# Recent Advances in Applied Model Predictive Control

#### **Alberto Bemporad**

http://cse.lab.imtlucca.it/~bemporad

Markets Technologies INSTITUTE FOR ADVANCED STUDIES LUCCA

Institutions

A. Bemporad

## DYSCO Research Unit

Dynamical Systems, Control, and Optimization

### Typical control problems in industry



- Dynamics often multi-variable, nonlinear, switching, time-varying, ...
- Several **constraints** on manipulated variables and other variables (torque, voltage, speed, position, ...)
- **Optimal performance** sought (*x*% less energy consumption, for example)
- Often characterized by **fast dynamics** (sample time of milliseconds)

A. Bemporad

## A "wish list" for control design

• Model-based (linear, nonlinear, switching dynamics)



- Easy & direct way of defining performance objectives and constraints on variables
- Easy to design, tune, and maintain (avoid "spaghetti" designs !)





Motorola MPC 555

- Suitable for fast sampling implementation (1-10 ms) on simple μ-controllers with limited memory (kb)
- Solid theoretical certification (stability guarantees)



#### **Model Predictive Control**

#### Outline

- Basic ideas of Model Predictive Control (MPC)
- MPC applications (mainly automotive & aerospace)
- Conclusions



### Model Predictive Control (MPC)



# Use a dynamical **model** of the process to **predict** its future evolution and choose the "best" **control** action

## MPC algorithm

• At time t, solve an optimal control problem over a future horizon of N steps



- Apply only the first optimal move  $u^*(t)$ , trash the rest of the optimal sequence
- At time *t*+1: Get new measurements, repeat the optimization. And so on ... MPC transforms open-loop optimal control into a feedback control law

A. Bemporad

### Receding horizon planning: GPS example

- prediction model how vehicle moves on map
- **constraints** drive on roads, respect one-way roads, etc.
- **disturbances** (driver does not follow directions properly)
- set point desired location
- **cost function** minimum time, minimum distance, etc.
- receding horizon mechanism
   (event-based: optimal route re-planned when path is lost)

x = GPS position

*u* = navigation commands



tomtom



### MPC of linear systems

min

linear model

$$x'_{N}Px_{N} + \sum_{k=0}^{N-1} x'_{k}Qx_{k} + u'_{k}Ru_{k} \qquad x_{0} = x(t)$$

$$\lim_{\substack{U \\ U \\ U \\ S.t. \\ Min \\ Min$$

MPC implemented by solving a (convex) Quadratic Program (QP)

Routinely used in the process industries



### Model Predictive Control Toolbox

- MPC Toolbox 4.0 (The Mathworks, Inc.)
  - MPC Simulink Library
  - Easy design (MATLAB objects, MPC GUI, Tuning Advisor)
  - Code generation [RTW, xPC Target, dSpace, etc.]
  - Linked to OPC Toolbox, System ID Toolbox, ...
  - New QP solver (QPKWIK algorithm)

#### Complete solution for linear MPC design

http://www.mathworks.com/products/mpc/

mo Controller



Note: MPC Toolbox 3.0 most successful webinar in 2009 !

A. Bemporad

(Bemporad, Ricker, Morari, 1998-2012)

### Numerical complexity of linear MPC - An example

- Linear MPC of random square MIMO systems
  - n outputs, n inputs, 3n states
  - prediction horizon N=10, control horizon m=2
  - constraints:  $-1 \leq u_k \leq 1, \ -1 \leq y_k \leq 1$
  - QP size: (mn+1) variables, (2Nn+2mn) constraints

| n   | #vars | # constraints | CPU time (s) |
|-----|-------|---------------|--------------|
| 1   | З     | 24            | 0.00136      |
| 5   | 11    | 120           | 0.00149      |
| 20  | 41    | 480           | 0.00270      |
| 100 | 201   | 2400          | 0.06432      |
| 150 | 301   | 3600          | 0.25873      |
| 200 | 401   | 4800          | 0.64981      |



Macbook Air 2.13 GHz (this mac !) Inter Core 2 Duo 4GB RAM MPC Toolbox 4.0, MATLAB R2011b New **active set QP** in **EML** (dense matrices)

### Pros and cons of on-line optimization

#### PROS

- ✓ Continuously update the best decision, reacting to unexpected events (disturbances, faults, obstacles,...)
- Excellent LP/QP/MIP/NLP solvers exist today ("LP is a technology" – S. Boyd)



#### CONS

- **Computation time** may be too long for large-problems/fast sampling
- **K** Requires relatively <u>expensive hardware</u> (such as a microprocessor)
- Software complexity: solver code must be embedded in the control code
- **Real-time**: worst-case CPU time often hard to estimate

A. Bemporad

#### Explicit model predictive control

$$\min_{U} \quad \frac{1}{2}U'HU + \mathbf{x}'(t)F'U + \frac{1}{2}x'(t)Yx(t)$$
  
subj. to 
$$GU \le W + S\mathbf{x}(t)$$

**Idea:** solve the QP for all x(t) within a given range of  $\mathbb{R}^n$  off-line multi-parametric programming problem

#### Linear MPC is a continuous and piecewise affine control law !

$$u(x) = \begin{cases} F_1 x + g_1 & \text{if } H_1 x \leq K_1 \\ \vdots & \vdots \\ F_M x + g_M & \text{if } H_M x \leq K_M \end{cases}$$

$$(\text{Bemporad, Morari, et al., 2002})$$

while ((num<EXPCON\_REG) && check) {

### Hybrid Toolbox for MATLAB

#### Features:

- Explicit MPC control (via multi-parametric programming)
- Simulink library
- C-code generation

• Hybrid models: design, simulation, verification

- Control design for linear systems w/ constraints and hybrid systems
- Interfaces to several QP/LP and Mixed-Integer Programming solvers

http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox/



4000 download requests since October 2004



#### (Bemporad, 2003-2012)

Supported by

#### Explicit MPC of a ball & plate system



Two explicit MPC controllers

*x*-axis = 22 regions, *y*-axis = 23 regions



#### sample time = 20ms

### Complexity of explicit MPC

- Number of regions depends on number of possible combinations of active constraints
- Weak dependence on number of states and references
- On-line QP vs explicit MPC comparison:

| 2N | QP (ms)                  |       | explicit (ms) |       | regions | [storage kb]  |
|----|--------------------------|-------|---------------|-------|---------|---------------|
|    | average                  | worst | average       | worst |         |               |
| 4  | 1.1                      | 1.5   | 0.005         | 0.1   | 25      | 16            |
| 8  | 1.3                      | 1.9   | 0.023         | 1.1   | 175     | 78            |
| 20 | 2.5                      | 2.6   | 0.038         | 3.3   | 1767    | 811           |
| 30 | 5.3                      | 7.2   | 0.069         | 4.4   | 5162    | 2465          |
| 40 | (10.9)                   | 13.0  | 0.239         | 15.6  | 11519   | 5598          |
|    | (Intel Centrino 1.4 GHz) |       |               |       |         | rino 1.4 GHz) |





#### Explicit MPC typically limited to 6-8 free control moves and 8-12 states+references

"Recent Advances in MPC", LeCoPro Mid-term Workshop, Leuven, January 27, 2012

### Ultra fast & cheap MPC approximations

• Approximate a given linear MPC controller by using canonical PWA functions over simplicial partitions (PWAS) (Bemporad, Oliveri, Poggi, Storace, IEEE TAC, 2011)



$$\hat{u}(x) = \sum_{k=1}^{N_v} w_k \phi_k(x) = w' \phi(x)$$

Weights  $w_k$  optimized **off-line** to best approximate a given MPC law

(Julian, Desages, Agamennoni, 1999)



**European FP7-ICT project MOBY-DIC** "Model-based synthesis of digital electronic circuits for embedded control"

A. Bemporad

### PWA approximation of MPC over simplices

- Extremely cheap: PWAS functions can be directly implemented on FPGA, or even ASIC (Application Specific Integrated Circuits)
- Extremely fast computations (10-100 nanoseconds)



- Certified closed-loop stability by constructing a PWA Lyapunov function
- Fulfillment of constraints on inputs (soft constraints on states)

## Automotive applications of MPC



traction control





idle speed control



#### semiactive suspensions

A. Bemporad

### Automotive applications of MPC





magnetic actuators







air-to-fuel ratio



#### active steering



robotized gearbox

### Explicit MPC for idle speed control

(Di Cairano, Yanakiev, Bemporad, Kolmanovsky, Hrovat, 2011)

- Ford pickup truck, V8 4.6L gasoline engine
- Process:
  - 1 output (engine speed) to regulate
  - 2 inputs (airflow, spark advance)
  - input *delays*
- Objectives and specs:
  - regulate engine speed at constant rpm
  - saturation limits on airflow and spark
  - **lower bound** on engine speed ( $\geq$ 450 rpm)
- Related to most classical problem in control: Watt's governor (1787)
- Problem suitable for MPC design (Hrovat, 1996)







#### **Explicit MPC for idle speed - Experiments**



#### Hybrid MPC



"Recent Advances in MPC", LeCoPro Mid-term Workshop, Leuven, January 27, 2012

## Hybrid MPC

• Introduce "indicator variables" (or "events") in dynamical model / constraints

$$[\delta_k = 1] \longleftrightarrow [c(x_k, u_k) \le 0] \qquad \delta_k \in \{0, 1\}, \ x \in \mathbb{R}^n, \ u \in \mathbb{R}^m \qquad (Glover 1975, Williams 1977, Hooker 2000)$$

"big-M" technique 
$$\begin{cases} c(x_k, u_k) \leq M(1 - \delta_k) & m \leq c(x_k, u_k) \leq M \\ c(x_k, u_k) > m \delta_k & \forall \text{ feasible } x_k, u_k \end{cases}$$
  
mixed-integer linear inequalities when c is a linear function

- Any logic formula involving Boolean variables can be translated into a set of integer linear (in)equalities

- Example:  $\delta_1 \text{ OR } \delta_2 = \text{TRUE}$   $\delta_1 + \delta_2 \ge 1$ 

(Raman, Grossmann, 1991)

- Translation of logic to inequalities can be automatic (see modeling language HYSDEL) -(Torrisi, Bemporad, 2004)
- MPC optimization problem becomes a Mixed Integer Program

(Bemporad, Morari, 1999) (Bemporad, Borrelli, Morari, 2000)

#### Room temperature control problem



**Hybrid dynamics** 

- #1 turns the heater (A/C) on whenever he is cold (hot)
- If #2 is cold he turns the heater on, unless #1 is hot
- If #2 is hot he turns A/C on, unless #2 is cold
- Otherwise, heater and A/C are off

•  $\dot{T}_1 = -\alpha_1(T_1 - T_{amb}) + k_1(u_{hot} - u_{cold})$ •  $\dot{T}_2 = -\alpha_2(T_2 - T_{amb}) + k_2(u_{hot} - u_{cold})$ 

(body temperature dynamics of #1)
(body temperature dynamics of #2)

#### go to demo /demos/hybrid/heatcool.m

"Recent Advances in MPC", LeCoPro Mid-term Workshop, Leuven, January 27, 2012

### Hybrid MPC design (Hybrid Toolbox)



## Explicit hybrid MPC equivalent (Hybrid Toolbox)



**Note:** explicit form does not change the control law at all !

CPU time = **0.8 ms** (compiled C-code, this Mac)

### Explicit hybrid MPC for vehicle traction control









#### **Experimental Results**



#### **Experimental results**



indoor ice arena ( $\mu \approx 0.2$ )

2000 Ford Focus 2.0l 4-cyl engine 5-speed manual transmission

Ford Motor Company,

min 
$$\sum_{k=0}^{N} |\Delta \omega_{t+k} - \Delta \omega_{des}|$$
  
s.t.  $-20 \text{ Nm} \le \tau_d \le 176 \text{ Nm}$ 

- 504 regions
- 20ms sampling time
- Pentium 266Mhz + Labview



### Linear time-varying MPC

• MPC can easily handle linear time-varying (LTV) problems

$$\begin{cases} x_{k+1} = A_k(t, x(t)) x_k + B_k(t, x(t)) u_k + f_k(t, x(t)) \\ y_k = C_k(t, x(t)) x_k + D_k(t, x(t)) u_k + g_k(t, x(t)) \end{cases}$$

$$E_k(t, x(t))x_k + F_k(t, x(t))u_k \le h_k(t, x(t)) \qquad k = 0, 1, \dots, N-1$$

min 
$$\sum_{k=0}^{N} \ell_k(y_k, u_k(r(t+k))t, x(t))$$

 $\ell_k =$ quadratic function of  $y_k, u_k$ 

$$\min_{U} \quad \frac{1}{2}U'H(t)U + F(t)'U + \alpha(t)$$
  
s.t. 
$$G(t)U \le W(t)$$

LTV-MPC still leads to a **Quadratic Program (QP)**!

• Applications: time-varying systems (e.g.: aerospace), NL systems

### Example: LTV-MPC of UAVs

- Two unmanned aerial vehicles (UAVs) avoiding each other and obstacles
- Feasible space approximated as a (time-varying) polyhedron
- Each UAV solves its own MPC problem
- Previous optimal sequences exchanged to improve accuracy in predicting future locations of the other UAV





#### **MPCSofT Toolbox for MATLAB**

(Bemporad, 2010-2011)

A. Bemporad

"Recent Advances in MPC", LeCoPro Mid-term Workshop, Leuven, January 27, 2012

### LTV-MPC for formation flying of quadcopters

- 4 command inputs: motor voltages  $V_{Mi}, i = 1, \dots, 4$
- 12 states  $\, heta, \phi, \psi, x, y, z, \dot{ heta}, \dot{\phi}, \dot{\psi}, \dot{x}, \dot{y}, \dot{z} \,$

$$\begin{split} m\ddot{x} &= -f\sin\theta - \beta\dot{x}\\ m\ddot{y} &= f\cos\theta\sin\phi - \beta\dot{y}\\ m\ddot{z} &= f\cos\theta\cos\phi - mg - \beta\dot{z}\\ \ddot{\theta} &= \frac{\tau_{\theta}}{I_{xx}}\\ \ddot{\theta} &= \frac{\tau_{\theta}}{I_{yy}}\\ \ddot{\psi} &= \frac{l}{I_{zz}}(-f_1 + f_2 - f_3 + f_4) \end{split}$$



$$f = f_1 + f_2 + f_3 + f_4$$
  
$$\tau_{\theta} = (f_2 - f_4)l$$
  
$$\tau_{\phi} = (f_3 - f_1)l$$

$$f_i = \frac{9.81(22.5V_{Mi} - 9.7)}{1000}, \ i = 1, \dots, 4$$

• Highly nonlinear and coupled dynamics

### Example: LTV-MPC for formation flying

- 4 tetrahedral obstacles,  $W = \operatorname{conv}\left(\begin{bmatrix} -1/3\\ -1/3\\ -1/2 \end{bmatrix}, \begin{bmatrix} 2/3\\ -1/3\\ -1/2 \end{bmatrix}, \begin{bmatrix} -1/3\\ 2/3\\ -1/2 \end{bmatrix}, \begin{bmatrix} 0\\ 0\\ 1/2 \end{bmatrix}\right)$
- UAVs modeled as small parallelepipeds
- MPCSofT Toolbox used for LTV-MPC design, simulation, and code generation
- QP problem builder and solver implemented in Embedded MATLAB
- CPU time = ~75 ms (per time-step) (MATLAB R2009b, Macbook Air)



### Comparison with other guidance methods



### Comparison with other guidance methods

| $J_{\text{tt}} = \sum_{k=350}^{3080} \ p_L(k) - p_t\ _2^2$                                                       | target tracking Integral Square Error (ISE) |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| $J_{\text{fpt}} = \sum_{k=350}^{3080} \ p_L(k) - p_{F1}(k) - p_{d1}\ _2^2 + \ p_L(k) - p_{F2}(k) - p_{d2}\ _2^2$ | formation pattern tracking ISE              |
| $J_{\rm U} = \sum_{k=350}^{3080} \ u(k) - u(k-1)\ _1$                                                            | absolute derivative of input signals (IADU) |

|                          | $J_{ m tt}$ | $J_{ m fpt}$ | $J_{\mathrm{u}}$ |
|--------------------------|-------------|--------------|------------------|
| centralized hybrid MPC   | 1           | 1            | 1                |
| decentralized hybrid MPC | -0.09%      | -0.51%       | -0.03%           |
| decentralized LTV MPC    | -2.46%      | -15.47%      | +9.20%           |
| potential fields         | +210.32%    | +294.30%     | +212.75%         |

(indices normalized with respect to the centralized hybrid MPC performance)

### Stochastic Model Predictive Control (SMPC)



Use a **stochastic model** of the process to **predict** the possible future evolutions of the process in order to optimize the **control** signal

## Receding horizon philosophy

• <u>At time</u>*t*: solve a **stochastic optimal control** problem over a finite future horizon of *N* steps:

$$\min_{u} E_{w} \left[ \sum_{k=0}^{N-1} \|y_{t+k} - r(t)\|^{2} + \rho \|u_{t+k}\|^{2} \right]$$
s.t. 
$$x_{t+k+1} = f(x_{t+k}, u_{t+k}, w_{t+k})$$

$$y_{t+k} = g(x_{t+k}, u_{t+k}, w_{t+k})$$

$$u_{\min} \leq u_{t+k} \leq u_{\max}$$

$$Prob(y_{\min} \leq y_{t+k} \leq y_{\max}) \geq p$$

$$x_{t} = x(t), \ k = 0, \dots, N-1$$

$$x(t) = \text{process state}$$

$$u(t) = \text{manipulated vars}$$

$$y(t) = \text{controlled output}$$

$$w(t) = \text{stochastic dist.}$$

- Only apply the first optimal move  $u^*(t)$ , discard  $u^*(t+1)$ ,  $u^*(t+2)$ , ...
- At time t+1: Get new measurement x(t+1), repeat the optimization, and so on

### Scenario-based stochastic MPC

#### **Existing literature**

(Schwarme & Nikolaou, 1999) (Wendt & Wozny, 2000) (Batina, Stoorvogel, Weiland, 2002) (Primbs, 2007) (van Hessem & Bosgra 2002)

(Munoz de la Pena, Bemporad, Alamo, 2005) (Oldewurtel, Jones, Morari, 2008) (Couchman, Cannon, Kouvaritakis, 2006)

(Bemporad, Di Cairano, 2005)

(Ono, Williams, 2008) (Bernardini & Bemporad, 2009)

#### Stochastic prediction model

x(k+1) = A(w(k))x(k) + B(w(k))u(k) + Hw(k)

$$w(k) \in \{w_1, w_2, \dots, w_s\}$$
$$P[w(k) = w_i] = p_i(k)$$

#### **Control goals**

- Less conservative control action w.r.t. robust MPC
- No restrictive assumptions on the disturbance distribution
- Guarantee stochastic convergence  $\lim E[x'(k)x(k)] = 0$  (for H=0) and recursive feasibility
- Decouple performance optimization and stability issues

#### Some theoretical results for SMPC

(Bernardini, Bemporad, IEEE TAC, 2012)

- **Convergence** and **feasibility** guaranteed by solving **offline** an LMI problem (synthesis of a stochastic Lyapunov function)
- **Performance** optimized **online** via flexible **stochastic performance trees**



### Stochastic MPC for option hedging

• Dynamic hedging of financial options (Bemporad, Bellucci, Gabbriellini, 2009)

(Bemporad, Gabbriellini, Puglia, Bellucci, CDC'10)



#### SMPC for real-time market-based power dispatch

- A Balance Responsible Party (BRP) is the only legal entity trading on the energy (PX) and ancillary service (AS) markets
- **Objective:** Minimize (expected) costs via efficient use of intermittent resources, and maximize (expected) profits by trading on PX and AS markets
- **Constraints**: Grid capacity constraints, rate limits, load balancing, AS balancing



### SMPC for real-time market-based power dispatch

(Patrinos, Trimboli, Bemporad 2011)

#### Stochastic MPC architecture



stochastic load and intermittent resources

#### SMPC for market-based optimal power dispatch



#### TABLE I: Generator Cost Data

| Unit | $Q_i (\text{MWh}^2)$ | $q_i \; (\text{MWh})$ | $c_i$ (\$) |
|------|----------------------|-----------------------|------------|
| P1   | 0.009                | 30.375                | 398.025    |
| P2   | 0.0225               | 73.35                 | 292.275    |
| P3   | 0.0488               | 61.488                | 489.952    |

#### TABLE II: Generator Data

| Unit | $p_i^{\min}$ | $p_i^{\max}$ | $\Delta p_i^{\min}$ | $\Delta p_i^{\min}$ |
|------|--------------|--------------|---------------------|---------------------|
| P1   | 450          | 1100         | -250                | 250                 |
| P2   | 50           | 500          | -200                | 200                 |
| P3   | 50           | 100          | -75                 | 75                  |

#### TABLE III: Storage Data

| Unit | $x_i^{\min}$       | $x_i^{\max}$        | $\Delta x_i^{\min}$     | $\Delta x_i^{\min}$ | $\alpha_i$  | $\alpha_i^{\rm c}$     | $\alpha_i^{\mathrm{d}}$ |
|------|--------------------|---------------------|-------------------------|---------------------|-------------|------------------------|-------------------------|
| S1   | 15                 | 300                 | -120                    | 120                 | 0.95        | 0.85                   | 0.90                    |
|      | $u_i^{\mathrm{c}}$ | $min = u_{i}^{min}$ | $_{i}^{\mathrm{d,min}}$ | $u_i^{\mathrm{c}}$  | $^{\max} =$ | $u_i^{\mathrm{d,max}}$ |                         |
|      | 0                  |                     |                         |                     | 300         | )                      |                         |

### SMPC for market-based optimal power dispatch

#### • Numerical results

although numerical complexity

|                                                                                                                  | [                             |         |            |                   |
|------------------------------------------------------------------------------------------------------------------|-------------------------------|---------|------------|-------------------|
| Exact knowledge future                                                                                           | Algorithm                     | Storage | No Storage |                   |
| uncertainty                                                                                                      |                               | Cost    | Cost       | Avg $\#$ of nodes |
|                                                                                                                  | Prescient-OC                  | 6427979 | 6879741    |                   |
|                                                                                                                  | CE-MPC                        | 9778750 | 9819518    |                   |
| and the second | SSMPC ( $e_{\rm rel} = 0.1$ ) | 7134582 | 7245962    | 350               |
|                                                                                                                  | SSMPC ( $e_{rel} = 0.2$ )     | 7144011 | 7249401    | 335               |
| Time-varying expectations used                                                                                   | SSMPC ( $e_{rel} = 0.3$ )     | 7148494 | 7250207    | 172               |
| for future uncertainty                                                                                           | SSMPC ( $e_{rel} = 0.4$ )     | 7179848 | 7264505    | 87                |
| ,                                                                                                                | SSMPC ( $e_{rel} = 0.5$ )     | 7224912 | 7267497    | 50                |
| · · · · · · · · · · · · · · · · · · ·                                                                            | SSMPC ( $e_{rel} = 0.6$ )     | 7239985 | 7277410    | 38                |
|                                                                                                                  | SSMPC ( $e_{rel} = 0.7$ )     | 7259491 | 7298023    | 31                |
|                                                                                                                  | SSMPC ( $e_{rel} = 0.8$ )     | 7255246 | 7312092    | 26                |
| CMDC, as trac density increases                                                                                  | SSMPC ( $e_{\rm rel} = 0.9$ ) | 7260424 | 7318643    | 22                |
| SMPC: as tree density increases,                                                                                 | SSMPC ( $e_{rel} = 1.0$ )     | 7260424 | 7318642    | 20                |
| nertormance gets better                                                                                          |                               |         |            |                   |

power exchanged with grid



gets larger

### SMPC for hybrid electric vehicles (HEVs)

**Control problem:** Split power request among the different power sources in HEVs to optimize a given performance metrics



#### Learning a stochastic model of the driver

- The driver action on the vehicle is modeled by the **stochastic** process w(k)
- Assume that the realization w(k) can be **measured** at every time step k
- Depending on the application, w(k) may represent different quantities
   (e.g., power request in an HEV, acceleration, velocity, steering wheel angle, ...)

Good model for control purposes: w(k) = Markov chain

$$[T]_{ij} = \mathbf{P}[w(k+1) = w_j | w(k) = w_i]$$

Number of states in Markov chain determines the **trade-off** between complexity *and* accuracy

# Transition probability matrix T is easily estimated from driver's data



Several model improvements are possible (e.g., multiple Markov chains)

### SMPC problem for HEV power management



#### **Controlled output**

sample time  $T_s=1$  s

$$P_{req}(k) = P_{el}(k) + P_{mec}(k) - P_{br}(k)$$

#### **Constraints**

#### **State-space equations**

$$SoC(k+1) = SoC(k) - KT_s P_{el}(k)$$
$$P_{mec}(k+1) = P_{mec}(k) + \Delta P(k)$$

#### Comparison with deterministic MPC

#### **"Frozen-time" MPC (FTMPC)**

No stochastic disturbance model, simply ZOH along prediction horizon

 $P_{req}(w(t+k|k)) = P_{req}(w(k))$ 



#### "Prescient" MPC (PMPC)

Future disturbance sequence  $P_{req}(w(t+k|k))$ known in advance



#### Simulation results: controller comparison

#### Comparison on the NEDC cycle

|                 | Fuel cons. [kg] | % Fuel improv. |
|-----------------|-----------------|----------------|
| FTMPC           | 0.281           | _              |
| SMPC (static)   | 0.243           | 13.5%          |
| SMPC (adaptive) | 0.199           | 29.2%          |
| PMPC            | 0.197           | 29.9%          |



pretty close to having the crystal ball. But we don't, we just model uncertainty carefully Comparison on different driving cycles Fuel consumption (kg)

|               | NEDC  | FTP   | 10-15 mode |
|---------------|-------|-------|------------|
| FTMPC         | 0.281 | 0.533 | 0.125      |
| 1 MC          | 0.243 | 0.323 | 0.091      |
| 2 MC          | 0.224 | 0.323 | 0.089      |
| 2 MC adaptive | 0.199 | 0.325 | 0.088      |
| РМРС          | 0.197 | 0.320 | 0.071      |

#### SMPC for ACC: stochastic leader model



Leader acceleration  $a_l$  modeled by a Markov Chain (quantized in 9 states)



The Markov Chain is:

- Trained off-line on a collection of driving cycles (FTP, NEDC, 10-15 Mode)
- Adapted on-line by means of the learning algorithm



#### SMPC for ACC: simulation results



Stochastic MPC (blue solid line) Frozen Time MPC (red dashed line) Prescient MPC (black dashed line)

Simulation results on European Urban Driving Cycle (EUDC)

A. Bemporad

### Conclusions

- Linear and explicit MPC can be implemented extremely efficiently (either in C on a processor, or on FPGA/ASIC circuits)
- Linear time-varying MPC can very effectively deal with nonlinearities (by on-line linearization of dynamics) and time varying systems
- Stochastic MPC provides a very good robustness vs. performance tradeoff and is easy implementable via QP

MPC is becoming an **increasingly mature technology** for a variety of industrial applications (not only for process control)



A spinoff company of IMT Lucca <u>http://www.odys.it</u>

