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Model Predictive Control (MPC)
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Model Predictive Control (MPC)
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One of the First papers on MPC
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Automotive applications of MPC
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Aerospace applications of MPC
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MPC for Smart Electricity Grids

FP7-ICT project “E-PRICE - Price-based Control of Electrical Power Systems” (2010-2013)
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MPC for Management of Drinking water networks

Drinking water 
network of 
Barcelona:

81 tanks, 
64 valves
180 pumps.
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FP7-ICT project “WIDE - Decentralized and Wireless Control of Large-Scale Systems”
FP7-ICT project “EFFINET - Efficient Integrated RT Monitoring & Control of Drinking Water Nets”
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• MPC Toolbox (The Mathworks, Inc.)
(Bemporad, Ricker, Morari, 1998-present)

! Part of Mathworks’ official toolbox distribution
! Great for education and research

• ODYS Toolbox
(Bemporad, Bernardini, 2013-present)

! Provides flexible and customized MPC control design
and seamless integration in production systems

! Real-time code written in plain C
! Designed for production

MPC TOOLBOXES
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Kalman
filter

MPC

• Hybrid Toolbox 
(Bemporad, 2003-present)

! Free download:
! Great for research and education

http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox/
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Pros and CONS of MPC
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Embedded Linear MPC and Quadratic programming

11

min
z

1

2
z0Hz + x0(t)F 0z +

1

2
x0(t)Y x(t)

s.t. Gz  W + Sx(t)

min
z

1

2
z0Hz + x0(t)F 0z +

1

2
x0(t)Y x(t)

s.t. Gz  W + Sx(t)

C \#"%1&*-MV*&%G4#&%'*'+5$#"0*1*M4.$".'%&*;"(/".+*OM;D

z =

2

6664

u0
u1
...

uN�1

3

7775

AS%15%2*6PggB

D*&#./*'%(*+,*0++<*fM*150+&#(/;'*#'*1$1#51>5%*(+<1)

O(#55*1*5+(*+,*&%'%1&./*#'*0+#"0*+"*(+*1<<&%''*&%15=(#;%*&%G4#&%;%"('*KKK



MPC in a production environment
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Embedded Solvers in industrial Production
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Fast gradient projection for (dual) QP
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var ⇥ constr. GPAD AS ADMM FBN

4⇥ 16 332 µs (18) 120 µs (3) 1.42 ms (62) 208 µs (2)

8⇥ 24 1.1 ms (22) 446 µs (5) 4 ms (77) 396 µs (2)

12⇥ 32 2.59 ms (27) 1.19 ms (7) 8.25 ms (82) 652 µs (2)

var ⇥ constr. GPAD AS ADMM FBN

4⇥ 16 332 µs (18)s (18) 120 µs (3)s (3) 1.42 ms (62)1.42 ms (62) 208 µs (2)s (2)

8⇥ 24 1.1 ms (22) 446 µs (5) 4 ms (77) 396 µs (2)

12⇥ 32 2.59 ms (27) 1.19 ms (7) 8.25 ms (82) 652 µs (2)

Experiments with embedded QP
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Numerical Results - DSP Implementation

TMS320F28335 controlCARD
(Real-time Control Applications)

32-bit Floating Point (IEEE-754);

150MHz clock;

68KB Ram / 512KB Flash.

Benchmarking Problem: Brushless DC Motor Control

May 10, 2014 4 / 6



MPC In Finite-Precision Arithmetics
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fixed
point

floating
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fixed-point about 4x faster than floating-point
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l"*-DR\DSI**>> v=A\b % (1 character ! )
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v = argmin kAv � bk22v = argmin kAv � bk22

Can we solve QP’s using least squares ?
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minv kAv � bk22
s.t. v � 0

minv kAv � bk22
s.t. v � 0
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Active-set method for Nonnegative Least Squares
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i) The set X
f

of parameters x for which the problem is
feasible is a polyhedron;

ii) The optimizer function z⇤ : X
f

! Rn is piecewise affine
and continuous over X

f

;
iii) If in addition matrix

h

Q F

0

F Y

i

is symmetric and positive
semidefinite, the value function V ⇤

: X
f

! R associating
with every x 2 X

f

the corresponding optimal value of (3)
is continuous, convex, and piecewise quadratic.

When X ⇢ Rn, the results of Theorem 1 hold by replacing
X

f

with X
f

\X .
An immediate corollary of Theorem 1 is that the explicit

version of the MPC control law u in (4), being the first n
u

components of the optimal vector z(x), is also a continuous
and piecewise-affine state-feedback law defined over a parti-
tion of the set X

f

\X of states into M polyhedral cells

u⇤
(x) =

8

>

<

>

:

K1x+ h1 if E1x  e1

...
...

KMx+ hM if EMx  eM .

(8)

An example of such a partition is reported in Figure 1 of
Section VI-B. The explicit representation (8) has mapped the
MPC law (4) into a lookup table of affine gains, meaning that
for each given x the values computed by solving the QP (3)
on-line and those obtained by evaluating (8) are exactly the
same.

B. Generalization of the MPC formulation
The explicit approach described above can be extended to

the following MPC setting:
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where R
�u

= R0
�u

> 0, Q
y

= Q0
y

� 0, R
u

= R0
u

� 0, x0

is the current state, vk is a vector of measured disturbances,
y
k

2 Rn

y is the output vector, rk 2 Rn

y its corresponding ref-
erence to be tracked, �u

k

the vector of input increments, u�1

is the command input applied during the previous sampling
interval, ur

k the input reference, uk
min

, uk
max

, �u

k
min

, �u

k
max

,
y

k
min

, yk
max

are bounds, and N , N
u

, N
c

are, respectively, the
prediction, control, and constraint horizons. The extra variable
✏ is introduced to soften output constraints via the relaxation

vectors V
min

, V
max

> 0 of Rn

y and penalized by the (usually
large) weight ⇢

✏

in the cost function (9a).
Everything marked in bold-face in (9) can be treated as a

parameter with respect to which solve the mpQP problem and
obtain the explicit form of the MPC controller. For example,
for a tracking problem with no anticipative action (rk ⌘ r

0

,
8k = 0, . . . , N�1), no measured disturbance, fixed upper and
lower bounds, the explicit solution is a continuous piecewise
affine function of the parameter vector [x0

0
r0

0
u�1

0
]

0.

III. POLYHEDRAL COMPUTATIONS BASED ON NNLS

Finding a solution to the mpQP problem (3) requires solv-
ing several problems of computational geometry, as will be
detailed in Section IV. The goal of this section is to provide
an alternative to existing methods that rely on the availability
of a linear programming (LP) solver, building upon a standard
and easy-to-code solver for the Non-Negative Least-Squares
(NNLS) problem

r⇤ = min

v

kAv � bk2
2

s.t. v � 0,
(10)

where v 2 Rn, A 2 Rm⇥n, b 2 Rm, and r⇤ 2 R is the mini-
mum squared Euclidean norm of the residual w⇤

= Av⇤�b. A
well-known and simple, yet very effective, active-set method
for solving the NNLS problem (10) is described in [19, p.161]
and is summarized in Algorithm 1. At convergence after a
finite number of steps, the algorithm provides the optimal
solution vector v⇤, with v⇤

i

> 0, 8i 2 P , and v⇤
i

= 0,
8i 2 {1, . . . ,m} \ P .

Algorithm 1 NNLS solver [19, p.161]
Input: Matrices A, b.

1) P  ;, v  0;
2) w  A0

(Av � b);
3) if w � 0 or P = {1, . . . ,m} then go to Step 11;
4) i argmin

i2{1,...,m}\P w
i

, P  P [ {i};
5) yP  argmin

zP k((A0
)P)

0zP � bk2
2

, y{1,...,m}\P  0;
6) if yP � 0 then v  y and go to Step 2;
7) j  argmin

h2P: y

h

0

n

v

h

v

h

�y

h

o

;
8) v  v +

v

j

v

j

�y

j

(y � v);
9) I  {h 2 P : v

h

= 0}, P  P \ I;
10) go to Step 5;
11) v⇤  v; end.

Output: A vector v⇤ solving (10)

Algorithm 1 can be easily modified to warm-start from a
set P 6= ; of active constraints, see, e.g., [21, Algorithm 2].
Moreover, since solving Step 5 is the most time consum-
ing operation of Algorithm 1, iterative methods have been
proposed for QR factorization [19, Chap. 24] and LDLT

factorization [20] to exploit the incremental changes of the
active set P in Steps 4 and 9.

In the sequel, we will also refer to the unconstrained
problem

r⇤ = min

v

kAv � bk2
2

(11)

1) P  ;, v  0;
2) w  A0

(Av � b);
3) if w � 0 or P = {1, . . . ,m} then go to Step 11;
4) i argmin

i2{1,...,m}\P w
i

, P  P [ {i};
5) yP  argmin

zP k((A0
)P)

0zP � bk2
2

, y{1,...,m}\P  0;
6) if yP � 0 then v  y and go to Step 2;
7) j  argmin

h2P: y

h

0

n

v

h

v

h

�y

h

o

;
8) v  v +

v

j

v

j

�y

j

(y � v);
9) I  {h 2 P : v

h

= 0}, P  P \ I;
10) go to Step 5;
11) v⇤  v; end.

minv kAv � bk22
s.t. v � 0

minv kAv � bk22
s.t. v � 0
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min
z

1
2z

0Qz + c0z

s.t. Gz  g

min
z

1
2z

0Qz + c0z

s.t. Gz  g

u , Lz + L�T c

Q = L0L

min
y

1
2

�����

"
M 0

d0

#

y +

"
0
1

#�����

2

2
s.t. y � 0

min
y

1
2

�����������������

"
M 0

d0

#

y +

"
0
1

#�����������������
2

2
s.t. y � 0

z⇤ = �
1

1+ d0y⇤
L�1M 0y⇤ �Q�1cz⇤ = �

1

1+ d0y⇤
L�1M 0y⇤ �Q�1c

d = b+GQ�1c

M = GL�1

min
u

1
2kuk

2

s.t. Mu  d

min
u

1
2kuk

2

s.t. Mu  d

Solving QP’s via nonnegative least squares
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Solving QP via NNLS: Numerical results
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QP-NNLS
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Embedded MPC without SOLVING QP’s ON LINE
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Explicit model predictive control and multiparametric QP
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u⇤0
u⇤1...

u⇤N�1
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z⇤(x) = argminz 1
2z

0Hz + x0F 0z
s.t. Gz  W + Sx

z⇤(x) = argminz 1
2z

0Hz + x0F 0z
s.t. Gz  W + Sx
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1

107.5 MHz
= 9.3 ns

Hardware (ASIC) implementation of explicit MPC

http://www.mobydic-project.eu/http://www.mobydic-project.eu/
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multiparametric Quadratic Programming
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feasibility of primal solution
feasibility of dual solution

Ĝz

⇤(x)  Ŵ + Ŝx

�̃

⇤(x) � 0
Ĝz

⇤(x)  Ŵ + Ŝx

�̃

⇤(x) � 0



8$1-,'0#&2-(
*"$(-(#)1/'$*C

0%"$D#2-$2#"*&3%,$

m NNLS LP
2 0.0006 0.0046
4 0.0019 0.0103
6 0.0038 0.0193
8 0.0071 0.0340
10 0.0111 0.0554
12 0.0178 0.0955
14 0.0263 0.1426
16 0.0357 0.1959

Aju
 bj

Aiu  bi

NNLS for multiparametric QP
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redundant non 
redundant

C Z%)*&%'45(I*
P = {u 2 Rn : Au  b}

(v⇤, u⇤) = argminv,u kv +Au� bk22
s.t. v � 0, u free

kv⇤ +Au⇤ � bk22 = 0
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q m Hybrid Tbx MPT NNLS

4 2 0.0174 0.0256 0.0026
4 3 0.0263 0.0356 0.0038
4 4 0.0432 0.0559 0.0061
4 5 0.0650 0.0850 0.0097
4 6 0.0827 0.1105 0.0126
8 2 0.0347 0.0396 0.0050
8 3 0.0583 0.0680 0.0092
8 4 0.0916 0.0999 0.0140
8 5 0.1869 0.2147 0.0322
8 6 0.3177 0.3611 0.0586
12 2 0.0398 0.0387 0.0054
12 3 0.1121 0.1158 0.0191
12 4 0.2067 0.2001 0.0352
12 5 0.6180 0.6428 0.1151
12 6 1.2453 1.3601 0.2426
20 2 0.1029 0.0763 0.0152
20 3 0.3698 0.2905 0.0588
20 4 0.9069 0.7100 0.1617
20 5 2.2978 1.9761 0.4395
20 6 6.1220 6.2518 1.2853

NNLS for solving mpQP problems
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Explicit MPC for idle speed - Experiments
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Complexity of multiparametric solutions
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Complexity Certification for Active Set QP solvers
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z⇤(x) = argminz 1
2z

0Hz + x0F 0z
s.t. Gz  W + Sx

z⇤(x) = argminz 1
2z

0Hz + x0F 0z
s.t. Gz  W + Sx

AJ+5<,1&>2*l<"1"#2*6PQhB

C W#9*"#34,'I*

AV#;#"#2*S%;?+&1<2*896:2*'4>;#((%<B

12

�20 �10 0 10 20
�20

�10

0

10

20

✓ 2

�0.3 �0.2 �0.1 0 0.1 0.2 0.3
�2

�1

0

1

2

✓ 2

�1 �0.5 0 0.5 1 1.5 2
�1

0

1

2

✓ 2

�4 �2 0 2 4

�5

0

5

✓1

✓ 2

Figure 1. Results of the explicit certification algorithm: Partition of the
parameter set ⇥ based on the number of iterations required by the GI QP
solver (same color = same number of QP iterations). From top to bottom:
inverted pendulum, DC motor, heat exchange, AFTI 16.
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Figure 2. Results of the WCPE-MPC approach for inverted pendulum
problem (top) and heat exchange problem (bottom). Computational complexity
(yellow line) of WCPE-MPC is plotted as function of the memory occupancy
required to store an increasing number of regions, from 1 to nr � 1, along
with the complexity of implicit (blue line) and explicit (red line) MPC, and
the corresponding memory requirements. The best tradeoff points between
memory and worst-case execution time are circled.
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inv. pend. DC motor nonlin. demo AFTI 16

# vars 5 3 6 5

# constraints 10 10 18 12

# params 9 6 10 10

Explicit MPC

# regions 87 67 215 417

max flops 3382 1689 9184 16434

max memory (kb) 55 30 297 430

Implicit MPC

max iters 11 9 13 16

max flops 3809 2082 7747 7807

sqrt 27 9 37 33

max memory (kb) 15 13 20 16

Complexity Certification for Active Set QP solvers
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explicit MPC is faster
in the worst-case

online QP is faster
in the worst-case
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Sys-ID for MPC
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f(x) =

8
><

>:

F1x+ g1 if H1x  K1
...
Fsx+ gs if Hsx  Ks

f(x) =

8
>
8
>
8
<><>

>

<

>

<

:>:>

F1F1F x+ g1 if H1x  K1
...
FsFsF x+ gs if Hsx  Ks

PWA Regression PROBLEM
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i=1
ai(p(k))y(k�i)+
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0(k � n

a

)
u

0(k � 1) u

0(k � 2) · · · u

0(k � n

b

)]0

y(k) = f(x(k))

PWA Regression PROBLEM
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PWA Regression Algorithm (1/2)
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All computations are carried out on an i7 2.40-GHz Intel core
processor with 4 GB of RAM running MATLAB R2014b.
In both examples, the output used in the training phase is
corrupted by an additive zero-mean white noise eo with
Gaussian distribution. The effect of measurement noise on
the output signal is quanti� ed through the Signal-to-Noise
Ratio (SNR), that is de� ned for the i-th output channel as

SNRi = 10 log

∑N
k=1 (yi(k)− eo; i(k))

2

∑N
k=1 e

2
o; i(k)

; (15)

with eo; i(k) denoting the i-th component of eo(k).
The results obtained after the training phase are vali-

dated on a noiseless data sequence. Let yo and ŷ denote,
respectively, the vectors staking the actual and the simulated
outputs of the estimated model, let �yo; i be the sample mean
of the i-th output, and NV the length of the validation data
sequence. The Best Fit Rate (BFR) and Mean Square Error
(MSE) indicators

BFRi =max

{
1− ∥yo; i − ŷi∥2
∥yo; i − �yo ; i∥2

; 0

}
(16)

MSEi =
1

NV

NV∑

k=1

(yo; i(k)− ŷi(k))
2 (17)

de� ned for each output channel i, i = 1 ; : : : ; ny , are used to
assess the quality of the estimated models.

A. Identi� cation of a multivariable PWARX system

Let the system generating the data be a MIMO PWARX
system described by the difference equation
[
y1(k)
y2(k)

]
=

[−0: 83 0 : 20
0: 30 −0: 52

] [ y1(k−1)
y2(k−1)

]
+
[−0: 34 0: 45
−0: 30 0: 24

] [ u1(k−1)
u2(k−1)

]

+ [ 0: 200: 15 ] + max
{[

0: 20 −0: 90
0: 10 −0: 42

] [ y1(k−1)
y2(k−1)

]

+ [ 0: 42 0 : 20
0: 50 0 : 64 ]

[
u1(k−1)
u2(k−1)

]
+ [ 0: 400: 30 ] ; [

0
0 ]
}
+ eo(k) ;

which is characterized by �s = 4 operating modes, given
by the possible combinations of sign of the components
of the � rst vector argument of the ì maxî operator. The
excitation input u(k) is a white noise sequence with uniform
distribution in the box [−1 0]× [−0: 4 0: 6] and length N =
4000, eo(k) ∈ R2 is a zero-mean white noise with covariance
matrix Λe = [ 0: 02 0 : 02

0: 02 0 : 02 ]. This corresponds to signal-to-noise
ratios equal to SNR1 = 8 : 7 dB and SNR2 = 6: 9 dB on the
�rs t and second output channels, respectively.

We run Algorithm 1 with s = �s = 4. The initial guess for
the cluster centroids and covariance matrices are computed
by running an instance of Algorithm 1 without the � rst term
in (6) (i.e., only the modeling error is used as a discrimination
criterion to cluster the observed data points at the � rst run).
Algorithm 1 is then run again for 15 times, with the full
criterion (6), by initializing Ai, ci and Ri with the output
of the previous run. The clusters generated by Algorithm 1
are then separated through the off-line multicategory dis-
crimination method described in Section III-B.1, by solving
the convex optimization problem (13) via the RPSN method

TABLE I
PWARX IDENTIFICATION: BFR AND MSE ON THE TWO OUTPUT

CHANNELS

BFR1 BFR2 MSE1 MSE2

96 : 1% 96: 3% 0 : 99 � 10−4 0: 70 � 10−4

TABLE II
PWARX IDENTIFICATION: BFR ON THE TWO OUTPUT CHANNELS VS

LENGTH N OF THE TRAINING SET.

N = 4000 N = 20000 N = 100000

B
FR

1 (Off-line) RLP [8] 96.0 % 96.5 % 99.0 %
(Off-line) RPSN 96.2 % 96.4 % 98.9 %
(On-line) ASGD 86.7 % 95.0 % 96.7 %

B
FR

2 (Off-line) RLP [8] 96.2 % 96.9 % 99.0 %
(Off-line) RPSN 96.3 % 96.8 % 99.0 %
(On-line) ASGD 87.4 % 95.2 % 96.4 %

TABLE III
PWARX IDENTIFICATION: CPU TIME REQUIRED TO PARTITION THE

REGRESSOR SPACE VS LENGTH N OF THE TRAINING SET.

N = 4000 N = 20000 N = 100000
(Off-line) RLP [8] 0.308 s 3.227 s 112.435 s
(Off-line) RPSN 0.016 s 0.086 s 0.365 s
(On-line) ASGD 0.013 s 0.023 s 0.067 s

described in [6], which is initialized with f ωi ; γi g si=1 = 0.
The regularization parameter λ is set to 10−5.

The quality of the estimated PWA model is assessed w.r.t.
a validation set of NV = 500 samples. The true output yo and
the open-loop simulated output ŷ generated by the estimated
model are plotted in Fig. 1, along with the simulation error
yo(k)− ŷ(k). For the sake of visualization, only the samples
from time 101 to 200 related to the � rst channel are shown in
Fig. 1. The obtained BFR and MSE are reported in Table I.
The estimated polyhedral partition of the regressor space is
such that only 12 out of 500 data samples are misclassi� ed
(i.e., 2: 4 % of the whole validation set).

As the accuracy of the � nal model estimate and the
total CPU time is in� uenced by the number M of runs
of Algorithm 1, the performance of the proposed learning
approach has been tested with respect to both M and the
dimension N of the training set. The obtained BFR as a
function of iterations of Algorithm 1 is plotted in Fig. 2 for
different values of N . Clearly, there is no improvement in
BFR on the two output channels after about 8 runs.

The total CPU time for estimating the PWARX model
is 0: 76 s, of which 0: 016 s are taken to solve the linear
multi-category discrimination problem (13). For the sake of
comparison, both the robust linear programming approach
of [8] and the on-line method described in Section III-B.22

are also run to generate the partition. Results in Table II
show that all of the three algorithms used to compute
the polyhedral partition of the regressor space lead to an
accurate estimate of the system, with BFRs larger then 95 %
(except when N = 4000 and the on-line multi-category

2In executing the on-line approach in Section III-B.2, the weights πi and
the initial guess of φ used by the stochastic gradient method are computed by
executing the batch Algorithm in Section III-B.1 on the � rst 3000 training
samples.
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All computations are carried out on an i7 2.40-GHz Intel core
processor with 4 GB of RAM running MATLAB R2014b.
In both examples, the output used in the training phase is
corrupted by an additive zero-mean white noise eo with
Gaussian distribution. The effect of measurement noise on
the output signal is quanti� ed through the Signal-to-Noise
Ratio (SNR), that is de� ned for the i-th output channel as
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with eo; i(k) denoting the i-th component of eo(k).
The results obtained after the training phase are vali-

dated on a noiseless data sequence. Let yo and ŷ denote,
respectively, the vectors staking the actual and the simulated
outputs of the estimated model, let �yo; i be the sample mean
of the i-th output, and NV the length of the validation data
sequence. The Best Fit Rate (BFR) and Mean Square Error
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assess the quality of the estimated models.
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Let the system generating the data be a MIMO PWARX
system described by the difference equation
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which is characterized by �s = 4 operating modes, given
by the possible combinations of sign of the components
of the � rst vector argument of the ì maxî operator. The
excitation input u(k) is a white noise sequence with uniform
distribution in the box [−1 0]× [−0: 4 0 : 6] and length N =
4000, eo(k) ∈ R2 is a zero-mean white noise with covariance
matrix Λe = [ 0: 02 0 : 02

0: 02 0 : 02 ]. This corresponds to signal-to-noise
ratios equal to SNR1 = 8 : 7 dB and SNR2 = 6: 9 dB on the
�rs t and second output channels, respectively.

We run Algorithm 1 with s = �s = 4. The initial guess for
the cluster centroids and covariance matrices are computed
by running an instance of Algorithm 1 without the � rst term
in (6) (i.e., only the modeling error is used as a discrimination
criterion to cluster the observed data points at the � rst run).
Algorithm 1 is then run again for 15 times, with the full
criterion (6), by initializing Ai, ci and Ri with the output
of the previous run. The clusters generated by Algorithm 1
are then separated through the off-line multicategory dis-
crimination method described in Section III-B.1, by solving
the convex optimization problem (13) via the RPSN method
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(Off-line) RPSN 96.3 % 96.8 % 99.0 %
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TABLE III
PWARX IDENTIFICATION: CPU TIME REQUIRED TO PARTITION THE

REGRESSOR SPACE VS LENGTH N OF THE TRAINING SET.

N = 4000 N = 20000 N = 100000
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(Off-line) RPSN 0.016 s 0.086 s 0.365 s
(On-line) ASGD 0.013 s 0.023 s 0.067 s

described in [6], which is initialized with f ωi ; γi g si=1 = 0.
The regularization parameter λ is set to 10−5.

The quality of the estimated PWA model is assessed w.r.t.
a validation set of NV = 500 samples. The true output yo and
the open-loop simulated output ŷ generated by the estimated
model are plotted in Fig. 1, along with the simulation error
yo(k)− ŷ(k). For the sake of visualization, only the samples
from time 101 to 200 related to the � rst channel are shown in
Fig. 1. The obtained BFR and MSE are reported in Table I.
The estimated polyhedral partition of the regressor space is
such that only 12 out of 500 data samples are misclassi� ed
(i.e., 2: 4 % of the whole validation set).

As the accuracy of the � nal model estimate and the
total CPU time is in� uenced by the number M of runs
of Algorithm 1, the performance of the proposed learning
approach has been tested with respect to both M and the
dimension N of the training set. The obtained BFR as a
function of iterations of Algorithm 1 is plotted in Fig. 2 for
different values of N . Clearly, there is no improvement in
BFR on the two output channels after about 8 runs.

The total CPU time for estimating the PWARX model
is 0: 76 s, of which 0: 016 s are taken to solve the linear
multi-category discrimination problem (13). For the sake of
comparison, both the robust linear programming approach
of [8] and the on-line method described in Section III-B.22

are also run to generate the partition. Results in Table II
show that all of the three algorithms used to compute
the polyhedral partition of the regressor space lead to an
accurate estimate of the system, with BFRs larger then 95 %
(except when N = 4000 and the on-line multi-category

2In executing the on-line approach in Section III-B.2, the weights πi and
the initial guess of φ used by the stochastic gradient method are computed by
executing the batch Algorithm in Section III-B.1 on the � rst 3000 training
samples.
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All computations are carried out on an i7 2.40-GHz Intel core
processor with 4 GB of RAM running MATLAB R2014b.
In both examples, the output used in the training phase is
corrupted by an additive zero-mean white noise eo with
Gaussian distribution. The effect of measurement noise on
the output signal is quanti� ed through the Signal-to-Noise
Ratio (SNR), that is de� ned for the i-th output channel as
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de� ned for each output channel i, i = 1 ; : : : ; ny , are used to
assess the quality of the estimated models.

A. Identi� cation of a multivariable PWARX system

Let the system generating the data be a MIMO PWARX
system described by the difference equation
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y1(k)
y2(k)

]
=

[−0: 83 0 : 20
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] [ y1(k−1)
y2(k−1)
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+
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which is characterized by �s = 4 operating modes, given
by the possible combinations of sign of the components
of the � rst vector argument of the ì maxî operator. The
excitation input u(k) is a white noise sequence with uniform
distribution in the box [−1 0]× [−0: 4 0: 6] and length N =
4000, eo(k) ∈ R2 is a zero-mean white noise with covariance
matrix Λe = [ 0: 02 0 : 02

0: 02 0 : 02 ]. This corresponds to signal-to-noise
ratios equal to SNR1 = 8 : 7 dB and SNR2 = 6: 9 dB on the
�rs t and second output channels, respectively.

We run Algorithm 1 with s = �s = 4. The initial guess for
the cluster centroids and covariance matrices are computed
by running an instance of Algorithm 1 without the � rst term
in (6) (i.e., only the modeling error is used as a discrimination
criterion to cluster the observed data points at the � rst run).
Algorithm 1 is then run again for 15 times, with the full
criterion (6), by initializing Ai, ci and Ri with the output
of the previous run. The clusters generated by Algorithm 1
are then separated through the off-line multicategory dis-
crimination method described in Section III-B.1, by solving
the convex optimization problem (13) via the RPSN method

TABLE I
PWARX IDENTIFICATION: BFR AND MSE ON THE TWO OUTPUT

CHANNELS

BFR1 BFR2 MSE1 MSE2

96 : 1% 96: 3% 0 : 99 � 10−4 0: 70 � 10−4

TABLE II
PWARX IDENTIFICATION: BFR ON THE TWO OUTPUT CHANNELS VS

LENGTH N OF THE TRAINING SET.

N = 4000 N = 20000 N = 100000

B
FR

1 (Off-line) RLP [8] 96.0 % 96.5 % 99.0 %
(Off-line) RPSN 96.2 % 96.4 % 98.9 %
(On-line) ASGD 86.7 % 95.0 % 96.7 %

B
FR

2 (Off-line) RLP [8] 96.2 % 96.9 % 99.0 %
(Off-line) RPSN 96.3 % 96.8 % 99.0 %
(On-line) ASGD 87.4 % 95.2 % 96.4 %

TABLE III
PWARX IDENTIFICATION: CPU TIME REQUIRED TO PARTITION THE

REGRESSOR SPACE VS LENGTH N OF THE TRAINING SET.

N = 4000 N = 20000 N = 100000
(Off-line) RLP [8] 0.308 s 3.227 s 112.435 s
(Off-line) RPSN 0.016 s 0.086 s 0.365 s
(On-line) ASGD 0.013 s 0.023 s 0.067 s

described in [6], which is initialized with f ωi ; γi g si=1 = 0.
The regularization parameter λ is set to 10−5.

The quality of the estimated PWA model is assessed w.r.t.
a validation set of NV = 500 samples. The true output yo and
the open-loop simulated output ŷ generated by the estimated
model are plotted in Fig. 1, along with the simulation error
yo(k)− ŷ(k). For the sake of visualization, only the samples
from time 101 to 200 related to the � rst channel are shown in
Fig. 1. The obtained BFR and MSE are reported in Table I.
The estimated polyhedral partition of the regressor space is
such that only 12 out of 500 data samples are misclassi� ed
(i.e., 2: 4 % of the whole validation set).

As the accuracy of the � nal model estimate and the
total CPU time is in� uenced by the number M of runs
of Algorithm 1, the performance of the proposed learning
approach has been tested with respect to both M and the
dimension N of the training set. The obtained BFR as a
function of iterations of Algorithm 1 is plotted in Fig. 2 for
different values of N . Clearly, there is no improvement in
BFR on the two output channels after about 8 runs.

The total CPU time for estimating the PWARX model
is 0: 76 s, of which 0: 016 s are taken to solve the linear
multi-category discrimination problem (13). For the sake of
comparison, both the robust linear programming approach
of [8] and the on-line method described in Section III-B.22
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the polyhedral partition of the regressor space lead to an
accurate estimate of the system, with BFRs larger then 95 %
(except when N = 4000 and the on-line multi-category

2In executing the on-line approach in Section III-B.2, the weights πi and
the initial guess of φ used by the stochastic gradient method are computed by
executing the batch Algorithm in Section III-B.1 on the � rst 3000 training
samples.
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2 (17)

de� ned for each output channel i, i = 1 ; : : : ; ny , are used to
assess the quality of the estimated models.

A. Identi� cation of a multivariable PWARX system

Let the system generating the data be a MIMO PWARX
system described by the difference equation
[
y1(k)
y2(k)

]
=

[−0: 83 0 : 20
0: 30 −0: 52

] [ y1(k−1)
y2(k−1)

]
+

[−0: 34 0: 45
−0: 30 0: 24

] [ u1(k−1)
u2(k−1)

]

+ [ 0: 200: 15 ] + max
{[

0: 20 −0: 90
0: 10 −0: 42

] [ y1(k−1)
y2(k−1)

]

+ [ 0: 42 0 : 20
0: 50 0 : 64 ]

[
u1(k−1)
u2(k−1)

]
+ [ 0: 400: 30 ] ; [

0
0 ]
}
+ eo(k) ;

which is characterized by �s = 4 operating modes, given
by the possible combinations of sign of the components
of the � rst vector argument of the ì maxî operator. The
excitation input u(k) is a white noise sequence with uniform
distribution in the box [−1 0]× [−0: 4 0: 6] and length N =
4000, eo(k) ∈ R2 is a zero-mean white noise with covariance
matrix Λe = [ 0: 02 0 : 02

0: 02 0 : 02 ]. This corresponds to signal-to-noise
ratios equal to SNR1 = 8 : 7 dB and SNR2 = 6: 9 dB on the
�rs t and second output channels, respectively.

We run Algorithm 1 with s = �s = 4. The initial guess for
the cluster centroids and covariance matrices are computed
by running an instance of Algorithm 1 without the � rst term
in (6) (i.e., only the modeling error is used as a discrimination
criterion to cluster the observed data points at the � rst run).
Algorithm 1 is then run again for 15 times, with the full
criterion (6), by initializing Ai, ci and Ri with the output
of the previous run. The clusters generated by Algorithm 1
are then separated through the off-line multicategory dis-
crimination method described in Section III-B.1, by solving
the convex optimization problem (13) via the RPSN method

TABLE I
PWARX IDENTIFICATION: BFR AND MSE ON THE TWO OUTPUT

CHANNELS

BFR1 BFR2 MSE1 MSE2

96 : 1% 96: 3% 0 : 99 � 10−4 0: 70 � 10−4

TABLE II
PWARX IDENTIFICATION: BFR ON THE TWO OUTPUT CHANNELS VS

LENGTH N OF THE TRAINING SET.

N = 4000 N = 20000 N = 100000

B
FR

1 (Off-line) RLP [8] 96.0 % 96.5 % 99.0 %
(Off-line) RPSN 96.2 % 96.4 % 98.9 %
(On-line) ASGD 86.7 % 95.0 % 96.7 %

B
FR

2 (Off-line) RLP [8] 96.2 % 96.9 % 99.0 %
(Off-line) RPSN 96.3 % 96.8 % 99.0 %
(On-line) ASGD 87.4 % 95.2 % 96.4 %

TABLE III
PWARX IDENTIFICATION: CPU TIME REQUIRED TO PARTITION THE

REGRESSOR SPACE VS LENGTH N OF THE TRAINING SET.

N = 4000 N = 20000 N = 100000
(Off-line) RLP [8] 0.308 s 3.227 s 112.435 s
(Off-line) RPSN 0.016 s 0.086 s 0.365 s
(On-line) ASGD 0.013 s 0.023 s 0.067 s

described in [6], which is initialized with f ωi ; γi g si=1 = 0.
The regularization parameter λ is set to 10−5.

The quality of the estimated PWA model is assessed w.r.t.
a validation set of NV = 500 samples. The true output yo and
the open-loop simulated output ŷ generated by the estimated
model are plotted in Fig. 1, along with the simulation error
yo(k)− ŷ(k). For the sake of visualization, only the samples
from time 101 to 200 related to the � rst channel are shown in
Fig. 1. The obtained BFR and MSE are reported in Table I.
The estimated polyhedral partition of the regressor space is
such that only 12 out of 500 data samples are misclassi� ed
(i.e., 2: 4 % of the whole validation set).

As the accuracy of the � nal model estimate and the
total CPU time is in� uenced by the number M of runs
of Algorithm 1, the performance of the proposed learning
approach has been tested with respect to both M and the
dimension N of the training set. The obtained BFR as a
function of iterations of Algorithm 1 is plotted in Fig. 2 for
different values of N . Clearly, there is no improvement in
BFR on the two output channels after about 8 runs.

The total CPU time for estimating the PWARX model
is 0: 76 s, of which 0: 016 s are taken to solve the linear
multi-category discrimination problem (13). For the sake of
comparison, both the robust linear programming approach
of [8] and the on-line method described in Section III-B.22

are also run to generate the partition. Results in Table II
show that all of the three algorithms used to compute
the polyhedral partition of the regressor space lead to an
accurate estimate of the system, with BFRs larger then 95 %
(except when N = 4000 and the on-line multi-category

2In executing the on-line approach in Section III-B.2, the weights πi and
the initial guess of φ used by the stochastic gradient method are computed by
executing the batch Algorithm in Section III-B.1 on the � rst 3000 training
samples.

quality of fit

CPU time for computing the partition

RLP = robust linear programming
RPSN = piecewise-smooth Newton
ASGD = (one-pass) averaged stochastic gradient

(Best Fit Rate)
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Fig. 1. PWARX: output signal and simulation error on the � rst output channel.

where

�a1; 1(p(k)) =

⎧
⎨

⎩

−0 : 3 if 0 : 4 (p1(k) + p2(k)) ≤ −0 : 3;
0: 3 if 0 : 4 (p1(k) + p2(k)) ≥ 0 : 3 ;
0: 4 (p1(k) + p2(k)) otherwise;

�a1; 2(p(k)) =0 : 5 ( j p1(k)j + j p2(k) j ) ; �a2 ; 1(p(k))= p1(k)−p2(k);

�a2; 2(p(k)) =

⎧
⎨

⎩

0 : 5 if p1(k) < 0 ;
0 if p1(k) = 0 ;

−0 : 5 if p1(k) > 0 ;

�b1; 1(p(k)) = 3p1(k) + p2(k);

�b1; 2(p(k)) =

{
0 : 5 if 2

(
p21(k) + p22(k)

)
≥ 0: 5 ;

2
(
p21(k) + p22(k)

)
otherwise;

�b2; 1(p(k)) = 2 sin f p1(k)− p2(k) g ; �b2; 2(p(k)) = 0 :

Both the input u(k) and the scheduling vector p(k) are white
noise sequences (independent of each other) of length N =
11000 with uniform distribution in the boxes [−0: 5 0: 5]×
[−0: 5 0 : 5] and [−1 1] × [−1 1], respectively. The noise
covariance matrix of eo(k) ∈ R2 is Λe = [ 0 : 25 0

0 0 : 25 ]. This
corresponds to signal-to-noise ratios on the � rst and on the
second output channel equal to SNR1 = 4 dB and SNR2 = 7
dB, respectively. The goal is to estimate, from the gathered
data, a PWA approximation of the p-dependent nonlinear
functions �ai; j and �bi; j de� ning the behaviour of the LPV
data-generating system.

1) Choice of the number of modes: The number s of
polyhedral regions de� ning the partition of the scheduling
vector space P = [−1 1] × [−1 1] is chosen through
cross validation. Speci� cally, the 11000-length training data
set is split into two disjoint sets. The � rst 10000 samples
are used to estimate a PWA approximation of �ai; j and �bi; j ,
along with the polyhedral partition of the scheduling vector
space P , for different values of s in the range 5ñ 30. For
each value of s, the identi� cation Algorithm 1 is run 10
times. The second part of training data (i.e., the remaining
1000 samples) is used to assess the quality of the identi� ed
LPV models. Among the identi� ed LPV models, the one
providing the largest aggregated BFRT = BFR1+BFR2 is
selected, which corresponds to s = 10 polyhedral regions.
The computed polyhedral partition, obtained by solving
problem (11) through the RPSN method explained in [6],
is plotted in Fig. 3 (the Hybrid Toolbox for MATLAB [4]
has been used to plot the polytopes in Fig. 3).

2) Model quality assessment: The quality of the estimated
LPV model is then assessed w.r.t. a validation dataset,
consisting of a new sequence of 2000 noiseless samples used
neither to estimate the LPV model nor to select the number
of modes s. For the sake of comparison, the nonlinear

Fig. 3. LPV: polyhedral partition of the scheduling vector space P .

coef� cient functions �ai; j(p(k)) and �bi; j(p(k)) are also es-
timated through the parametric LPV identi� cation approach
proposed in [3], by parameterizing the nonlinear functions
�ai; j(p(k)) and �bi; j(p(k)) as fourth-order polynomials in the
two-dimensional scheduling vector p(k).

The true outputs yo and the simulated output sequences
ŷ of the estimated LPV models are plotted in Fig. 4,
along with the simulation error yo(k) − ŷ(k). For the sake
of visualization, only the samples from time 101 to 200
related to the second channel are reported. The BFR on the
two output channels is reported in Table III. The obtained
results show that the proposed LPV identi� cation approach
based on the PWA approximation of the coef� cient functions
�ai; j(p(k)) and �bi; j(p(k))) outperforms the parametric LPV
identi� cation approach in [3].

We also remark that the ì onlineî computational time
required to evaluate the output of the LPV model, given
the current value of the scheduling vector �p and the past
input/output observations is about 120 � s, 40 � s of which
are required to evaluate which region the current scheduling
vector belongs to. This relatively ì lowî online computational
time is mainly due to the PWA structure of the coef� cient
functions describing the LPV model, and it allows to use
the estimated LPV model in applications requiring a ì fastî
online determination of the operating mode, such as in gain
scheduling or in LPV model predictive control.

3) Performance of multi-category discrimination algo-
rithms: The CPU time required to estimate the LPV model
through the proposed PWA regression approach is 759 s. This
includes the cross-validation phase to compute the number of
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Fig. 2. PWARX identi� cation: BFR on the � rst and on the second output
channel vs number of runs of Algorithm 1

discrimination method is used). Furthermore, the results
show that the estimated models become more accurate as the
number of training samples increases. The CPU times taken
to compute the polyhedral partition are reported in Table III,
which shows that, for a large training set (i.e., N = 100000),
the off-line RPSN and the on-line ASGD method are about
300x and 1600x faster, respectively, than the robust linear
programming method of [8].

B. Identi� cation of an LPV system
Let the data be collected from the MIMO LPV system
[
y1(k)
y2(k)

]
=
[
�a1 ; 1(p(k)) �a1 ; 2(p(k))
�a2 ; 1(p(k)) �a2 ; 2(p(k))

] [
y1(k−1)
y2(k−1)

]

+
[
�b1 ; 1(p(k)) �b1 ; 2(p(k))
�b2 ; 1(p(k)) �b2 ; 2(p(k))

] [
u1(k−1)
u2(k−1)

]
+ eo(k);

(18)

where

�a1; 1(p(k)) =

⎧
⎨

⎩

−0 : 3 if 0 : 4 (p1(k) + p2(k)) ≤ −0 : 3;
0 : 3 if 0 : 4 (p1(k) + p2(k)) ≥ 0 : 3 ;
0 : 4 (p1(k) + p2(k)) otherwise ;

�a1; 2(p(k)) = 0 : 5 ( j p1(k)j + j p2(k)j ) ;
�a2; 1(p(k)) = p1(k)− p2(k) ;

�a2; 2(p(k)) =

⎧
⎨

⎩

0 : 5 if p1(k) < 0 ;
0 if p1(k) = 0 ;

−0 : 5 if p1(k) > 0 ;

�b1; 1(p(k)) = 3p1(k) + p2(k);

�b1; 2(p(k)) =

{
0 : 5 if 2

(
p21(k) + p22(k)

)
≥ 0: 5 ;

2
(
p21(k) + p22(k)

)
otherwise;

�b2; 1(p(k)) = 2 sin f p1(k)− p2(k) g ;
�b2; 2(p(k)) = 0 :

Both the input u(k) and the scheduling vector p(k) are white
noise sequences (independent of each other) of length N =
11000 with uniform distribution in the boxes [−0: 5 0: 5]×
[−0: 5 0 : 5] and [−1 1] × [−1 1], respectively. The noise
covariance matrix of eo(k) ∈ R2 is Λe = [ 0 : 25 0

0 0 : 25 ]. This
corresponds to signal-to-noise ratios on the � rst and on the
second output channel equal to SNR1 = 4 dB and SNR2 = 7
dB, respectively.

Fig. 3. LPV identi� cation: polyhedral partition of the scheduling vector
space P

The goal is to estimate, from the gathered data, a PWA
approximation of the p-dependent nonlinear functions �ai; j
and �bi; j de� ning the behaviour of the LPV data-generating
system (18).

1) Choice of the number of modes: The number s of
polyhedral regions de� ning the partition of the scheduling
vector space P = [−1 1]× [−1 1] is chosen through cross
validation. Speci� cally, the 11000-length training data set is
split into two disjoint sets. The � rst 10000 samples are used
to estimate a PWA approximation of �ai; j and �bi; j , along
with the polyhedral partition of the scheduling vector space
P , for different values of s in the range 5ñ 30. For each
value of s, the identi� cation Algorithm 1 is run 10 times.
The second part of training data (i.e., the remaining 1000
samples) is used to assess the quality of the identi� ed LPV
models. For each value of s, the BFR on the two output
channels is computed. Among the identi� ed LPV models,
the one providing the largest aggregated BFRT = BFR1 +
BFR2 is selected, which corresponds to s = 10 polyhedral
regions. The computed polyhedral partition, obtained by
solving problem (13) through the regularized piecewise-
smooth Newton method explained in [6], is plotted in Fig. 3
(the Hybrid Toolbox for MATLAB [4] has been used to plot
the polytopes in Fig. 3).

2) Model quality assessment: The quality of the estimated
LPV model is then assessed w.r.t. a validation dataset,
consisting of a new sequence of NV = 2000 noiseless
samples used neither to estimate the LPV model nor to
select the number of modes s. For the sake of comparison,
the nonlinear coef� cient functions �ai; j(p(k)) and �bi; j(p(k))
are also estimated through the parametric LPV identi� cation
approach proposed in [3], by parameterizing the nonlinear
functions �ai; j(p(k)) and �bi; j(p(k)) as fourth-order polyno-
mials in the two-dimensional scheduling vector p(k).

The true outputs yo and the simulated output sequences ŷ
of the estimated LPV models are plotted in Fig. 4, along
with the simulation error yo(k) − ŷ(k). For the sake of
visualization, only the samples from time 101 to 200 related
to the second channel are reported. The BFR and MSE on the

[
y1(k)
y2(k)

]
=
[
�a1 ; 1(p(k)) �a)) �a)) � 1 ; 2(p(k))
�a2 ; 1(p(k)) �a)) �a)) � 2 ; 2(p(k))

] [
y1(k−1)
y2(k−1)

]

+
[
�b1 ; 1(p(k)) �b1 ; 2(p(k))
�b2 ; 1(p(k)) �b2 ; 2(p(k))

] [
u1(k−1)
u2(k−1)

]
+ eo(k)
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discrimination method is used). Furthermore, the results
show that the estimated models become more accurate as the
number of training samples increases. The CPU times taken
to compute the polyhedral partition are reported in Table III,
which shows that, for a large training set (i.e., N = 100000),
the off-line RPSN and the on-line ASGD method are about
300x and 1600x faster, respectively, than the robust linear
programming method of [8].

B. Identi� cation of an LPV system
Let the data be collected from the MIMO LPV system
[
y1(k)
y2(k)

]
=
[
�a1 ; 1(p(k)) �a1 ; 2(p(k))
�a2 ; 1(p(k)) �a2 ; 2(p(k))

] [
y1(k−1)
y2(k−1)

]

+
[
�b1 ; 1(p(k)) �b1 ; 2(p(k))
�b2 ; 1(p(k)) �b2 ; 2(p(k))

] [
u1(k−1)
u2(k−1)

]
+ eo(k);

(18)

where

�a1; 1(p(k)) =

⎧
⎨

⎩

−0 : 3 if 0 : 4 (p1(k) + p2(k)) ≤ −0 : 3;
0 : 3 if 0 : 4 (p1(k) + p2(k)) ≥ 0 : 3 ;
0 : 4 (p1(k) + p2(k)) otherwise ;

�a1; 2(p(k)) = 0 : 5 ( j p1(k)j + j p2(k)j ) ;
�a2; 1(p(k)) = p1(k)− p2(k) ;

�a2; 2(p(k)) =

⎧
⎨

⎩

0 : 5 if p1(k) < 0 ;
0 if p1(k) = 0 ;

−0 : 5 if p1(k) > 0 ;

�b1; 1(p(k)) = 3p1(k) + p2(k);

�b1; 2(p(k)) =

{
0 : 5 if 2

(
p21(k) + p22(k)

)
≥ 0: 5 ;

2
(
p21(k) + p22(k)

)
otherwise;

�b2; 1(p(k)) = 2 sin f p1(k)− p2(k) g ;
�b2; 2(p(k)) = 0 :

Both the input u(k) and the scheduling vector p(k) are white
noise sequences (independent of each other) of length N =
11000 with uniform distribution in the boxes [−0: 5 0 : 5]×
[−0: 5 0 : 5] and [−1 1] × [−1 1], respectively. The noise
covariance matrix of eo(k) ∈ R2 is Λe = [ 0 : 25 0

0 0 : 25 ]. This
corresponds to signal-to-noise ratios on the � rst and on the
second output channel equal to SNR1 = 4 dB and SNR2 = 7
dB, respectively.

Fig. 3. LPV identi� cation: polyhedral partition of the scheduling vector
space P

The goal is to estimate, from the gathered data, a PWA
approximation of the p-dependent nonlinear functions �ai; j
and �bi; j de� ning the behaviour of the LPV data-generating
system (18).

1) Choice of the number of modes: The number s of
polyhedral regions de� ning the partition of the scheduling
vector space P = [−1 1]× [−1 1] is chosen through cross
validation. Speci� cally, the 11000-length training data set is
split into two disjoint sets. The � rst 10000 samples are used
to estimate a PWA approximation of �ai; j and �bi; j , along
with the polyhedral partition of the scheduling vector space
P , for different values of s in the range 5ñ 30. For each
value of s, the identi� cation Algorithm 1 is run 10 times.
The second part of training data (i.e., the remaining 1000
samples) is used to assess the quality of the identi� ed LPV
models. For each value of s, the BFR on the two output
channels is computed. Among the identi� ed LPV models,
the one providing the largest aggregated BFRT = BFR1 +
BFR2 is selected, which corresponds to s = 10 polyhedral
regions. The computed polyhedral partition, obtained by
solving problem (13) through the regularized piecewise-
smooth Newton method explained in [6], is plotted in Fig. 3
(the Hybrid Toolbox for MATLAB [4] has been used to plot
the polytopes in Fig. 3).

2) Model quality assessment: The quality of the estimated
LPV model is then assessed w.r.t. a validation dataset,
consisting of a new sequence of NV = 2000 noiseless
samples used neither to estimate the LPV model nor to
select the number of modes s. For the sake of comparison,
the nonlinear coef� cient functions �ai; j(p(k)) and �bi; j(p(k))
are also estimated through the parametric LPV identi� cation
approach proposed in [3], by parameterizing the nonlinear
functions �ai; j(p(k)) and �bi; j(p(k)) as fourth-order polyno-
mials in the two-dimensional scheduling vector p(k).

The true outputs yo and the simulated output sequences ŷ
of the estimated LPV models are plotted in Fig. 4, along
with the simulation error yo(k) − ŷ(k). For the sake of
visualization, only the samples from time 101 to 200 related
to the second channel are reported. The BFR and MSE on the

[3] = Bamieh, Giarré (2002)

(a) Second output channel (output signal): black = true, red = PWA
regression, green =polynomial parametrization [3]

(b) Second output channel (simulation error): red = PWA regression,
green =polynomial parametrization [3]

Fig. 4. LPV: output signal and simulation error on the second output channel.

TABLE III
LPV: BFR OBTAINED WITH PWA REGRESSION AND POLYNOMIAL

PARAMETRIZATION [3]

BFR1 BFR2

PWA regression 87 % 84 %
parametric LPV [3] 80 % 70 %

modes s. For s = 10, the CPU time required to compute the
LPV model is 14 s, 0: 4 s of which are spent to compute the
polyhedral partition via problem (11) (RLP discrimination
algorithm of [8] takes 4: 2 seconds, i.e., almost 10x slower).

For a more exhaustive comparison between the RPSN
approach and the RLP algorithm of [8], the CPU time
required by the two algorithms to partition the scheduling
parameter space is plotted, as a function of s, in Fig. 5.
Fig. 5 also shows the CPU time required by the ASGD
algorithm in [6] to compute the solution of problem (12).
The weights πi and the initial estimate used by the aver-
aged stochastic gradient descent algorithm are computed by
solving problem (11) on the � rst 1000 training samples. The
remaining 9000 training samples are processed recursively.
The regularization parameter λ in problems (11) and (12)
is set to 10−5. Results in Fig. 5 show that: (i) the CPU
time required by all of the three discrimination algorithms
to partition the scheduling vector space increases with the
number of modes s (Fig. 5), as the number of parameters ξ
de� ning the piecewise af� ne separator φ(x) in (9) increases
linearly with s; (ii) the (of� ine) RPSN method and the
(online) ASGD method used to solve problem (11) and (12),
respectively, are faster (from 6x to 20x) than the robust linear
programming based approach of [8].

V. CONCLUSIONS

In this paper we have reviewed the PWA regression
algorithm introduced in [6], and discussed its application to
the identi� cation of PWARX and LPV systems. Through the
examples, it has been shown that the presented approach is
computationally effective for off-line and on-line learning
of PWARX and LPV models. Future research includes the
extension of the PWA regression algorithm presented in
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Fig. 5. LPV: CPU time vs number of modes (s). (black dashed: RLP [8];
red: RPSN; blue dash-dot: ASGN).

the paper to the identi� cation of hybrid and LPV systems
under different noise conditions and the generalization to
piecewise-nonlinear models (such as piecewise polynomial).
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Fig. 1. PWARX identi� cation: output signal and simulation error on the � rst output channel

TABLE IV
LPV IDENTIFICATION: BFR AND MSE OF THE LPV MODELS

ESTIMATED BY USING THE PROPOSED PWA REGRESSION APPROACH

AND THE PARAMETRIC LPV IDENTIFICATION APPROACH OF [3]

BFR1 BFR2 MSE1 MSE2

PWA regression 87 % 84 % 6: 9 � 10−3 13 : 9 � 10−3

parametric LPV [3] 80 % 70 % 17 : 5 � 10−3 46 : 3 � 10−3

two output channels are reported in Table IV. The obtained
results show that the proposed LPV identi� cation approach
based on the PWA approximation of the coef� cient functions
�ai; j(p(k)) and �bi; j(p(k))) outperforms the parametric LPV
identi� cation approach in [3].

We also remark that the ì onlineî computational time
required to evaluate the output of the LPV model, given
the current value of the scheduling vector �p and the past
input/output observations is about 120 � s, 40 � s of which
are required to evaluate which region the current scheduling
vector belongs to. Note that the latter step requires to
compute the maximum of s = 10 af� ne functions f φi( �p)g si=1

de� ning the piecewise af� ne separator φ( �p) in (10). This
relatively ì lowî online computational time is mainly due to
the PWA structure of the coef� cient functions describing the
LPV model, and it allows to use the estimated LPV model
in applications requiring a ì fastî online determination of the
operating mode, such as in gain scheduling or in LPV model
predictive control.

3) Performance of multi-category discrimination algo-
rithms: The CPU time required to estimate the LPV model
through the proposed PWA regression approach is 759 s.
This includes the cross-validation phase to compute the
number of modes s. For s = 10, the CPU time required
to compute the LPV model is 14 s, 0: 4 s of which are spent
to compute the polyhedral partition via problem (13) (the
robust linear programming multicategorical discrimination
algorithm of [8] takes 4: 2 seconds, i.e., almost 10x slower).

For a more exhaustive comparison between the regularized
piecewise-smooth Newton approach used to solve prob-
lem (13) and the robust linear programming algorithm of [8],
the CPU time required by the two algorithms to partition
the scheduling parameter space is plotted, as a function of
s, in Fig. 5. Fig. 5 also shows the CPU time required by
the averaged stochastic gradient descent algorithm in [6] to
compute the solution of problem (14). The weights πi and
the initial estimate used by the averaged stochastic gradient

descent algorithm are computed by solving problem (13)
on the � rst 1000 training samples. The remaining 9000
training samples are processed recursively. The regularization
parameter λ in problems (13) and (14) is set to 10−5.

In order to test the performance of the three multicategory
discrimination algorithms in terms of model accuracy, the
aggregate best � t rate BFRT obtained by using the three
algorithms is plotted, as a function of s, in Fig. 6. Results
in Figs. 5 and 6 show that:

� the CPU time required by all of the three discrimination
algorithms to partition the scheduling vector space in-
creases with the number of modes s (Fig. 5). This is due
to the fact that the number of parameters ξ de� ning the
piecewise af� ne separator φ(x) in (10) increases linearly
with s;

� the (of� ine) regularized piecewise-smooth Newton
method and the (online) average stochastic gradient
method used to solve problem (13) and (14), respec-
tively, are faster (from 6x to 20x) than the robust linear
programming based approach of [8].

� in terms of model accuracy, the robust linear program-
ming approach of [8] and the regularized piecewise-
smooth Newton method achieve similar performance
(Fig. 6), while, for s = 11, s = 14 and s = 20,
the averaged stochastic gradient descent algorithm does
not provide an accurate partition of the scheduling
vector space, leading to LPV models with an aggregate
best � t rates smaller than 1: 1. This means that, for
s = 11; 14; 20 the solution of the averaged stochastic
gradient descent algorithm fails to converge to the batch
solution of problem (13) when only N = 10000 training
samples are used.

Fig. 5. LPV identi� cation: CPU time required to partition the scheduling
vector space vs number of modes (s).
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such that the y(k) is the output of M when fed by a reference signal r
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(k) (i.e.,

r
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(k) = M†
y(k)).

Compute the virtual tracking error e
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(k) = r

v

(k)� y(k). When the observed

input sequence u(k) is applied to the plant, the output signal will be (in a

noise-free scenario) the observed sequence y(k). Then, a “good” controller is the

one that generates the observed sequence u(k) when fed by the virtual tracking

error e

v

(k).

Compute the dynamical system (i.e., the designed controller) describing the

dynamic relation between e
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(k) and u(k).
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Hierarchical control architecture
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Simulation example: control of a DC motor
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