1
Advanced Controls & Optimization

www.odys.it

http://cse.lab.imtlucca.it/~bemporad
http://cse.lab.imtlucca.it/~bemporad
http://www.imtlucca.it/alberto.bemporad
http://www.imtlucca.it/alberto.bemporad
http://cse.lab.imtlucca.it/~bemporad
http://cse.lab.imtlucca.it/~bemporad
http://www.odys.it
http://www.odys.it

Model Predictive Control (MPC)

!"#$%&'%()*
+($#,

2

;+<%5=>1'%<*+?(#;#@%&

'%(=?+#"(' +4(?4('#"?4('

;%1'4&%;%"('

rAtB uAtB yAtB

!"#$%$&'(%)*+%,$!"#$%&-.$/0#$12-+#""$/-$'($#)*+&*/"$.3/32#$
#4-,3/*-($%(&$+0--"#$/0#$56#"/7$*",+("%$%+/*-(

(!'%+%-.'%()*
.,/("%'0+

?&+.%''

m
in

1
2
x

0 Q
x

+
c

0 x

s.t
.

A

x


b

-.+.($

min

N�1X

k=0

kWy

(y

k

� r(t))k2 + kWu

(u

k

� u

ref

(t))k2

s.t. x

k+1

= f(x

k

, u

k

, t)

y

k

= g(x

k

, u

k

, t)

constraints on u

k

, y

k

x

0

= x(t)

min

N�1X

k=0

kWy

(y

k

� r(t))k2 + kWu

(u

k

� u

ref

(t))k2

s.t. x

k+1

= f(x

k

, u

k

, t)

y

k

= g(x

k

, u

k

, t)

constraints on u

k

, y

k

x

0

= x(t)

Model Predictive Control (MPC)

3

C*D??5)*(/%*E&'(*+?(#;15*;+$%*u(t)= u0*2*(/&+F*(/%*&%'(*+,*(/%*'%G4%".%*1F1)

?&%<#.(%<*+4(?4('

;1"#?451(%<*#"?4('

t tHk tHN

uk

rAtB

tH6 tH6Hk tHNH6

C*D(*(#;%*t+1I*J%(*"%F*;%1'4&%;%"('2*&%?%1(*(/%*+?(#;#@1(#+"K*D"<*'+*+"*L*

yk

'/0+

feedback !

(!'%+%-.'%()*!"(1,#+

C M&+>5%;*'+5$%<*FK&K(K*{u0,...,u N-1}

penalty on
tracking error

penalty on
actuation

23#$*%)*!"(!*%)$43'"%#3*3%)&#*'0#*5673

C*D(*%1./*(#;%* t2*E"<*(/%*>%'(*.+"(&+5*'%G4%".%*+$%&*1*,4(4&%*/+&#@+"*+,*N*'(%?'

One of the First papers on MPC

4

AN1,152*O(%$%"'2*8*90:$;-32(%,<$6P:QB

6P:QI*R/%*S%1(5%'*?4>5#'/%<*(/%*T/#(%*D5>4;

(#&%*
<%U%.(#+"

'4'?%"'#+"
<%U%.(#+"
'4'?%"'#+"

Automotive applications of MPC

5

Advanced Controls & Optimization

S%;?+&1<2*S%&"1&<#"#2*S+&&%55#2*V#;#"#2*W#*V1#&1"+2*X'%"2*J#+&0%((#2*J&1,=M5%''%"2*Y&+$1(2*Z+5;1"+$'[)2*\%$#]+[#2*
N#?1..#+5#2*R&#;>+5#2*R'%"02*^1"1[#%$2*KKK*A8996=896:B

Ford Motor Company

DENSO Automotive

General Motors

Jaguar

FIAT

8#0%&,#*$9).+%&3
:(&1.(#+"*.+"(&+5
:1.(#$%*'(%%&#"0*
:'%;#1.(#$%*'4'?%"'#+"'
:14(+"+;+4'*<&#$#"0

;(<#"'".%)
:<#&%.(=#"]K*%"0#"%*.+"(&+5
:D_`*&1(#+*.+"(&+5
:;10"%(#.*1.(41(+&'
:&+>+(#@%<*0%1&>+a*
:?+F%&*-JR*#"*YXb'
:.1>#"*/%1(*.+"(&+5*#"*YXb'
:%5%.(&#.15*;+(+&'

!(<#"#$*$#3&#)'

Aerospace applications of MPC

AS%;?+&1<2*N+../#2*8966B

C -MV*.1?1>#5#(#%'*%a?5+&%<*#"*"%F*'?1.%*1??5#.1(#+"'*

C c%F*-DR\DS*-MV*R++5>+a%'*<%$%5+?%<*A=;>?@@A*1"<*=;>B(C?D
AS%;?+&1<2*8969B*AS%;?+&1<2*8968B

!,.)#'."9*"(E#"

&((!#".'%)/*2F83

AM1'.4..#2*S%""1"#2*S%;?+&1<2*896:B

AZ&%""*%(K*15K2*8968B

MPC for Smart Electricity Grids

FP7-ICT project “E-PRICE - Price-based Control of Electrical Power Systems” (2010-2013)

7

G%3!.'&0*!(<#"*#"*';1&(*<#'(&#>4(#+"*0&#<'2*'".$#*#)#"/9*+"*%"%&0)*;1&[%('*

>0.,,#)/#3I*1..+4"(*,+&*$9).+%&32*"%(F+&[*'(!(,(/92*?/)'#.15*&()3'".%)'32*1"<*
3'(&0.3'%&%'9*A+,*&%"%F1>5%*%"%&0)2*<%;1"<2*%5%.(&#.#()*?&#.%'B

/)<&+='(+&10%

F#"<*,1&;

?/+(+$+5(1#.

"1(4&15*01'

.+15*6

.+15*8

/)<&+='(+&10%

?/+(+$+5(1#.

"1(4&15*01'

.+15*6

.+15*8

(&1"';#''#+"*0&#<

? ? ?

? ?

? ? ?

<%;1"<
? ? ?

http://www.e-price-project.eu/
http://www.e-price-project.eu/

MPC for Management of Drinking water networks

Drinking water
network of
Barcelona:

81 tanks,
64 valves
180 pumps.

D4(+;1(#.155)*(!#".'#*.*,."/#I3&.,#*4"1.)*$"%)J%)/*<.'#"*)#'<("J

FP7-ICT project “WIDE - Decentralized and Wireless Control of Large-Scale Systems”
FP7-ICT project “EFFINET - Efficient Integrated RT Monitoring & Control of Drinking Water Nets”

>0.,,#)/#3H*;#"#;#@%*"%(F+&[d'*+?%&1(#"0*.+'('*1"<*%"'4&%*<%;1"<*'1(#',1.(#+"*
>)*.+"(&+55#"0*?4;?#"0*#"*&%15=(#;%2*.+"'#<%&#"0*'(+&10%*$9).+%&32*'(!(,(/92*
?/)'#.15*&()3'".%)'32*3'(&0.3'%&*4".%&(1#"()*AF1(%&*<%;1"<2*%"%&0)*?&#.%'B

• MPC Toolbox (The Mathworks, Inc.)
(Bemporad, Ricker, Morari, 1998-present)

! Part of Mathworks’ official toolbox distribution
! Great for education and research

• ODYS Toolbox
(Bemporad, Bernardini, 2013-present)

! Provides flexible and customized MPC control design
and seamless integration in production systems

! Real-time code written in plain C
! Designed for production

MPC TOOLBOXES

9

Kalman
filter

MPC

• Hybrid Toolbox
(Bemporad, 2003-present)

! Free download:
! Great for research and education

http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox/

K*LJ*$(<),(.$3

http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox/
http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox/

Pros and CONS of MPC

10

!Xa(&%;%5)*U%a#>5%*.+"(&+5*<%'#0"*1??&+1./I

e M&%<#.(#+"*;+<%5*.1"*>%*+4,'%E."%.1,#2*F_$#,.932*'%+#IE."9%)/2*F_*$%3'4"1.) *KKK

e V1"*%a?5+#(*1$1#51>5%*!"#E%#<*+"*,4(4&%*&%,%&%".%'*1"<*;%1'4&%<*<#'(4&>1".%'

e Y1"<5%'*&()3'".%)'3*+"*#"?4('*1"<*+4(?4('

e AD4(+B'4)%)/*'#;#51&*(+*\#"%1&*f41<&1(#.*N%0451(+&*AAMNB

e -1(4&%*.+<%*1"<*<%$%5+?;%"(*'((,3*1$1#51>5%

‣ M&#.%*(+*?1)I

e N%G4#&%'*1*A'#;?5%B*+($#,*A%a?%&#;%"('2*')'(%;'*#<%"(#E.1(#+"2*5#"%1&#@1(#+"B

e -1")*$#/"##3*(C*C"##$(+*AF%#0/('2*/+&#@+"'2*.+"'(&1#"('2*KKKB*

e N%G4#&%'*"#.,I'%+#*&(+!4'.'%()3*(+*'+5$%*(/%*+?(#;#@1(#+"*?&+>5%;

Embedded Linear MPC and Quadratic programming

11

min
z

1

2
z0Hz + x0(t)F 0z +

1

2
x0(t)Y x(t)

s.t. Gz  W + Sx(t)

min
z

1

2
z0Hz + x0(t)F 0z +

1

2
x0(t)Y x(t)

s.t. Gz  W + Sx(t)

C \#"%1&*-MV*&%G4#&%'*'+5$#"0*1*M4.$".'%&*;"(/".+*OM;D

z =

2

6664

u0
u1
...

uN�1

3

7775

AS%15%2*6PggB

D*&#./*'%(*+,*0++<*fM*150+&#(/;'*#'*1$1#51>5%*(+<1)

O(#55*1*5+(*+,*&%'%1&./*#'*0+#"0*+"*(+*1<<&%''*&%15=(#;%*&%G4#&%;%"('*KKK

MPC in a production environment

12

%;>%<<%<*;+<%5=>1'%<*+?(#;#@%&

mi
n

1
2
x

0
Q

x

+ c

0
x

s.t
.

A

x

 b

6K B!##$*O'0"(4/0!4'DI*'+5$%*+?(#;#@1(#+"*?&+>5%;*F#(/#"*'1;?5#"0*#"(%&$15

8K N(143')#33*A%K0K2*F#(/*&%'?%.(*(+*"4;%&#.15*%&&+&'B

hK S%*1>5%*(+*&4"*+"*,%+%'#$*0."$<."#*A%K0K2*6g9*-Y@B*F#(/*,%'',#*+#+("9*

7KP("3'I&.3#*#Q#&4'%()*'%+#*;4'(*>%*A(#0/(5)B*%'(#;1(%<*

gK >($#*3%+!,#*%"+40/*(+*>%*$15#<1(%<_$%&#E%<_.%&(#E%<
A#"*0%"%&152*#(*;4'(*>%*4"<%&'(1"<1>5%*>)*?&+<4.(#+"*%"0#"%%&'B

N#R4%"#+#)'3*C("*!"($4&'%()H

Embedded Solvers in industrial Production

13

C -45(#$1>5%*-MV*.+"(&+55%&*

C O1;?5#"0*,&%G4%".)*i*79*Y@*Ai*6*fM*'+5$%<*%$%&)*8g*;'B

C b%/#.5%*+?%&1(#"0*j6*/&_<1)*,+&*jh:9*<1)'_)%1&*+"*1$%&10%

C V+"(&+55%&*;1)*>%*&4""#"0*+"*69*;#55#+"*$%/#.5%'*

! 520,000,000,000,000 QP/yr

and none of them should fail !

Advanced Controls & Optimization

sik 
1

L
�G, 8i = 1, . . . ,msik 

1

L
�G, 8i = 1, . . . ,m

�w0
ksk 

1

L
�V�w0

ksk 
1

L
�V

min
z

1

2
z0Hz + x0F 0z

s.t. Gz  W + Sx

min
z

1

2
z0Hz + x0F 0z

s.t. Gz  W + Sx

Fast gradient projection for (dual) QP

y-1 =y0=0

K = H�1G0

J = H�1F 0

wk = yk + �k(yk � yk�1

)

zk = �Kwk � Jx

sk =

1

LGzk � 1

L(Sx+W)

yk+1

= max {yk + sk,0}

C D??5)*C.3'*/".$%#)'*+#'0($*(+*<415*fMI

C R%&;#"1(#+"*.&#(%&#+"*k6I*!"%+.,*C#.3%1%,%'9

C R%&;#"1(#+"*.&#(%&#+"*k8I*!"%+.,*(!'%+.,%'9

f(zk)� f⇤  f(zk)� ⇥(wk) = �w0
kskL  �V

dual function

Ac%'(%&+$2*6PQhB

feasibility tol

optimality tol

AM1(&#"+'2*S%;?+&1<2*lXXX*RDV2*8967B

�k =

(
0 k = 0
k�1
k+2 k > 0

14

5 7 9 11 13 15
10

1

10
2

10
3

10
4

10
5

Horizon N

I
t
e
r
a
t
io
n
s

Fast gradient projection for (dual) QP
AM1(&#"+'2*S%;?+&1<2*lXXX*RDV2*8967BC -1#"*+"=5#"%*+?%&1(#+"'*#"$+5$%*+"5)*

3%+!,#*,%)#."*.,/#1".

C >()E#"/#)&#*".'#I

theoretical

experimental

C V4&&%"(5)*%a(%"<%<*(+*+%Q#$I%)'#/#"*G41<&1(#.*?&+>5%;'

f(zk+1)� f⇤ 
2L

(k +2)2
kz0 � z⇤k2

C ?%/0'*1(4)$3*+"*;1a#;4;*"4;>%&*+,*#(%&1(#+"'

15Ac1#[2*S%;?+&1<2*X!VVm*896:B

C V1"*>%*4'%<*(+*<."+I3'."'*+(/%&*;%(/+<'

var ⇥ constr. GPAD AS ADMM FBN

4⇥ 16 332 µs (18) 120 µs (3) 1.42 ms (62) 208 µs (2)

8⇥ 24 1.1 ms (22) 446 µs (5) 4 ms (77) 396 µs (2)

12⇥ 32 2.59 ms (27) 1.19 ms (7) 8.25 ms (82) 652 µs (2)

var ⇥ constr. GPAD AS ADMM FBN

4⇥ 16 332 µs (18)s (18) 120 µs (3)s (3) 1.42 ms (62)1.42 ms (62) 208 µs (2)s (2)

8⇥ 24 1.1 ms (22) 446 µs (5) 4 ms (77) 396 µs (2)

12⇥ 32 2.59 ms (27) 1.19 ms (7) 8.25 ms (82) 652 µs (2)

Experiments with embedded QP

16

C F&'%E#*3#'*ADOB*;%(/+<'*1&%*4'4155)*(/%*>%'(*+"*';155*?&+>5%;'I
= %a.%55%"(*G415#()*'+54(#+"'*F#(/#"*,%F*#(%&1(#+"'
= 5%''*'%"'#(#$%*(+*?&%.+"<#(#+"#"0*Ai*>%/1$#+&*#'*;+&%*?&%<#.(1>5%B
= "+*"%%<*,+&*1<$1".%<*5#"%1&*150%>&1*?1.[10%'

AM1(&#"+'2*J4#00#1"#2*S%;?+&1<2*8967Bn*`Sc*i*`+&F1&<=S1.[F1&<'*c%(F+"*A?&+a#;15*;%(/+<B

n

n*JMDW*i*W415*D..%5%&1(%<*J&1<#%"(*M&+]%.(#+" AM1(&#"+'2*S%;?+&1<2*8967B

n*DW--*i*D5(%&"1(#"0*W#&%.(#+"'*-%(/+<*+,*-45(#?5#%&' AS+)<*%(*15K2*8969B

Numerical Results - DSP Implementation

TMS320F28335 controlCARD
(Real-time Control Applications)

32-bit Floating Point (IEEE-754);

150MHz clock;

68KB Ram / 512KB Flash.

Benchmarking Problem: Brushless DC Motor Control

May 10, 2014 4 / 6

MPC In Finite-Precision Arithmetics

h8=>#(*D(;%5*OD-hoQX*
ARM Cortex-M3*?&+.%''#"0*
4"#(
Q7*-Y@2*g68*ZS*+,*U1'/*;%;+&)*
1"<*699*ZS*+,*ND-

AM1(&#"+'2*J4#00#1"#2*S%;?+&1<2*896hB

fixed
point

floating
point

fixed-point about 4x faster than floating-point

17

CJ&1<#%"(*?&+]%.(#+"*F+&['*#"*Ea%<=?+#"(*1&#(/;%(#.'*

max

i
gi(zk)  2LD2

k+1

+ Lv✏
2

z +4D✏⇠max

i
gi(zk)  2LD2

k+1

+ Lv✏
2

z +4D✏⇠ exponentially decreasing with
number p of fractional bits

max constraint violation

l"*-DR\DSI**>> v=A\b % (1 character !)

C S())#/.'%E#*A#.3'*BR4."#3 OSSABDI

v = argmin kAv � bk22v = argmin kAv � bk22

Can we solve QP’s using least squares ?

18

minv kAv � bk22
s.t. v � 0

minv kAv � bk22
s.t. v � 0

R/%*A#.3'*BR4."#3*OABD*?&+>5%;*#'*?&+>1>5)*(/%*
;+'(*'(4<#%<*?&+>5%;*#"*"4;%&#.15*5#"%1&*150%>&1

A\%0%"<&%2*6Q9gB AJ14''2*pi*6Q9PB

Active-set method for Nonnegative Least Squares

Ccc\O*150+&#(/;*#'*$%&)*'#;?5%*A750 chars in Embedded MATLABB

C R/%*[%)*+?%&1(#+"*#'*(+*'+5$%*1*3'.)$."$*AB*!"(1,#+*1(*%1./*
#(%&1(#+"*A$#1*fN2*\W\2*+&*V/+5%'[)*,1.(+&#@1(#+"B

19

A\1F'+"2*Y1"'+"2*6Pq7B

3

i) The set X
f

of parameters x for which the problem is
feasible is a polyhedron;

ii) The optimizer function z⇤ : X
f

! Rn is piecewise affine
and continuous over X

f

;
iii) If in addition matrix

h

Q F

0

F Y

i

is symmetric and positive
semidefinite, the value function V ⇤

: X
f

! R associating
with every x 2 X

f

the corresponding optimal value of (3)
is continuous, convex, and piecewise quadratic.

When X ⇢ Rn, the results of Theorem 1 hold by replacing
X

f

with X
f

\X .
An immediate corollary of Theorem 1 is that the explicit

version of the MPC control law u in (4), being the first n
u

components of the optimal vector z(x), is also a continuous
and piecewise-affine state-feedback law defined over a parti-
tion of the set X

f

\X of states into M polyhedral cells

u⇤
(x) =

8

>

<

>

:

K1x+ h1 if E1x  e1

...
...

KMx+ hM if EMx  eM .

(8)

An example of such a partition is reported in Figure 1 of
Section VI-B. The explicit representation (8) has mapped the
MPC law (4) into a lookup table of affine gains, meaning that
for each given x the values computed by solving the QP (3)
on-line and those obtained by evaluating (8) are exactly the
same.

B. Generalization of the MPC formulation
The explicit approach described above can be extended to

the following MPC setting:

min

z

N�1

X

k=0

1

2

(y
k

� rk)
0Q

y

(y
k

� rk) +
1

2

�u0
k

R
�u

�u
k

+ (u
k

� u

r
k)

0R
u

(u
k

� u

r
k)

0
+ ⇢

✏

✏2 (9a)

s.t. x
k+1

= Ax
k

+ B
u

u
k

+ B
v

vk (9b)
x
0

= x0

y
k

= Cx
k

+D
u

u
k

+D
v

vk (9c)
u
k

= u
k�1

+�u
k

, k = 0, . . . , N � 1 (9d)
u�1

= u�1

�u
k

= 0, k = N
u

, . . . , N � 1 (9e)
u

k
min

 u
k

 u

k
max

, k = 0, . . . , N
u

� 1 (9f)
�u

k
min

 �u
k

�u

k
max

, k = 0, . . . , N
u

� 1 (9g)
y

k
min

� ✏V
min

 y
k

 y

k
max

+ ✏V
max

(9h)
k = 0, . . . , N

c

� 1

where R
�u

= R0
�u

> 0, Q
y

= Q0
y

� 0, R
u

= R0
u

� 0, x0

is the current state, vk is a vector of measured disturbances,
y
k

2 Rn

y is the output vector, rk 2 Rn

y its corresponding ref-
erence to be tracked, �u

k

the vector of input increments, u�1

is the command input applied during the previous sampling
interval, ur

k the input reference, uk
min

, uk
max

, �u

k
min

, �u

k
max

,
y

k
min

, yk
max

are bounds, and N , N
u

, N
c

are, respectively, the
prediction, control, and constraint horizons. The extra variable
✏ is introduced to soften output constraints via the relaxation

vectors V
min

, V
max

> 0 of Rn

y and penalized by the (usually
large) weight ⇢

✏

in the cost function (9a).
Everything marked in bold-face in (9) can be treated as a

parameter with respect to which solve the mpQP problem and
obtain the explicit form of the MPC controller. For example,
for a tracking problem with no anticipative action (rk ⌘ r

0

,
8k = 0, . . . , N�1), no measured disturbance, fixed upper and
lower bounds, the explicit solution is a continuous piecewise
affine function of the parameter vector [x0

0
r0

0
u�1

0
]

0.

III. POLYHEDRAL COMPUTATIONS BASED ON NNLS

Finding a solution to the mpQP problem (3) requires solv-
ing several problems of computational geometry, as will be
detailed in Section IV. The goal of this section is to provide
an alternative to existing methods that rely on the availability
of a linear programming (LP) solver, building upon a standard
and easy-to-code solver for the Non-Negative Least-Squares
(NNLS) problem

r⇤ = min

v

kAv � bk2
2

s.t. v � 0,
(10)

where v 2 Rn, A 2 Rm⇥n, b 2 Rm, and r⇤ 2 R is the mini-
mum squared Euclidean norm of the residual w⇤

= Av⇤�b. A
well-known and simple, yet very effective, active-set method
for solving the NNLS problem (10) is described in [19, p.161]
and is summarized in Algorithm 1. At convergence after a
finite number of steps, the algorithm provides the optimal
solution vector v⇤, with v⇤

i

> 0, 8i 2 P , and v⇤
i

= 0,
8i 2 {1, . . . ,m} \ P .

Algorithm 1 NNLS solver [19, p.161]
Input: Matrices A, b.

1) P ;, v 0;
2) w A0

(Av � b);
3) if w � 0 or P = {1, . . . ,m} then go to Step 11;
4) i argmin

i2{1,...,m}\P w
i

, P P [{i};
5) yP argmin

zP k((A0
)P)

0zP � bk2
2

, y{1,...,m}\P 0;
6) if yP � 0 then v y and go to Step 2;
7) j argmin

h2P: y

h

0

n

v

h

v

h

�y

h

o

;
8) v v +

v

j

v

j

�y

j

(y � v);
9) I {h 2 P : v

h

= 0}, P P \ I;
10) go to Step 5;
11) v⇤ v; end.

Output: A vector v⇤ solving (10)

Algorithm 1 can be easily modified to warm-start from a
set P 6= ; of active constraints, see, e.g., [21, Algorithm 2].
Moreover, since solving Step 5 is the most time consum-
ing operation of Algorithm 1, iterative methods have been
proposed for QR factorization [19, Chap. 24] and LDLT

factorization [20] to exploit the incremental changes of the
active set P in Steps 4 and 9.

In the sequel, we will also refer to the unconstrained
problem

r⇤ = min

v

kAv � bk2
2

(11)

1) P ;, v 0;
2) w A0

(Av � b);
3) if w � 0 or P = {1, . . . ,m} then go to Step 11;
4) i argmin

i2{1,...,m}\P w
i

, P P [{i};
5) yP argmin

zP k((A0
)P)

0zP � bk2
2

, y{1,...,m}\P 0;
6) if yP � 0 then v y and go to Step 2;
7) j argmin

h2P: y

h

0

n

v

h

v

h

�y

h

o

;
8) v v +

v

j

v

j

�y

j

(y � v);
9) I {h 2 P : v

h

= 0}, P P \ I;
10) go to Step 5;
11) v⇤ v; end.

minv kAv � bk22
s.t. v � 0

minv kAv � bk22
s.t. v � 0

SSAB*.,/("%'0+H$=0*,#$)%*(/%*(*(>$
12*)%,$4%2$v$.#%"*6,#<$?##1$"@*/+0*(>$
%+/*4#$"#/$3(/*,$&3%,$4%2w*"$%,"-$
.#%"*6,#

min
z

1
2z

0Qz + c0z

s.t. Gz  g

min
z

1
2z

0Qz + c0z

s.t. Gz  g

u , Lz + L�T c

Q = L0L

min
y

1
2

�����

"
M 0

d0

#

y +

"
0
1

#�����

2

2
s.t. y � 0

min
y

1
2

�����������������

"
M 0

d0

#

y +

"
0
1

#�����������������
2

2
s.t. y � 0

z⇤ = �
1

1+ d0y⇤
L�1M 0y⇤ �Q�1cz⇤ = �

1

1+ d0y⇤
L�1M 0y⇤ �Q�1c

d = b+GQ�1c

M = GL�1

min
u

1
2kuk

2

s.t. Mu  d

min
u

1
2kuk

2

s.t. Mu  d

Solving QP’s via nonnegative least squares

C !'%*cc\O*(+*'+5$%*'(&#.(5)*.+"$%a*fM

20

AS%;?+&1<2*lXXX*RDV2*896:B

complete the squares

\%1'(*
W#'(1".%*
M&+>5%;

c+""%01(#$%*\%1'(*OG41&%'

fM

retrieve primal solution

&%'#<415*
= 0*r

&%'#<415*

)%'

"+

QP problem infeasible

number of variables
0 20 40 60 80 100

C
PU

 ti
m

e
(m

s)

10-1

100

101

102

103 Random QP tests

QPNNLS-LDL
Dantzig
GPAD
ADMM
QUADPROG (IP)
QUADPROG (AS)
GUROBI (IP)
GUROBI (AS)
QPOASES

prediction horizon
0 5 10 15 20 25 30

C
PU

 ti
m

e
(m

s)

10-1

100

101

AFTI-F16 MPC control problem

QPNNLS
Dantzig
QPOASES
GUROBI (AS)

Solving QP via NNLS: Numerical results

21

QP-NNLS

C D*&1(/%&*C.3'*1"<*&%51(#$%5)*3%+!,#I'(I&($#*fM*'+5$%&

AS%;?+&1<2*lXXX*RDV2*896:B

<("3'I&.3#*(E#"*T66*".)$(+*M;*%)3'.) <("3'I&.3#*(&&4""#$*$4"%)/*#)'%"#*3%+4,.'%()U

n*O(%?*(i9*"+(*.+"'#<%&%<*,+&*fMmDOXO*"+(*(+*?%"15#@%*(/%*
>%"%E('*+,*(/%*;%(/+<*F#(/*F1&;*'(1&(#"0

AS%;?+&1<2*c-MV*896gBC Xa(%"<%<*(+*'+5$#"0*;#a%<=#"(%0%&*fMd'

Embedded MPC without SOLVING QP’s ON LINE

$9).+%&.,*+($#,
O1.3#$*()*$.'.D

22

%;>%<<%<*;+<%5=>1'%<*+?(#;#@%&

min
z

1

2
z0Qz + c0z

s.t. Az  b

&%,%&%".% +4(?4(#"?4(

;%1'4&%;%"('

rAtB uAtB yAtB

(!'%+%-.'%()*.,/("%'0+

?&+.%''

m
in

1
2
x

0 Q
x

+
c

0 x

s.t
.

A

x


b

CV1"*F%*#;?5%;%"(*-MV*<%'0(4'*1"*%;>%<<%<*(!'%+%-.'%()*3(,E#"*r

YES !

min
z

1

2
z0Qz + c0z

s.t. Az  b

(!'%+%-.'%()*.,/("%'0+

Explicit model predictive control and multiparametric QP

R/%*;45(#?1&1;%(&#.*'+54(#+"*+,*1*'(&#.(5)*.+"$%a*fM*#'*&()'%)4(43*
1"<*!%#&#<%3#*.V)#*

>("(,,."9I*R/%*5#"%1&*-MV*.+"(&+5*51F*#'*.+"(#"4+4'*s*?#%.%F#'%*1t"%*u

AS%;?+&1<2*-+&1*W412*M#'(#[+?+45+'2*8998B

z⇤ =

2

6664

u⇤0
u⇤1...

u⇤N�1

3

7775

z⇤(x) = argminz 1
2z

0Hz + x0F 0z
s.t. Gz  W + Sx

z⇤(x) = argminz 1
2z

0Hz + x0F 0z
s.t. Gz  W + Sx

It’s
 jus

t a
while

loop
!

23

1

107.5 MHz
= 9.3 ns

Hardware (ASIC) implementation of explicit MPC

http://www.mobydic-project.eu/http://www.mobydic-project.eu/

24

http://www.mobydic-project.eu/
http://www.mobydic-project.eu/
http://livepage.apple.com/
http://livepage.apple.com/

C D*$1&#%()*+,*;?fM*'+5$%&'*#'*1$1#51>5%

C -+'(*.+;?4(1(#+"'*1&%*'?%"(*#"*(!#".'%()3*()*!(,90#$".*Ai.&#(#.15*&%0#+"'B

= ./%.[#"0*#+!'%)#33*(C*!(,90#$".
= &%;+$15*+,*"#$4)$.)'*%)#R4.,%'%#3
= ./%.[#"0*C4,,I$%+#)3%().,%'9*+,*?+5)/%<&1

C D55*'4./*+?%&1(#+"'*1&%*4'4155)*<+"%*$#1*,%)#."*!"(/".++%)/*OA;D

multiparametric Quadratic Programming

25

A9C*

AS%;?+&1<*#/$%,B2*8998B
ARv"<%52*3+/1"'%"2*S%;?+&1<2*899hB

AS1+(#.2*8998B

AO?]v($+5<*#/$%,B2*899:BAM1(&#"+'2*O1&#;$%#'2*8969B

feasibility of primal solution
feasibility of dual solution

Ĝz

⇤(x)  Ŵ + Ŝx

�̃

⇤(x) � 0
Ĝz

⇤(x)  Ŵ + Ŝx

�̃

⇤(x) � 0

8$1-,'0#&2-(
*"$(-(#)1/'$*C

0%"$D#2-$2#"*&3%,$

m NNLS LP
2 0.0006 0.0046
4 0.0019 0.0103
6 0.0038 0.0193
8 0.0071 0.0340
10 0.0111 0.0554
12 0.0178 0.0955
14 0.0263 0.1426
16 0.0357 0.1959

Aju
 bj

Aiu  bi

NNLS for multiparametric QP

26

AS%;?+&1<2*lXXX*RDV*896gB

redundant non
redundant

C Z%)*&%'45(I*
P = {u 2 Rn : Au  b}

(v⇤, u⇤) = argminv,u kv +Au� bk22
s.t. v � 0, u free

kv⇤ +Au⇤ � bk22 = 0

C c4;%&#.15*&%'45('*+"*%5#;#"1(#+"*+,*&%<4"<1"(*#"%G415#(#%'I
&1"<+;*?+5)/%<&1*+,*Rm*F#(/*10m*#"%G415#(#%'

cc\O*i*.+;?#5%<*X;>%<<%<*-DR\DS
\M*i*.+;?#5%<*V*.+<%*AJ\MZB

VM!*(#;%*i*'%.+"<'*A(/#'*-1.B

C -1")*+(/%&*?+5)/%<&15*+?%&1(#+"'*.1"*>%*15'+*(1.[5%<*>)*cc\O*

Au  b

q m Hybrid Tbx MPT NNLS

4 2 0.0174 0.0256 0.0026
4 3 0.0263 0.0356 0.0038
4 4 0.0432 0.0559 0.0061
4 5 0.0650 0.0850 0.0097
4 6 0.0827 0.1105 0.0126
8 2 0.0347 0.0396 0.0050
8 3 0.0583 0.0680 0.0092
8 4 0.0916 0.0999 0.0140
8 5 0.1869 0.2147 0.0322
8 6 0.3177 0.3611 0.0586
12 2 0.0398 0.0387 0.0054
12 3 0.1121 0.1158 0.0191
12 4 0.2067 0.2001 0.0352
12 5 0.6180 0.6428 0.1151
12 6 1.2453 1.3601 0.2426
20 2 0.1029 0.0763 0.0152
20 3 0.3698 0.2905 0.0588
20 4 0.9069 0.7100 0.1617
20 5 2.2978 1.9761 0.4395
20 6 6.1220 6.2518 1.2853

NNLS for solving mpQP problems

C c%F*;?fM*150+&#(/;*>1'%<*+"*SSAB*H*$4.,*M;*C("+4,.'%()*(+*.+;?4(%*
1.(#$%*'%('*1"<*<%15*F#(/*<%0%"%&1.)

C V+;?1&#'+"*F#(/I*

e Y)>&#<*R++5>+a
e -45(#?1&1;%(&#.*R++5>+a*8K:*AF#(/*<%,145(*+?('B

C l".54<%<*#"*-MV*R++5>+a*gK9*AwN8967>B

27

AS%;?+&1<2*899hB

AZ$1'"#.12*J&#%<%&2*S1+(#.2*899:B

AS%;?+&1<2*lXXX*RDV2*896gB

AS%;?+&1<2*-+&1*N#.[%&2*6PPQ=?&%'%"(B

Explicit MPC for idle speed - Experiments

>1'%5#"%*.+"(&+55%&*A5#"%1&B

%a?5#.#(*-MV

'%(=?+#"(

E-%&$/-2F3#$G1-@#2$"/##2*(>H

peak reduced by 50% convergence 10s faster

AW#*V1#&1"+2*^1"1[#%$2*S%;?+&1<2*Z+5;1"+$'[)2*Y&+$1(2*8966B

C @13#"E#"*'4)%)/*1'*;4./*#;?+&(1"(
1'*(4"#"0*+,*-MV*F%#0/('*u

C O1;?5#"0*(#;%*i*h9*;'

C Xa?5#.#(*-MV*#;?5%;%"(%<*#"*<OMDVX*
-#.&+D4(+S+a*&1?#<*?&+(+()?#"0*4"#(

28

Complexity of multiparametric solutions

CR/%*"4;>%&*+,*&%0#+"'*<%?%"<'*A%a?+"%"(#155)B*+"*(/%*"4;>%&*+,*
?+''#>5%*&(+1%).'%()3*(C*.&'%E#*&()3'".%)'3*

AF%1[*<%?%"<%".%*+"*(/%*"4;>%&*+,*'(1(%'*1"<*&%,%&%".%'B

?
CXa?5#.#(*-MV*0%('*5%''*1((&1.(#$%*F/%"*"4;>%&*
+,*&%0#+"'*0&+F'I*(++*;4./*+#+("9*&%G4#&%<2*
(++*;4./*'%+#*(+*5+.1(%*'(1(%*x(t)

C`1'(*()I,%)#*fM*'+5$%&'*Ai#;?5#.#(*-MVB*;1)*>%*?&%,%&1>5%

29

T/%"*#'*#;?5#.#(*?&%,%&1>5%*(+*%a?5#.#(*-MV*r

Complexity Certification for Active Set QP solvers
C V+"'#<%&*1*<415*1.(#$%='%(*fM*'+5$%&

30

z⇤(x) = argminz 1
2z

0Hz + x0F 0z
s.t. Gz  W + Sx

z⇤(x) = argminz 1
2z

0Hz + x0F 0z
s.t. Gz  W + Sx

AJ+5<,1&>2*l<"1"#2*6PQhB

C W#9*"#34,'I*

AV#;#"#2*S%;?+&1<2*896:2*'4>;#((%<B

12

�20 �10 0 10 20
�20

�10

0

10

20

✓ 2

�0.3 �0.2 �0.1 0 0.1 0.2 0.3
�2

�1

0

1

2

✓ 2

�1 �0.5 0 0.5 1 1.5 2
�1

0

1

2

✓ 2

�4 �2 0 2 4

�5

0

5

✓1

✓ 2

Figure 1. Results of the explicit certification algorithm: Partition of the
parameter set ⇥ based on the number of iterations required by the GI QP
solver (same color = same number of QP iterations). From top to bottom:
inverted pendulum, DC motor, heat exchange, AFTI 16.

0 100 200 300 400 500 600

3,400

3,600

3,800

4,000

Memory AB:[Occupancy] (kB)

N
um

be
r

of
flo

ps

nmax
imp (15.4 kB) nmax

exp (586.9 kB) nmax
W

point 1

point 2

0 500 1,000 1,500

0.6

0.8

1

·104

Memory AB:[Occupancy] (kB)

N
um

be
r

of
flo

ps

nmax
imp (19.7 kB) nmax

exp (1676.5 kB) nmax
W

point 1

Figure 2. Results of the WCPE-MPC approach for inverted pendulum
problem (top) and heat exchange problem (bottom). Computational complexity
(yellow line) of WCPE-MPC is plotted as function of the memory occupancy
required to store an increasing number of regions, from 1 to nr � 1, along
with the complexity of implicit (blue line) and explicit (red line) MPC, and
the corresponding memory requirements. The best tradeoff points between
memory and worst-case execution time are circled.

REFERENCES

[1] L. Del Re, F. Allgöwer, L. Glielmo, C. Guardiola, and I. Kolmanovsky,
Automotive Model Predictive Control: Models, Methods and Applica-
tions, ser. Lecture Notes in Control and Information Sciences. Springer
London, 2010.

[2] S. Di Cairano, H. Tseng, D. Bernardini, and A. Bemporad, “Vehicle yaw
stability control by coordinating active front steering and differential
braking in the tire sideslip angles domain,” IEEE Trans. Contr. Systems
Technology, vol. 21, no. 4, pp. 1236–1248, July 2013.

[3] S. Di Cairano, D. Yanakiev, A. Bemporad, I. Kolmanovsky, and
D. Hrovat, “Model predictive idle speed control: Design, analysis,
and experimental evaluation,” IEEE Trans. Contr. Systems Technology,
vol. 20, no. 1, pp. 84–97, 2012.

[4] E. N. Hartley and J. M. Maciejowski, “Field programmable gate array
based predictive control system for spacecraft rendezvous in elliptical
orbits,” Optimal Control Applications and Methods, vol. 35, no. 7, pp.
585–607, 2015.

[5] G. Cimini, D. Bernardini, A. Bemporad, and S. Levijoki, “Online model
predictive torque control for permanent magnet synchronous motors,”
in Industrial Technology (ICIT), 2015 IEEE International Conference
on, March 2015, pp. 2308–2313.

[6] S. Vazquez, J. Leon, L. Franquelo, J. Rodriguez, H. Young, A. Marquez,
and P. Zanchetta, “Model predictive control: A review of its applications

x1

x2 0
1

2 3

4

5

T%*.1"*#Q.&',9*G41"(#,)*/+F*
;1")*#(%&1(#+"'*AU+?'B*(/%*fM*
'+5$%&*(1[%'*#"*(/%*F+&'(=.1'%*u

I0#$(3)6#2$-.$*/#2%/*-("$$/-$"-,4#$/0#JK*"$%$
1*#+#@*"#$+-("/%(/$.3(+/*-($-.$/0#$1%2%)#/#2$x

C T/1(*#'*(/%*F+&'(=.1'%*"4;>%&*+,*#(%&1(#+"'*+$%&*x*(+*'+5$%*(/%*fM*r

inv. pend. DC motor nonlin. demo AFTI 16

vars 5 3 6 5

constraints 10 10 18 12

params 9 6 10 10

Explicit MPC

regions 87 67 215 417

max flops 3382 1689 9184 16434

max memory (kb) 55 30 297 430

Implicit MPC

max iters 11 9 13 16

max flops 3809 2082 7747 7807

sqrt 27 9 37 33

max memory (kb) 15 13 20 16

Complexity Certification for Active Set QP solvers

C Xa1;?5%'*A,&+;*-MV*R++5>+aBI

31

explicit MPC is faster
in the worst-case

online QP is faster
in the worst-case

C l(*#'*?+''#>5%*(+*.+;>#"%*%a?5#.#(*1"<*+"=5#"%*fM*,+&*>%'(*(&1<%+x

Sys-ID for MPC

C -+<%5*M&%<#.(#$%*V+"(&+5*&%G4#&%'*1*+($#,*+,*(/%*?&+.%''K

C -+<%5'*1&%*4'4155)*+>(1#"%<*,&+;*$.'.*$#1*')'(%;'*#<%"(#E.1(#+"*
A-CL,*(#$,#%2(*(>B

C -+<%5'*.1"*>%*15'+*1<1?(%<*#"*&%15=(#;%*(+*/1"<5%*./1"0%'*+,*'5+F5)=
$1&)#"0*G41"(#(#%'*A%K0K2*1;>#%"(*.+"<#(#+"'B*A-(L,*(#$,#%2(*(>B

http://spire2030.eu/disire/

l"*#"<4'(*-MV*1??5#.1(#+"'2*
;+'(*+,*(/%*%x+&(*#'*'?%"(*#"*
%$#)'%C9%)/*A+4,'%!,#D ,%)#."
?&%<#.(#+"*;+<%5'*,&+;*<1(1

32

-0.8

-0.6

-0.4

1

-0.2

0

0.2

0.4

0.6

0.5

0.8

0

10.8-0.5 0.60.40.20-0.2-0.4-0.6-1 -0.8-1 p1(k)

p2(k)

x(k+1)

http://spire2030.eu/disire/
http://spire2030.eu/disire/

f(x) =

8
><

>:

F1x+ g1 if H1x  K1
...
Fsx+ gs if Hsx  Ks

f(x) =

8
>
8
>
8
<><>

>

<

>

<

:>:>

F1F1F x+ g1 if H1x  K1
...
FsFsF x+ gs if Hsx  Ks

PWA Regression PROBLEM
C ;"(1,#+I*0#$%"*#"?4(_+4(?4(*?1#&'*{x(k),y(k)}, k=1,...,N*1"<*"4;>%&*s

+,*;+<%5'2*.+;?4(%*1"*1??&+a#;1(#+"*y !f(x)

33

C c%%<*(+*5%1&"*1('0*(/%*?1&1;%(%&'*(Fi, gi)*+,*
(/%*1t"%*'4>;+<%5'*.)$*(/%*?1&(#(#+"*(Hi, Ki)
+,*(/%*MTD*;1?*,&+;*<1(1*A-CL,*(#$5%1&"#"0B

;PF*+($#,
O;%#&#P%3#*FV)#D

y !f(x)

x
C M+''#>5)*"%%<*(+*4?<1(%*;+<%5*1"<*

?1&(#(#+"*1'*"%F*<1(1*1&%*.+55%.(%<*A-(L,*(#$5%1&"#"0B

y(k) =
naX

i=1
ai(p(k))y(k�i)+

nbX

j=0
bj(p(k))u(k�j)+e(k)

x(k) = [y0(k � 1) y

0(k � 2) · · · y

0(k � n

a

)
u

0(k � 1) u

0(k � 2) · · · u

0(k � n

b

)]0

y(k) = f(x(k))

PWA Regression PROBLEM

C B!#&%.,*&.3#*XTI*/)>&#<*AMTDNoB*;+<%5

34

C B!#&%.,*&.3#*XYI*'F#(./%<*?1&1;%(%&=<%?%"<%"(*DNo*;+<%5

(ai,bj)*i*?#%.%F#'%*1t"%*,4".(#+"'*+,*'./%<45#"0*?1&1;%(%&*p

f*i*?#%.%F#'%*1t"%*,4".(#+"*+,*&%0&%''+&*x

Cm"5)*4?<1(%*(Fi(k), gi(k))*4'#"0*&%.4&'#$%*5%1'(*'G41&%'*>1'%<*+"*#"$%&'%*
fN*<%.+;?+'#(#+"

i(k) arg min
i=1,...,s ei(k)

0⇤�1
e

e

i

(k)+(x(k)� c

i

)0R�1
i

(x(k)�c
i

)

PWA Regression Algorithm (1/2)

35

CRF+='(10%*150+&#(/;*,+&*MTD*&%0&%''#+"

C B'./#*TI*>,43'#"*(/%*&%0&%''+&'*x(k)*1"<*3%+4,'.)#(43,9*#3'%+.'#*(/%*
?1&1;%(%&*;1(&#.%'*(Fi, gi) "#&4"3%E#,9*Ai+"%*'1;?5%*1(*(/%*(#;%B

AD5%a1"<%&2*J/#&"#[1&2*6PPhB

C l(%&1(%*(/%*?&+.%<4&%*M*(#;%'*,+&*#;?&+$%<*&%'45('

AS&%'./#2*M#012*S%;?+&1<2*896:B

one-step prediction error
of model #i

proximity to centroid
of cluster #i

X

i

=
n

x 2 Rn : �(x) = w

0
i

x� �

i

o

PWA Regression Algorithm (2/2)

36

AS&%'./#2*M#012*S%;?+&1<2*896:B

C B'./#*YH*V+;?4(%*1*?+5)/%<&15*?1&(#(#+"*(Hi, Ki) +,*(/%*&%0&%''+&*
'?1.%*$#1*;45(#=.1(%0+&)*5#"%1&*'%?1&1(#+"*A>1(./*+&*#".&%;%"(155)BI

�(x) = max

i=1,...,s

{w0
i

x� �

i

}

Piecewise-smooth Newton method (batch)

Averaged stochastic gradient descent (online) AS+((+42*8968B

AS%;?+&1<2*S%&"1&<#"#2*M1(&#"+'2*896gB

Robust Linear Programming (batch) AS%""%((2*-1"01'1"2*6PP7B

CD5(%&"1(#$%*F1)'*(+*.+;?4(%*(wi,!i)I

PWA Regression Examples
C ZQ.+!,#*TI*MTDNo*;+<%5

37

AS&%'./#2*M#012*S%;?+&1<2*896:B

All computations are carried out on an i7 2.40-GHz Intel core
processor with 4 GB of RAM running MATLAB R2014b.
In both examples, the output used in the training phase is
corrupted by an additive zero-mean white noise eo with
Gaussian distribution. The effect of measurement noise on
the output signal is quanti� ed through the Signal-to-Noise
Ratio (SNR), that is de� ned for the i-th output channel as

SNRi = 10 log

∑N
k=1 (yi(k)− eo; i(k))

2

∑N
k=1 e

2
o; i(k)

; (15)

with eo; i(k) denoting the i-th component of eo(k).
The results obtained after the training phase are vali-

dated on a noiseless data sequence. Let yo and ŷ denote,
respectively, the vectors staking the actual and the simulated
outputs of the estimated model, let �yo; i be the sample mean
of the i-th output, and NV the length of the validation data
sequence. The Best Fit Rate (BFR) and Mean Square Error
(MSE) indicators

BFRi =max

{
1− ∥yo; i − ŷi∥2
∥yo; i − �yo ; i∥2

; 0

}
(16)

MSEi =
1

NV

NV∑

k=1

(yo; i(k)− ŷi(k))
2 (17)

de� ned for each output channel i, i = 1 ; : : : ; ny , are used to
assess the quality of the estimated models.

A. Identi� cation of a multivariable PWARX system

Let the system generating the data be a MIMO PWARX
system described by the difference equation
[
y1(k)
y2(k)

]
=

[−0: 83 0 : 20
0: 30 −0: 52

] [y1(k−1)
y2(k−1)

]
+
[−0: 34 0: 45
−0: 30 0: 24

] [u1(k−1)
u2(k−1)

]

+ [0: 200: 15] + max
{[

0: 20 −0: 90
0: 10 −0: 42

] [y1(k−1)
y2(k−1)

]

+ [0: 42 0 : 20
0: 50 0 : 64]

[
u1(k−1)
u2(k−1)

]
+ [0: 400: 30] ; [

0
0]
}
+ eo(k) ;

which is characterized by �s = 4 operating modes, given
by the possible combinations of sign of the components
of the � rst vector argument of the ì maxî operator. The
excitation input u(k) is a white noise sequence with uniform
distribution in the box [−1 0]× [−0: 4 0: 6] and length N =
4000, eo(k) ∈ R2 is a zero-mean white noise with covariance
matrix Λe = [0: 02 0 : 02

0: 02 0 : 02]. This corresponds to signal-to-noise
ratios equal to SNR1 = 8 : 7 dB and SNR2 = 6: 9 dB on the
�rs t and second output channels, respectively.

We run Algorithm 1 with s = �s = 4. The initial guess for
the cluster centroids and covariance matrices are computed
by running an instance of Algorithm 1 without the � rst term
in (6) (i.e., only the modeling error is used as a discrimination
criterion to cluster the observed data points at the � rst run).
Algorithm 1 is then run again for 15 times, with the full
criterion (6), by initializing Ai, ci and Ri with the output
of the previous run. The clusters generated by Algorithm 1
are then separated through the off-line multicategory dis-
crimination method described in Section III-B.1, by solving
the convex optimization problem (13) via the RPSN method

TABLE I
PWARX IDENTIFICATION: BFR AND MSE ON THE TWO OUTPUT

CHANNELS

BFR1 BFR2 MSE1 MSE2

96 : 1% 96: 3% 0 : 99 � 10−4 0: 70 � 10−4

TABLE II
PWARX IDENTIFICATION: BFR ON THE TWO OUTPUT CHANNELS VS

LENGTH N OF THE TRAINING SET.

N = 4000 N = 20000 N = 100000

B
FR

1 (Off-line) RLP [8] 96.0 % 96.5 % 99.0 %
(Off-line) RPSN 96.2 % 96.4 % 98.9 %
(On-line) ASGD 86.7 % 95.0 % 96.7 %

B
FR

2 (Off-line) RLP [8] 96.2 % 96.9 % 99.0 %
(Off-line) RPSN 96.3 % 96.8 % 99.0 %
(On-line) ASGD 87.4 % 95.2 % 96.4 %

TABLE III
PWARX IDENTIFICATION: CPU TIME REQUIRED TO PARTITION THE

REGRESSOR SPACE VS LENGTH N OF THE TRAINING SET.

N = 4000 N = 20000 N = 100000
(Off-line) RLP [8] 0.308 s 3.227 s 112.435 s
(Off-line) RPSN 0.016 s 0.086 s 0.365 s
(On-line) ASGD 0.013 s 0.023 s 0.067 s

described in [6], which is initialized with f ωi ; γi g si=1 = 0.
The regularization parameter λ is set to 10−5.

The quality of the estimated PWA model is assessed w.r.t.
a validation set of NV = 500 samples. The true output yo and
the open-loop simulated output ŷ generated by the estimated
model are plotted in Fig. 1, along with the simulation error
yo(k)− ŷ(k). For the sake of visualization, only the samples
from time 101 to 200 related to the � rst channel are shown in
Fig. 1. The obtained BFR and MSE are reported in Table I.
The estimated polyhedral partition of the regressor space is
such that only 12 out of 500 data samples are misclassi� ed
(i.e., 2: 4 % of the whole validation set).

As the accuracy of the � nal model estimate and the
total CPU time is in� uenced by the number M of runs
of Algorithm 1, the performance of the proposed learning
approach has been tested with respect to both M and the
dimension N of the training set. The obtained BFR as a
function of iterations of Algorithm 1 is plotted in Fig. 2 for
different values of N . Clearly, there is no improvement in
BFR on the two output channels after about 8 runs.

The total CPU time for estimating the PWARX model
is 0: 76 s, of which 0: 016 s are taken to solve the linear
multi-category discrimination problem (13). For the sake of
comparison, both the robust linear programming approach
of [8] and the on-line method described in Section III-B.22

are also run to generate the partition. Results in Table II
show that all of the three algorithms used to compute
the polyhedral partition of the regressor space lead to an
accurate estimate of the system, with BFRs larger then 95 %
(except when N = 4000 and the on-line multi-category

2In executing the on-line approach in Section III-B.2, the weights πi and
the initial guess of φ used by the stochastic gradient method are computed by
executing the batch Algorithm in Section III-B.1 on the � rst 3000 training
samples.

[
y1(k)
y2(k)

]
=

[−0 : 83 0 : 20
0 : 30 −0 : 52

] [y1(k−1)
y2(k−1)

]
+
[−0 : 34 0 : 45
−0 : 30 0 : 24

] [u1(k−1)
u2(k−1)

]

+ [0 : 200 : 15] + max
{[

0 : 20 −0 : 90
0 : 10 −0 : 42

] [y1(k−1)
y2(k−1)

]

+ [0 : 42 0 : 20
0 : 50 0 : 64]

[
u1(k−1)
u2(k−1)

]
+ [0 : 400 : 30] ; [

0
0]
}
+ eo(k) ;

All computations are carried out on an i7 2.40-GHz Intel core
processor with 4 GB of RAM running MATLAB R2014b.
In both examples, the output used in the training phase is
corrupted by an additive zero-mean white noise eo with
Gaussian distribution. The effect of measurement noise on
the output signal is quanti� ed through the Signal-to-Noise
Ratio (SNR), that is de� ned for the i-th output channel as

SNRi = 10 log

∑N
k=1 (yi(k)− eo; i(k))

2

∑N
k=1 e

2
o; i(k)

; (15)

with eo; i(k) denoting the i-th component of eo(k).
The results obtained after the training phase are vali-

dated on a noiseless data sequence. Let yo and ŷ denote,
respectively, the vectors staking the actual and the simulated
outputs of the estimated model, let �yo; i be the sample mean
of the i-th output, and NV the length of the validation data
sequence. The Best Fit Rate (BFR) and Mean Square Error
(MSE) indicators

BFRi =max

{
1− ∥yo; i − ŷi∥2
∥yo; i − �yo ; i∥2

; 0

}
(16)

MSEi =
1

NV

NV∑

k=1

(yo; i(k)− ŷi(k))
2 (17)

de� ned for each output channel i, i = 1 ; : : : ; ny , are used to
assess the quality of the estimated models.

A. Identi� cation of a multivariable PWARX system

Let the system generating the data be a MIMO PWARX
system described by the difference equation
[
y1(k)
y2(k)

]
=

[−0: 83 0 : 20
0: 30 −0: 52

] [y1(k−1)
y2(k−1)

]
+

[−0: 34 0: 45
−0: 30 0: 24

] [u1(k−1)
u2(k−1)

]

+ [0: 200: 15] + max
{[

0: 20 −0: 90
0: 10 −0: 42

] [y1(k−1)
y2(k−1)

]

+ [0: 42 0 : 20
0: 50 0 : 64]

[
u1(k−1)
u2(k−1)

]
+ [0: 400: 30] ; [

0
0]
}
+ eo(k) ;

which is characterized by �s = 4 operating modes, given
by the possible combinations of sign of the components
of the � rst vector argument of the ì maxî operator. The
excitation input u(k) is a white noise sequence with uniform
distribution in the box [−1 0]× [−0: 4 0 : 6] and length N =
4000, eo(k) ∈ R2 is a zero-mean white noise with covariance
matrix Λe = [0: 02 0 : 02

0: 02 0 : 02]. This corresponds to signal-to-noise
ratios equal to SNR1 = 8 : 7 dB and SNR2 = 6: 9 dB on the
�rs t and second output channels, respectively.

We run Algorithm 1 with s = �s = 4. The initial guess for
the cluster centroids and covariance matrices are computed
by running an instance of Algorithm 1 without the � rst term
in (6) (i.e., only the modeling error is used as a discrimination
criterion to cluster the observed data points at the � rst run).
Algorithm 1 is then run again for 15 times, with the full
criterion (6), by initializing Ai, ci and Ri with the output
of the previous run. The clusters generated by Algorithm 1
are then separated through the off-line multicategory dis-
crimination method described in Section III-B.1, by solving
the convex optimization problem (13) via the RPSN method

TABLE I
PWARX IDENTIFICATION: BFR AND MSE ON THE TWO OUTPUT

CHANNELS

BFR1 BFR2 MSE1 MSE2

96 : 1% 96: 3% 0 : 99 � 10−4 0: 70 � 10−4

TABLE II
PWARX IDENTIFICATION: BFR ON THE TWO OUTPUT CHANNELS VS

LENGTH N OF THE TRAINING SET.

N = 4000 N = 20000 N = 100000

B
FR

1 (Off-line) RLP [8] 96.0 % 96.5 % 99.0 %
(Off-line) RPSN 96.2 % 96.4 % 98.9 %
(On-line) ASGD 86.7 % 95.0 % 96.7 %

B
FR

2 (Off-line) RLP [8] 96.2 % 96.9 % 99.0 %
(Off-line) RPSN 96.3 % 96.8 % 99.0 %
(On-line) ASGD 87.4 % 95.2 % 96.4 %

TABLE III
PWARX IDENTIFICATION: CPU TIME REQUIRED TO PARTITION THE

REGRESSOR SPACE VS LENGTH N OF THE TRAINING SET.

N = 4000 N = 20000 N = 100000
(Off-line) RLP [8] 0.308 s 3.227 s 112.435 s
(Off-line) RPSN 0.016 s 0.086 s 0.365 s
(On-line) ASGD 0.013 s 0.023 s 0.067 s

described in [6], which is initialized with f ωi ; γi g si=1 = 0.
The regularization parameter λ is set to 10−5.

The quality of the estimated PWA model is assessed w.r.t.
a validation set of NV = 500 samples. The true output yo and
the open-loop simulated output ŷ generated by the estimated
model are plotted in Fig. 1, along with the simulation error
yo(k)− ŷ(k). For the sake of visualization, only the samples
from time 101 to 200 related to the � rst channel are shown in
Fig. 1. The obtained BFR and MSE are reported in Table I.
The estimated polyhedral partition of the regressor space is
such that only 12 out of 500 data samples are misclassi� ed
(i.e., 2: 4 % of the whole validation set).

As the accuracy of the � nal model estimate and the
total CPU time is in� uenced by the number M of runs
of Algorithm 1, the performance of the proposed learning
approach has been tested with respect to both M and the
dimension N of the training set. The obtained BFR as a
function of iterations of Algorithm 1 is plotted in Fig. 2 for
different values of N . Clearly, there is no improvement in
BFR on the two output channels after about 8 runs.

The total CPU time for estimating the PWARX model
is 0: 76 s, of which 0: 016 s are taken to solve the linear
multi-category discrimination problem (13). For the sake of
comparison, both the robust linear programming approach
of [8] and the on-line method described in Section III-B.22

are also run to generate the partition. Results in Table II
show that all of the three algorithms used to compute
the polyhedral partition of the regressor space lead to an
accurate estimate of the system, with BFRs larger then 95 %
(except when N = 4000 and the on-line multi-category

2In executing the on-line approach in Section III-B.2, the weights πi and
the initial guess of φ used by the stochastic gradient method are computed by
executing the batch Algorithm in Section III-B.1 on the � rst 3000 training
samples.

N%'45('I

All computations are carried out on an i7 2.40-GHz Intel core
processor with 4 GB of RAM running MATLAB R2014b.
In both examples, the output used in the training phase is
corrupted by an additive zero-mean white noise eo with
Gaussian distribution. The effect of measurement noise on
the output signal is quanti� ed through the Signal-to-Noise
Ratio (SNR), that is de� ned for the i-th output channel as

SNRi = 10 log

∑N
k=1 (yi(k)− eo; i(k))

2

∑N
k=1 e

2
o; i(k)

; (15)

with eo; i(k) denoting the i-th component of eo(k).
The results obtained after the training phase are vali-

dated on a noiseless data sequence. Let yo and ŷ denote,
respectively, the vectors staking the actual and the simulated
outputs of the estimated model, let �yo; i be the sample mean
of the i-th output, and NV the length of the validation data
sequence. The Best Fit Rate (BFR) and Mean Square Error
(MSE) indicators

BFRi =max

{
1− ∥yo; i − ŷi∥2
∥yo; i − �yo ; i∥2

; 0

}
(16)

MSEi =
1

NV

NV∑

k=1

(yo; i(k)− ŷi(k))
2 (17)

de� ned for each output channel i, i = 1 ; : : : ; ny , are used to
assess the quality of the estimated models.

A. Identi� cation of a multivariable PWARX system

Let the system generating the data be a MIMO PWARX
system described by the difference equation
[
y1(k)
y2(k)

]
=

[−0: 83 0 : 20
0: 30 −0: 52

] [y1(k−1)
y2(k−1)

]
+
[−0: 34 0: 45
−0: 30 0: 24

] [u1(k−1)
u2(k−1)

]

+ [0: 200: 15] + max
{[

0: 20 −0: 90
0: 10 −0: 42

] [y1(k−1)
y2(k−1)

]

+ [0: 42 0 : 20
0: 50 0 : 64]

[
u1(k−1)
u2(k−1)

]
+ [0: 400: 30] ; [

0
0]
}
+ eo(k) ;

which is characterized by �s = 4 operating modes, given
by the possible combinations of sign of the components
of the � rst vector argument of the ì maxî operator. The
excitation input u(k) is a white noise sequence with uniform
distribution in the box [−1 0]× [−0: 4 0: 6] and length N =
4000, eo(k) ∈ R2 is a zero-mean white noise with covariance
matrix Λe = [0: 02 0 : 02

0: 02 0 : 02]. This corresponds to signal-to-noise
ratios equal to SNR1 = 8 : 7 dB and SNR2 = 6: 9 dB on the
�rs t and second output channels, respectively.

We run Algorithm 1 with s = �s = 4. The initial guess for
the cluster centroids and covariance matrices are computed
by running an instance of Algorithm 1 without the � rst term
in (6) (i.e., only the modeling error is used as a discrimination
criterion to cluster the observed data points at the � rst run).
Algorithm 1 is then run again for 15 times, with the full
criterion (6), by initializing Ai, ci and Ri with the output
of the previous run. The clusters generated by Algorithm 1
are then separated through the off-line multicategory dis-
crimination method described in Section III-B.1, by solving
the convex optimization problem (13) via the RPSN method

TABLE I
PWARX IDENTIFICATION: BFR AND MSE ON THE TWO OUTPUT

CHANNELS

BFR1 BFR2 MSE1 MSE2

96 : 1% 96: 3% 0 : 99 � 10−4 0: 70 � 10−4

TABLE II
PWARX IDENTIFICATION: BFR ON THE TWO OUTPUT CHANNELS VS

LENGTH N OF THE TRAINING SET.

N = 4000 N = 20000 N = 100000

B
FR

1 (Off-line) RLP [8] 96.0 % 96.5 % 99.0 %
(Off-line) RPSN 96.2 % 96.4 % 98.9 %
(On-line) ASGD 86.7 % 95.0 % 96.7 %

B
FR

2 (Off-line) RLP [8] 96.2 % 96.9 % 99.0 %
(Off-line) RPSN 96.3 % 96.8 % 99.0 %
(On-line) ASGD 87.4 % 95.2 % 96.4 %

TABLE III
PWARX IDENTIFICATION: CPU TIME REQUIRED TO PARTITION THE

REGRESSOR SPACE VS LENGTH N OF THE TRAINING SET.

N = 4000 N = 20000 N = 100000
(Off-line) RLP [8] 0.308 s 3.227 s 112.435 s
(Off-line) RPSN 0.016 s 0.086 s 0.365 s
(On-line) ASGD 0.013 s 0.023 s 0.067 s

described in [6], which is initialized with f ωi ; γi g si=1 = 0.
The regularization parameter λ is set to 10−5.

The quality of the estimated PWA model is assessed w.r.t.
a validation set of NV = 500 samples. The true output yo and
the open-loop simulated output ŷ generated by the estimated
model are plotted in Fig. 1, along with the simulation error
yo(k)− ŷ(k). For the sake of visualization, only the samples
from time 101 to 200 related to the � rst channel are shown in
Fig. 1. The obtained BFR and MSE are reported in Table I.
The estimated polyhedral partition of the regressor space is
such that only 12 out of 500 data samples are misclassi� ed
(i.e., 2: 4 % of the whole validation set).

As the accuracy of the � nal model estimate and the
total CPU time is in� uenced by the number M of runs
of Algorithm 1, the performance of the proposed learning
approach has been tested with respect to both M and the
dimension N of the training set. The obtained BFR as a
function of iterations of Algorithm 1 is plotted in Fig. 2 for
different values of N . Clearly, there is no improvement in
BFR on the two output channels after about 8 runs.

The total CPU time for estimating the PWARX model
is 0: 76 s, of which 0: 016 s are taken to solve the linear
multi-category discrimination problem (13). For the sake of
comparison, both the robust linear programming approach
of [8] and the on-line method described in Section III-B.22

are also run to generate the partition. Results in Table II
show that all of the three algorithms used to compute
the polyhedral partition of the regressor space lead to an
accurate estimate of the system, with BFRs larger then 95 %
(except when N = 4000 and the on-line multi-category

2In executing the on-line approach in Section III-B.2, the weights πi and
the initial guess of φ used by the stochastic gradient method are computed by
executing the batch Algorithm in Section III-B.1 on the � rst 3000 training
samples.

All computations are carried out on an i7 2.40-GHz Intel core
processor with 4 GB of RAM running MATLAB R2014b.
In both examples, the output used in the training phase is
corrupted by an additive zero-mean white noise eo with
Gaussian distribution. The effect of measurement noise on
the output signal is quanti� ed through the Signal-to-Noise
Ratio (SNR), that is de� ned for the i-th output channel as

SNRi = 10 log

∑N
k=1 (yi(k)− eo; i(k))

2

∑N
k=1 e

2
o; i(k)

; (15)

with eo; i(k) denoting the i-th component of eo(k).
The results obtained after the training phase are vali-

dated on a noiseless data sequence. Let yo and ŷ denote,
respectively, the vectors staking the actual and the simulated
outputs of the estimated model, let �yo; i be the sample mean
of the i-th output, and NV the length of the validation data
sequence. The Best Fit Rate (BFR) and Mean Square Error
(MSE) indicators

BFRi =max

{
1− ∥yo; i − ŷi∥2
∥yo; i − �yo ; i∥2

; 0

}
(16)

MSEi =
1

NV

NV∑

k=1

(yo; i(k)− ŷi(k))
2 (17)

de� ned for each output channel i, i = 1 ; : : : ; ny , are used to
assess the quality of the estimated models.

A. Identi� cation of a multivariable PWARX system

Let the system generating the data be a MIMO PWARX
system described by the difference equation
[
y1(k)
y2(k)

]
=

[−0: 83 0 : 20
0: 30 −0: 52

] [y1(k−1)
y2(k−1)

]
+

[−0: 34 0: 45
−0: 30 0: 24

] [u1(k−1)
u2(k−1)

]

+ [0: 200: 15] + max
{[

0: 20 −0: 90
0: 10 −0: 42

] [y1(k−1)
y2(k−1)

]

+ [0: 42 0 : 20
0: 50 0 : 64]

[
u1(k−1)
u2(k−1)

]
+ [0: 400: 30] ; [

0
0]
}
+ eo(k) ;

which is characterized by �s = 4 operating modes, given
by the possible combinations of sign of the components
of the � rst vector argument of the ì maxî operator. The
excitation input u(k) is a white noise sequence with uniform
distribution in the box [−1 0]× [−0: 4 0: 6] and length N =
4000, eo(k) ∈ R2 is a zero-mean white noise with covariance
matrix Λe = [0: 02 0 : 02

0: 02 0 : 02]. This corresponds to signal-to-noise
ratios equal to SNR1 = 8 : 7 dB and SNR2 = 6: 9 dB on the
�rs t and second output channels, respectively.

We run Algorithm 1 with s = �s = 4. The initial guess for
the cluster centroids and covariance matrices are computed
by running an instance of Algorithm 1 without the � rst term
in (6) (i.e., only the modeling error is used as a discrimination
criterion to cluster the observed data points at the � rst run).
Algorithm 1 is then run again for 15 times, with the full
criterion (6), by initializing Ai, ci and Ri with the output
of the previous run. The clusters generated by Algorithm 1
are then separated through the off-line multicategory dis-
crimination method described in Section III-B.1, by solving
the convex optimization problem (13) via the RPSN method

TABLE I
PWARX IDENTIFICATION: BFR AND MSE ON THE TWO OUTPUT

CHANNELS

BFR1 BFR2 MSE1 MSE2

96 : 1% 96: 3% 0 : 99 � 10−4 0: 70 � 10−4

TABLE II
PWARX IDENTIFICATION: BFR ON THE TWO OUTPUT CHANNELS VS

LENGTH N OF THE TRAINING SET.

N = 4000 N = 20000 N = 100000

B
FR

1 (Off-line) RLP [8] 96.0 % 96.5 % 99.0 %
(Off-line) RPSN 96.2 % 96.4 % 98.9 %
(On-line) ASGD 86.7 % 95.0 % 96.7 %

B
FR

2 (Off-line) RLP [8] 96.2 % 96.9 % 99.0 %
(Off-line) RPSN 96.3 % 96.8 % 99.0 %
(On-line) ASGD 87.4 % 95.2 % 96.4 %

TABLE III
PWARX IDENTIFICATION: CPU TIME REQUIRED TO PARTITION THE

REGRESSOR SPACE VS LENGTH N OF THE TRAINING SET.

N = 4000 N = 20000 N = 100000
(Off-line) RLP [8] 0.308 s 3.227 s 112.435 s
(Off-line) RPSN 0.016 s 0.086 s 0.365 s
(On-line) ASGD 0.013 s 0.023 s 0.067 s

described in [6], which is initialized with f ωi ; γi g si=1 = 0.
The regularization parameter λ is set to 10−5.

The quality of the estimated PWA model is assessed w.r.t.
a validation set of NV = 500 samples. The true output yo and
the open-loop simulated output ŷ generated by the estimated
model are plotted in Fig. 1, along with the simulation error
yo(k)− ŷ(k). For the sake of visualization, only the samples
from time 101 to 200 related to the � rst channel are shown in
Fig. 1. The obtained BFR and MSE are reported in Table I.
The estimated polyhedral partition of the regressor space is
such that only 12 out of 500 data samples are misclassi� ed
(i.e., 2: 4 % of the whole validation set).

As the accuracy of the � nal model estimate and the
total CPU time is in� uenced by the number M of runs
of Algorithm 1, the performance of the proposed learning
approach has been tested with respect to both M and the
dimension N of the training set. The obtained BFR as a
function of iterations of Algorithm 1 is plotted in Fig. 2 for
different values of N . Clearly, there is no improvement in
BFR on the two output channels after about 8 runs.

The total CPU time for estimating the PWARX model
is 0: 76 s, of which 0: 016 s are taken to solve the linear
multi-category discrimination problem (13). For the sake of
comparison, both the robust linear programming approach
of [8] and the on-line method described in Section III-B.22

are also run to generate the partition. Results in Table II
show that all of the three algorithms used to compute
the polyhedral partition of the regressor space lead to an
accurate estimate of the system, with BFRs larger then 95 %
(except when N = 4000 and the on-line multi-category

2In executing the on-line approach in Section III-B.2, the weights πi and
the initial guess of φ used by the stochastic gradient method are computed by
executing the batch Algorithm in Section III-B.1 on the � rst 3000 training
samples.

quality of fit

CPU time for computing the partition

RLP = robust linear programming
RPSN = piecewise-smooth Newton
ASGD = (one-pass) averaged stochastic gradient

(Best Fit Rate)

(a) First output channel (output signal): black = true, red = estimated (b) First output channel (simulation error)

Fig. 1. PWARX: output signal and simulation error on the � rst output channel.

where

�a1; 1(p(k)) =

⎧
⎨

⎩

−0 : 3 if 0 : 4 (p1(k) + p2(k)) ≤ −0 : 3;
0: 3 if 0 : 4 (p1(k) + p2(k)) ≥ 0 : 3 ;
0: 4 (p1(k) + p2(k)) otherwise;

�a1; 2(p(k)) =0 : 5 (j p1(k)j + j p2(k) j) ; �a2 ; 1(p(k))= p1(k)−p2(k);

�a2; 2(p(k)) =

⎧
⎨

⎩

0 : 5 if p1(k) < 0 ;
0 if p1(k) = 0 ;

−0 : 5 if p1(k) > 0 ;

�b1; 1(p(k)) = 3p1(k) + p2(k);

�b1; 2(p(k)) =

{
0 : 5 if 2

(
p21(k) + p22(k)

)
≥ 0: 5 ;

2
(
p21(k) + p22(k)

)
otherwise;

�b2; 1(p(k)) = 2 sin f p1(k)− p2(k) g ; �b2; 2(p(k)) = 0 :

Both the input u(k) and the scheduling vector p(k) are white
noise sequences (independent of each other) of length N =
11000 with uniform distribution in the boxes [−0: 5 0: 5]×
[−0: 5 0 : 5] and [−1 1] × [−1 1], respectively. The noise
covariance matrix of eo(k) ∈ R2 is Λe = [0 : 25 0

0 0 : 25]. This
corresponds to signal-to-noise ratios on the � rst and on the
second output channel equal to SNR1 = 4 dB and SNR2 = 7
dB, respectively. The goal is to estimate, from the gathered
data, a PWA approximation of the p-dependent nonlinear
functions �ai; j and �bi; j de� ning the behaviour of the LPV
data-generating system.

1) Choice of the number of modes: The number s of
polyhedral regions de� ning the partition of the scheduling
vector space P = [−1 1] × [−1 1] is chosen through
cross validation. Speci� cally, the 11000-length training data
set is split into two disjoint sets. The � rst 10000 samples
are used to estimate a PWA approximation of �ai; j and �bi; j ,
along with the polyhedral partition of the scheduling vector
space P , for different values of s in the range 5ñ 30. For
each value of s, the identi� cation Algorithm 1 is run 10
times. The second part of training data (i.e., the remaining
1000 samples) is used to assess the quality of the identi� ed
LPV models. Among the identi� ed LPV models, the one
providing the largest aggregated BFRT = BFR1+BFR2 is
selected, which corresponds to s = 10 polyhedral regions.
The computed polyhedral partition, obtained by solving
problem (11) through the RPSN method explained in [6],
is plotted in Fig. 3 (the Hybrid Toolbox for MATLAB [4]
has been used to plot the polytopes in Fig. 3).

2) Model quality assessment: The quality of the estimated
LPV model is then assessed w.r.t. a validation dataset,
consisting of a new sequence of 2000 noiseless samples used
neither to estimate the LPV model nor to select the number
of modes s. For the sake of comparison, the nonlinear

Fig. 3. LPV: polyhedral partition of the scheduling vector space P .

coef� cient functions �ai; j(p(k)) and �bi; j(p(k)) are also es-
timated through the parametric LPV identi� cation approach
proposed in [3], by parameterizing the nonlinear functions
�ai; j(p(k)) and �bi; j(p(k)) as fourth-order polynomials in the
two-dimensional scheduling vector p(k).

The true outputs yo and the simulated output sequences
ŷ of the estimated LPV models are plotted in Fig. 4,
along with the simulation error yo(k) − ŷ(k). For the sake
of visualization, only the samples from time 101 to 200
related to the second channel are reported. The BFR on the
two output channels is reported in Table III. The obtained
results show that the proposed LPV identi� cation approach
based on the PWA approximation of the coef� cient functions
�ai; j(p(k)) and �bi; j(p(k))) outperforms the parametric LPV
identi� cation approach in [3].

We also remark that the ì onlineî computational time
required to evaluate the output of the LPV model, given
the current value of the scheduling vector �p and the past
input/output observations is about 120 � s, 40 � s of which
are required to evaluate which region the current scheduling
vector belongs to. This relatively ì lowî online computational
time is mainly due to the PWA structure of the coef� cient
functions describing the LPV model, and it allows to use
the estimated LPV model in applications requiring a ì fastî
online determination of the operating mode, such as in gain
scheduling or in LPV model predictive control.

3) Performance of multi-category discrimination algo-
rithms: The CPU time required to estimate the LPV model
through the proposed PWA regression approach is 759 s. This
includes the cross-validation phase to compute the number of

!"#"

PWA Regression Examples
C ZQ.+!,#*YI*\Mb=DNo*;+<%5

38

AS&%'./#2*M#012*S%;?+&1<2*896:B

N%'45('I quality of fit

Fig. 2. PWARX identi� cation: BFR on the � rst and on the second output
channel vs number of runs of Algorithm 1

discrimination method is used). Furthermore, the results
show that the estimated models become more accurate as the
number of training samples increases. The CPU times taken
to compute the polyhedral partition are reported in Table III,
which shows that, for a large training set (i.e., N = 100000),
the off-line RPSN and the on-line ASGD method are about
300x and 1600x faster, respectively, than the robust linear
programming method of [8].

B. Identi� cation of an LPV system
Let the data be collected from the MIMO LPV system
[
y1(k)
y2(k)

]
=
[
�a1 ; 1(p(k)) �a1 ; 2(p(k))
�a2 ; 1(p(k)) �a2 ; 2(p(k))

] [
y1(k−1)
y2(k−1)

]

+
[
�b1 ; 1(p(k)) �b1 ; 2(p(k))
�b2 ; 1(p(k)) �b2 ; 2(p(k))

] [
u1(k−1)
u2(k−1)

]
+ eo(k);

(18)

where

�a1; 1(p(k)) =

⎧
⎨

⎩

−0 : 3 if 0 : 4 (p1(k) + p2(k)) ≤ −0 : 3;
0 : 3 if 0 : 4 (p1(k) + p2(k)) ≥ 0 : 3 ;
0 : 4 (p1(k) + p2(k)) otherwise ;

�a1; 2(p(k)) = 0 : 5 (j p1(k)j + j p2(k)j) ;
�a2; 1(p(k)) = p1(k)− p2(k) ;

�a2; 2(p(k)) =

⎧
⎨

⎩

0 : 5 if p1(k) < 0 ;
0 if p1(k) = 0 ;

−0 : 5 if p1(k) > 0 ;

�b1; 1(p(k)) = 3p1(k) + p2(k);

�b1; 2(p(k)) =

{
0 : 5 if 2

(
p21(k) + p22(k)

)
≥ 0: 5 ;

2
(
p21(k) + p22(k)

)
otherwise;

�b2; 1(p(k)) = 2 sin f p1(k)− p2(k) g ;
�b2; 2(p(k)) = 0 :

Both the input u(k) and the scheduling vector p(k) are white
noise sequences (independent of each other) of length N =
11000 with uniform distribution in the boxes [−0: 5 0: 5]×
[−0: 5 0 : 5] and [−1 1] × [−1 1], respectively. The noise
covariance matrix of eo(k) ∈ R2 is Λe = [0 : 25 0

0 0 : 25]. This
corresponds to signal-to-noise ratios on the � rst and on the
second output channel equal to SNR1 = 4 dB and SNR2 = 7
dB, respectively.

Fig. 3. LPV identi� cation: polyhedral partition of the scheduling vector
space P

The goal is to estimate, from the gathered data, a PWA
approximation of the p-dependent nonlinear functions �ai; j
and �bi; j de� ning the behaviour of the LPV data-generating
system (18).

1) Choice of the number of modes: The number s of
polyhedral regions de� ning the partition of the scheduling
vector space P = [−1 1]× [−1 1] is chosen through cross
validation. Speci� cally, the 11000-length training data set is
split into two disjoint sets. The � rst 10000 samples are used
to estimate a PWA approximation of �ai; j and �bi; j , along
with the polyhedral partition of the scheduling vector space
P , for different values of s in the range 5ñ 30. For each
value of s, the identi� cation Algorithm 1 is run 10 times.
The second part of training data (i.e., the remaining 1000
samples) is used to assess the quality of the identi� ed LPV
models. For each value of s, the BFR on the two output
channels is computed. Among the identi� ed LPV models,
the one providing the largest aggregated BFRT = BFR1 +
BFR2 is selected, which corresponds to s = 10 polyhedral
regions. The computed polyhedral partition, obtained by
solving problem (13) through the regularized piecewise-
smooth Newton method explained in [6], is plotted in Fig. 3
(the Hybrid Toolbox for MATLAB [4] has been used to plot
the polytopes in Fig. 3).

2) Model quality assessment: The quality of the estimated
LPV model is then assessed w.r.t. a validation dataset,
consisting of a new sequence of NV = 2000 noiseless
samples used neither to estimate the LPV model nor to
select the number of modes s. For the sake of comparison,
the nonlinear coef� cient functions �ai; j(p(k)) and �bi; j(p(k))
are also estimated through the parametric LPV identi� cation
approach proposed in [3], by parameterizing the nonlinear
functions �ai; j(p(k)) and �bi; j(p(k)) as fourth-order polyno-
mials in the two-dimensional scheduling vector p(k).

The true outputs yo and the simulated output sequences ŷ
of the estimated LPV models are plotted in Fig. 4, along
with the simulation error yo(k) − ŷ(k). For the sake of
visualization, only the samples from time 101 to 200 related
to the second channel are reported. The BFR and MSE on the

[
y1(k)
y2(k)

]
=
[
�a1 ; 1(p(k)) �a)) �a)) � 1 ; 2(p(k))
�a2 ; 1(p(k)) �a)) �a)) � 2 ; 2(p(k))

] [
y1(k−1)
y2(k−1)

]

+
[
�b1 ; 1(p(k)) �b1 ; 2(p(k))
�b2 ; 1(p(k)) �b2 ; 2(p(k))

] [
u1(k−1)
u2(k−1)

]
+ eo(k)

runs
5 10 15 20 25 30

B
F
R

1

0.8

1

1.2

1.4 N=4000
N=20000
N=100000

runs
5 10 15 20 25 30

B
F
R

2

0.8

1

1.2

1.4 N=4000
N=20000
N=100000

Fig. 2. PWARX identi� cation: BFR on the � rst and on the second output
channel vs number of runs of Algorithm 1

discrimination method is used). Furthermore, the results
show that the estimated models become more accurate as the
number of training samples increases. The CPU times taken
to compute the polyhedral partition are reported in Table III,
which shows that, for a large training set (i.e., N = 100000),
the off-line RPSN and the on-line ASGD method are about
300x and 1600x faster, respectively, than the robust linear
programming method of [8].

B. Identi� cation of an LPV system
Let the data be collected from the MIMO LPV system
[
y1(k)
y2(k)

]
=
[
�a1 ; 1(p(k)) �a1 ; 2(p(k))
�a2 ; 1(p(k)) �a2 ; 2(p(k))

] [
y1(k−1)
y2(k−1)

]

+
[
�b1 ; 1(p(k)) �b1 ; 2(p(k))
�b2 ; 1(p(k)) �b2 ; 2(p(k))

] [
u1(k−1)
u2(k−1)

]
+ eo(k);

(18)

where

�a1; 1(p(k)) =

⎧
⎨

⎩

−0 : 3 if 0 : 4 (p1(k) + p2(k)) ≤ −0 : 3;
0 : 3 if 0 : 4 (p1(k) + p2(k)) ≥ 0 : 3 ;
0 : 4 (p1(k) + p2(k)) otherwise ;

�a1; 2(p(k)) = 0 : 5 (j p1(k)j + j p2(k)j) ;
�a2; 1(p(k)) = p1(k)− p2(k) ;

�a2; 2(p(k)) =

⎧
⎨

⎩

0 : 5 if p1(k) < 0 ;
0 if p1(k) = 0 ;

−0 : 5 if p1(k) > 0 ;

�b1; 1(p(k)) = 3p1(k) + p2(k);

�b1; 2(p(k)) =

{
0 : 5 if 2

(
p21(k) + p22(k)

)
≥ 0: 5 ;

2
(
p21(k) + p22(k)

)
otherwise;

�b2; 1(p(k)) = 2 sin f p1(k)− p2(k) g ;
�b2; 2(p(k)) = 0 :

Both the input u(k) and the scheduling vector p(k) are white
noise sequences (independent of each other) of length N =
11000 with uniform distribution in the boxes [−0: 5 0 : 5]×
[−0: 5 0 : 5] and [−1 1] × [−1 1], respectively. The noise
covariance matrix of eo(k) ∈ R2 is Λe = [0 : 25 0

0 0 : 25]. This
corresponds to signal-to-noise ratios on the � rst and on the
second output channel equal to SNR1 = 4 dB and SNR2 = 7
dB, respectively.

Fig. 3. LPV identi� cation: polyhedral partition of the scheduling vector
space P

The goal is to estimate, from the gathered data, a PWA
approximation of the p-dependent nonlinear functions �ai; j
and �bi; j de� ning the behaviour of the LPV data-generating
system (18).

1) Choice of the number of modes: The number s of
polyhedral regions de� ning the partition of the scheduling
vector space P = [−1 1]× [−1 1] is chosen through cross
validation. Speci� cally, the 11000-length training data set is
split into two disjoint sets. The � rst 10000 samples are used
to estimate a PWA approximation of �ai; j and �bi; j , along
with the polyhedral partition of the scheduling vector space
P , for different values of s in the range 5ñ 30. For each
value of s, the identi� cation Algorithm 1 is run 10 times.
The second part of training data (i.e., the remaining 1000
samples) is used to assess the quality of the identi� ed LPV
models. For each value of s, the BFR on the two output
channels is computed. Among the identi� ed LPV models,
the one providing the largest aggregated BFRT = BFR1 +
BFR2 is selected, which corresponds to s = 10 polyhedral
regions. The computed polyhedral partition, obtained by
solving problem (13) through the regularized piecewise-
smooth Newton method explained in [6], is plotted in Fig. 3
(the Hybrid Toolbox for MATLAB [4] has been used to plot
the polytopes in Fig. 3).

2) Model quality assessment: The quality of the estimated
LPV model is then assessed w.r.t. a validation dataset,
consisting of a new sequence of NV = 2000 noiseless
samples used neither to estimate the LPV model nor to
select the number of modes s. For the sake of comparison,
the nonlinear coef� cient functions �ai; j(p(k)) and �bi; j(p(k))
are also estimated through the parametric LPV identi� cation
approach proposed in [3], by parameterizing the nonlinear
functions �ai; j(p(k)) and �bi; j(p(k)) as fourth-order polyno-
mials in the two-dimensional scheduling vector p(k).

The true outputs yo and the simulated output sequences ŷ
of the estimated LPV models are plotted in Fig. 4, along
with the simulation error yo(k) − ŷ(k). For the sake of
visualization, only the samples from time 101 to 200 related
to the second channel are reported. The BFR and MSE on the

[3] = Bamieh, Giarré (2002)

(a) Second output channel (output signal): black = true, red = PWA
regression, green =polynomial parametrization [3]

(b) Second output channel (simulation error): red = PWA regression,
green =polynomial parametrization [3]

Fig. 4. LPV: output signal and simulation error on the second output channel.

TABLE III
LPV: BFR OBTAINED WITH PWA REGRESSION AND POLYNOMIAL

PARAMETRIZATION [3]

BFR1 BFR2

PWA regression 87 % 84 %
parametric LPV [3] 80 % 70 %

modes s. For s = 10, the CPU time required to compute the
LPV model is 14 s, 0: 4 s of which are spent to compute the
polyhedral partition via problem (11) (RLP discrimination
algorithm of [8] takes 4: 2 seconds, i.e., almost 10x slower).

For a more exhaustive comparison between the RPSN
approach and the RLP algorithm of [8], the CPU time
required by the two algorithms to partition the scheduling
parameter space is plotted, as a function of s, in Fig. 5.
Fig. 5 also shows the CPU time required by the ASGD
algorithm in [6] to compute the solution of problem (12).
The weights πi and the initial estimate used by the aver-
aged stochastic gradient descent algorithm are computed by
solving problem (11) on the � rst 1000 training samples. The
remaining 9000 training samples are processed recursively.
The regularization parameter λ in problems (11) and (12)
is set to 10−5. Results in Fig. 5 show that: (i) the CPU
time required by all of the three discrimination algorithms
to partition the scheduling vector space increases with the
number of modes s (Fig. 5), as the number of parameters ξ
de� ning the piecewise af� ne separator φ(x) in (9) increases
linearly with s; (ii) the (of� ine) RPSN method and the
(online) ASGD method used to solve problem (11) and (12),
respectively, are faster (from 6x to 20x) than the robust linear
programming based approach of [8].

V. CONCLUSIONS

In this paper we have reviewed the PWA regression
algorithm introduced in [6], and discussed its application to
the identi� cation of PWARX and LPV systems. Through the
examples, it has been shown that the presented approach is
computationally effective for off-line and on-line learning
of PWARX and LPV models. Future research includes the
extension of the PWA regression algorithm presented in

s

5 10 15 20 25 30

tim
e

[s
]

10-2
10-1
100
101
102

Fig. 5. LPV: CPU time vs number of modes (s). (black dashed: RLP [8];
red: RPSN; blue dash-dot: ASGN).

the paper to the identi� cation of hybrid and LPV systems
under different noise conditions and the generalization to
piecewise-nonlinear models (such as piecewise polynomial).

REFERENCES

[1] S.T. Alexander and A.L. Ghirnikar. A method for recursive least
squares � ltering based upon an inverse QR decomposition. IEEE
Trans. Signal Processing, 41(1):20ñ 30, 1993.

[2] L. Bako, K. Boukharouba, E. Duviella, and S. Lecoeuche. A recursive
identi� cation algorithm for switched linear/af� ne models. Nonlinear
Analysis: Hybrid Systems, 5(2):242ñ 253, 2011.

[3] B. A. Bamieh and L. Giarr ¥e. Identi� cation of linear parameter-
varying models. International Journal of Robust Nonlinear Control,
12(9):841ñ 853, 2002.

[4] A. Bemporad. Hybrid Toolbox - User' s Guide, 2004. url:
http://cse.lab.imtlucca.it/ bemporad/hybrid/toolbox.

[5] A. Bemporad, D. Bernardini, and P. Patrinos. A convex feasibility
approach to anytime model predictive control. Technical report, 2015.
http://arxiv.org/abs/1502.07974.

[6] A. Bemporad, V. Breschi, and D. Piga. Piecewise af� ne regression
via recursive multiple least squares and multicategory discrimination.
Technical report, 2016. Submitted to Automatica. Available at: http:
//www.dariopiga.com/TR/TR_PWAReg_BBP_2015.pdf.

[7] A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino. A bounded-error
approach to piecewise af� ne system identi� cation. IEEE Transactions
on Automatic Control, 50(10):1567ñ 1580, 2005.

[8] K.P. Bennett and O.L. Mangasarian. Multicategory discrimination via
linear programming. Opt. Methods and Software, 3:27ñ 39, 1994.

[9] G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari. A
clustering technique for the identi� cation of piecewise af� ne systems.
Automatica, 39(2):205ñ 217, 2003.

[10] A. L. Juloski, S. Weiland, and W. P. M. H. Heemels. A bayesian
approach to identi� cation of hybrid systems. IEEE Transactions on
Automatic Control, 50(10):1520ñ 1533, 2005.

[11] H. Nakada, K. Takaba, and T. Katayama. Identi� cation of piecewise
af� ne systems based on statistical clustering technique. Automatica,
41(5):905ñ 913, 2005.

[12] H. Ohlsson and L. Ljung. Identi� cation of switched linear regression
models using sum-of-norms regularization. Automatica, 49(4):1045ñ
1050, 2013.

[13] N. Ozay, C. Lagoa, and M. Sznaier. Set membership identi� cation of
switched linear systems with known number of subsystems. Automat-
ica, 51:180ñ 191, 2015.

[14] S. Paoletti, A. L. Juloski, G. Ferrari-Trecate, and R. Vidal. Identi-
� cation of hybrid systems a tutorial. European journal of control,
13(2):242ñ 260, 2007.

[15] M. Petreczky and L. Bako. On the notion of persistence of excitation
for linear switched systems. In 50th Conference on Decision and
Control, pages 1840ñ 1847, Orlando, FL, 2011.

[16] M. Petreczky, Laurent L. òBako, and S. A. Lecoeuche. Minimality and
identi� ability of SARX systems. In 16th IFAC Symposium on System
Identi� cation, pages 541ñ 546, Brussels, Belgium, 2012.

[17] D. Piga, P. Cox, R. T ¥oth, and V. Laurain. LPV system identi� cation
under noise corrupted scheduling and output signal observations.
Automatica, 53:329ñ 338, 2015.

[18] J. Roll, A. Bemporad, and L. Ljung. Identi� cation of piecewise af� ne
systems via mixed-integer programming. Automatica, 40(1):37ñ 50,
2004.

!"#$

time (samples)
110 120 130 140 150 160 170 180 190 200

y
o
;
ŷ

­ 0.2

0

0.2

0.4

0.6

0.8

(a) First output channel (output signal): black = true, red = estimated (b) First output channel (simulation error)

Fig. 1. PWARX identi� cation: output signal and simulation error on the � rst output channel

TABLE IV
LPV IDENTIFICATION: BFR AND MSE OF THE LPV MODELS

ESTIMATED BY USING THE PROPOSED PWA REGRESSION APPROACH

AND THE PARAMETRIC LPV IDENTIFICATION APPROACH OF [3]

BFR1 BFR2 MSE1 MSE2

PWA regression 87 % 84 % 6: 9 � 10−3 13 : 9 � 10−3

parametric LPV [3] 80 % 70 % 17 : 5 � 10−3 46 : 3 � 10−3

two output channels are reported in Table IV. The obtained
results show that the proposed LPV identi� cation approach
based on the PWA approximation of the coef� cient functions
�ai; j(p(k)) and �bi; j(p(k))) outperforms the parametric LPV
identi� cation approach in [3].

We also remark that the ì onlineî computational time
required to evaluate the output of the LPV model, given
the current value of the scheduling vector �p and the past
input/output observations is about 120 � s, 40 � s of which
are required to evaluate which region the current scheduling
vector belongs to. Note that the latter step requires to
compute the maximum of s = 10 af� ne functions f φi(�p)g si=1

de� ning the piecewise af� ne separator φ(�p) in (10). This
relatively ì lowî online computational time is mainly due to
the PWA structure of the coef� cient functions describing the
LPV model, and it allows to use the estimated LPV model
in applications requiring a ì fastî online determination of the
operating mode, such as in gain scheduling or in LPV model
predictive control.

3) Performance of multi-category discrimination algo-
rithms: The CPU time required to estimate the LPV model
through the proposed PWA regression approach is 759 s.
This includes the cross-validation phase to compute the
number of modes s. For s = 10, the CPU time required
to compute the LPV model is 14 s, 0: 4 s of which are spent
to compute the polyhedral partition via problem (13) (the
robust linear programming multicategorical discrimination
algorithm of [8] takes 4: 2 seconds, i.e., almost 10x slower).

For a more exhaustive comparison between the regularized
piecewise-smooth Newton approach used to solve prob-
lem (13) and the robust linear programming algorithm of [8],
the CPU time required by the two algorithms to partition
the scheduling parameter space is plotted, as a function of
s, in Fig. 5. Fig. 5 also shows the CPU time required by
the averaged stochastic gradient descent algorithm in [6] to
compute the solution of problem (14). The weights πi and
the initial estimate used by the averaged stochastic gradient

descent algorithm are computed by solving problem (13)
on the � rst 1000 training samples. The remaining 9000
training samples are processed recursively. The regularization
parameter λ in problems (13) and (14) is set to 10−5.

In order to test the performance of the three multicategory
discrimination algorithms in terms of model accuracy, the
aggregate best � t rate BFRT obtained by using the three
algorithms is plotted, as a function of s, in Fig. 6. Results
in Figs. 5 and 6 show that:

� the CPU time required by all of the three discrimination
algorithms to partition the scheduling vector space in-
creases with the number of modes s (Fig. 5). This is due
to the fact that the number of parameters ξ de� ning the
piecewise af� ne separator φ(x) in (10) increases linearly
with s;

� the (of� ine) regularized piecewise-smooth Newton
method and the (online) average stochastic gradient
method used to solve problem (13) and (14), respec-
tively, are faster (from 6x to 20x) than the robust linear
programming based approach of [8].

� in terms of model accuracy, the robust linear program-
ming approach of [8] and the regularized piecewise-
smooth Newton method achieve similar performance
(Fig. 6), while, for s = 11, s = 14 and s = 20,
the averaged stochastic gradient descent algorithm does
not provide an accurate partition of the scheduling
vector space, leading to LPV models with an aggregate
best � t rates smaller than 1: 1. This means that, for
s = 11; 14; 20 the solution of the averaged stochastic
gradient descent algorithm fails to converge to the batch
solution of problem (13) when only N = 10000 training
samples are used.

Fig. 5. LPV identi� cation: CPU time required to partition the scheduling
vector space vs number of modes (s).

!"#$%&'#(%)*+,*-.-/01,2-32456/-78+,$73,309-0:,785;+

<30=3-8/,>4?.-//01,/7,@ABC,'437=068,!78/375,!78D030820+
E020-901,"2/7?03,@AF,@ABG+

validation data (open-loop)

Embedded MPC without A MODEL

$9).+%&.,*+($#,
O1.3#$*()*$.'.D

39

%;>%<<%<*;+<%5=>1'%<*+?(#;#@%&

min
z

1

2
z0Qz + c0z

s.t. Az  b

&%,%&%".% +4(?4(#"?4(

;%1'4&%;%"('

rAtB uAtB yAtB

(!'%+%-.'%()*.,/("%'0+

?&+.%''

m
in

1
2
x

0 Q
x

+
c

0 x

s.t
.

A

x


b

CV1"*F%*#;?5%;%"(*-MV*<%'0(4'*%$%"*1*+($#,*+,*(/%*?&+.%''*r

YES !

min
z

1

2
z0Qz + c0z

s.t. Az  b

(!'%+%-.'%()*.,/("%'0+

$9).+%&.,*+($#,
O1.3#$*()*$.'.D

Data-driven Direct Controller Synthesis

40

A`+&;%"(#"*%(*15K2*896gB
AV1;?#2*\%../#"#2*O1$1&%'#2*8998B

C*V+55%.(*1*'%(*+,*+>'%&$1(#+"'*{u(k), y(k), p(k)}, k =1,..., N

C*O?%.#,)*1*<%'#&%<*.5+'%<=5++?*5#"%1&*;+<%5*M*,&+;*r*(+*y

C*V+;?4(%*rv(k)=M#y(k)*,&+;*?'%4<+=#"$%&'%*;+<%5*M#*+,*M

C*l<%"(#,)*5#"%1&*A\MbB*;+<%5*Kp*,&+;*ev=rv - y*A$#&(415*(&1.[#"0*%&&+&B*(+*u

Virtual reference feedback tuning

G

p

y
o

Kp
r

�

y
d

ue

M

M
r
v

y

Collect a sequence of data {u(k), y(k), p(k)}Nk=1

Specify a desired closed-loop behaviour M. Compute the reference signal r

v

(k)

such that the y(k) is the output of M when fed by a reference signal r

v

(k) (i.e.,

r

v

(k) = M†
y(k)).

Compute the virtual tracking error e

v

(k) = r

v

(k)� y(k). When the observed

input sequence u(k) is applied to the plant, the output signal will be (in a

noise-free scenario) the observed sequence y(k). Then, a “good” controller is the

one that generates the observed sequence u(k) when fed by the virtual tracking

error e

v

(k).

Compute the dynamical system (i.e., the designed controller) describing the

dynamic relation between e

v

(k) and u(k).

5 / 15

y
o

y
o

y
KpKpK�

d

ue

M

G

Data-driven MPC Synthesis of Controllers

41
AM#012*`+&;%"(#"2*S%;?+&1<2*896:B

CW%'#0"*1*5#"%1&*-MV*.+"(&+55%&*A&%,%&%".%*0+$%&"+&B*(+*0%"%&1(%*.+;;1"<*r

Hierarchical control architecture

Can we improve the closed-loop performance and impose input/output constraints?

G

p

y
o

Kp
r

�

y
d

ue

M

MPCr
o

The model M describes the relation between r and y !

Control design scheme:

MMPCr
o

y

�

r

Kp u

p

M0

11 / 15

y
o

y
o

y
KpKpK�

d

ue

M

G

Hierarchical control architecture

Can we improve the closed-loop performance and impose input/output constraints?

G

p

y
o

Kp
r

�

y
d

ue

M

MPCr
o

The model M describes the relation between r and y !

Control design scheme:

MMPCr
o

y

�

r

Kp u

p

M0

11 / 15

Linear prediction model
(totally known !)

M

�

KpKpK

M0

-MV*.1"*/1"<5%*.+"'(&1#"('*+"*#"?4('*1"<*
+4(?4('2*1"<*#;?&+$%*.5+'%<=5++?*?%&,+&;1".%

desired
reference

AS%;?+&1<2*-+'.12*6PP7B
AJ#5>%&(2*Z+5;1"+$'[)2*R1"2*6PP7B*

2

4
✓̇(⌧)
!̇(⌧)
İ(⌧)

3

5=

0

@

2

4
0 1 0
0 � b

J
K
J

0 �K
L �R

L

3

5+

2

4
0 1 0

mgl
J 0 0
0 0 0

3

5 sin(✓(⌧))

✓(⌧)

1

A

2

4
✓(⌧)
!(⌧)
I(⌧)

3

5+

2

4
0
0
1
L

3

5V (⌧)

y(⌧) =
⇥
1 0 0

⇤
2

4
✓(⌧)
!(⌧)
I(⌧)

3

5

x

M

(k +1) = 0.99x
M

(k) + 0.01r(k)

✓

M

(k) = x

M

(k)

Data-driven MPC Synthesis of Controllers - An Example

C WV*;+(+&*%G41(#+"'*

42

Simulation example: control of a DC motor

2

4
˙✓(⌧)
!̇(⌧)
˙

I (⌧)

3

5
=

0

@

2

4
0 1 0

0 � b
J

K
J

0 �K
L �R

L

3

5
+

2

4
0 1 0

mgl
J 0 0

0 0 0

3

5 sin(✓(⌧))
✓(⌧)

1

A

2

4
✓(⌧)
!(⌧)
I (⌧)

3

5
+

2

4
0

0

1
L

3

5
V (⌧)

y(⌧) =
⇥
1 0 0

⇤
2

4
✓(⌧)
!(⌧)
I (⌧)

3

5
This model is used to generate data

For frozen ✓, the system is LTI

7 / 15

C W%'#&%<*.5+'%<=5++?*>%/1$#+&*M*AiE&'(=+&<%&*5+F=?1''*E5(%&BI

Simulation example: control of a DC motor

G

p

y
o

Kp
r

�

y
d

ue

M

The input/output signals are measured with a sampling time Ts = 10 ms

The output signal observations ✓(k) are corrupted by an additive measurement

noise (SNR = 35 db)

Desired closed-loop behavior M:

xM(k + 1) = 0.99xM(k) + 0.01r(k)

✓M(k) = xM(k)

1st-order LTI model

Chosen control structure:

z

z � 1

e

v eI
K

0
p

u

K

0
p :u(k)=

4X

i=1

ai (✓(k))u(k�i)+

3X

j=0

bj(✓(k))eI (k�j)

8 / 15

Simulation example: control of a DC motor

G

p

y
o

Kp
r

�

y
d

ue

M

The input/output signals are measured with a sampling time Ts = 10 ms

The output signal observations ✓(k) are corrupted by an additive measurement

noise (SNR = 35 db)

Desired closed-loop behavior M:

xM(k + 1) = 0.99xM(k) + 0.01r(k)

✓M(k) = xM(k)

1st-order LTI model

Chosen control structure:

z

z � 1

e

v eI
K

0
p

u

K

0
p :u(k)=

4X

i=1

ai (✓(k))u(k�i)+

3X

j=0

bj(✓(k))eI (k�j)

8 / 15

C V/+'%"*.+"(&+5*'(&4.(4&%*,+&*Kp *I

C -MV*<%'#0"*F_*'+,(*.+"'(&1#"('*+"*#"?4('2*+4(?4('*1"<*#"?4(*#".&%;%"('

@4
J J

0 �K

3

5+

2
0 1 0

0 0 0

5 sin(

1 0 0
⇤
2

✓(⌧)
3

(not
used

 !)J

(not
used

 !)J
�

(not
used

 !)
�K

(not
used

 !)
K

(not
used

 !)
L

(not
used

 !)
L �

(not
used

 !)
�R

(not
used

 !)
R

(not
used

 !)
L

(not
used

 !)
L

3

(not
used

 !)
3

5

(not
used

 !)5+

(not
used

 !)+

2

(not
used

 !)
2

4

(not
used

 !)4
0 1 0

(not
used

 !)0 1 0
mgl

(not
used

 !)mgl

(not
used

 !)J

(not
used

 !)J 0 0

(not
used

 !)0 0
0 0 0

(not
used

 !)
0 0 0

3

(not
used

 !)
3

5

(not
used

 !)5 sin(

(not
used

 !)sin(

(not
used

 !)
1 0 0(not

used
 !)

1 0 0
⇤(not

used
 !)

⇤
2

(not
used

 !)
2

✓(not
used

 !)
✓((not
used

 !)
(⌧(not
used

 !)
⌧)(not
used

 !)
)
3

(not
used

 !)
3

5 10 15 20 25 30

u
 [

V
]

-5

0

5
u

Time [s]

5 10 15 20 25 30

∆
 u

 [
V

]

-0.5

0

0.5
∆ u

Data-driven MPC Synthesis of Controllers - An Example

CXa?%&#;%"(15*&%'45('

43

Time [s]
5 10 15 20 25 30

θ
 [r

ad
]

2

2.5

3

3.5

4

4.5
θ

r
with MPC
without MPC

desired tracking
performance achieved

constraints on input
increments satisfied

c+*;+<%5*+,*+?%"=5++?*?&+.%''*#<%"(#E%<*(+*<%'#0"*(/%*-MV*.+"(&+55%&*u

C -MV*.1"*%1'#5)*/1"<5%*+4,'%E."%.1,#*&()'"(,*?&+>5%;'*F#(/*&()3'".%)'3*#"*1"*
(!'%+%-#$*F1)

C Z.39*'(*$#3%/)*1"<*"#&()[/4"#*1"<*(+ /1"<5%*4)&#"'.%)'9

Conclusions

44

C \+"0*/#'(+&)*+,*'4..%''*#"*(/%*12-+#""$*(&3"/2*#"*"+F*
'?&%1<#"0*(+*(/%*%3/-)-/*4#$%(&$%#2-"1%+#$*(&3"/2*#"
A1"<*;1")*+(/%&'B

C -DR\DS*<%'#0"*(++5'*1"<*?&+<4.(#+"=&%1<)*V=.+<%*1&%*1$1#51>5%*

Advanced Controls & Optimization

]3*=;>*.*+.'4"#*'#&0)(,(/9*
C("*!"($4&'%()*%)*C.3'*
#+1#$$#$*.!!,%&.'%()3*^ YES.

http://cse.lab.imtlucca.it/~bemporad/publications

http://cse.lab.imtlucca.it/~bemporad/publications
http://cse.lab.imtlucca.it/~bemporad/publications

