Embedded Convex Quadratic Optimization for Model Predictive Control

Alberto Bemporad

http://imtlucca.it/alberto.bemporad

(joint work with D. Bernardini, G. Cimini, A. Guiggiani, P. Patrinos, L. Stella)

Model Predictive Control (MPC)

Model Predictive Control (MPC)

• At time *t*: consider optimal control problem over a future horizon of *N* steps

- Apply the first optimal move $u(t) = u_0^*$, throw the rest of the sequence away
- At time *t*+1: Get new measurements, repeat the optimization. And so on ...

Used in process industries since the 80's. Now spreading in auto & aero

Automotive applications of MPC

Bemporad, Bernardini, Borrelli, Di Cairano, Giorgetti, Hrovat, Kolmanovsky, Ripaccioli, Trimboli, Tseng, Yanakiev (2001-2014)

1. **Speed (throughput)**: fast enough to provide the control decision within short sampling intervals (e.g., 10-100 ms)

Requirements for embedded optimization code

- 2. Require **simple/cheap hardware** (microcontroller, microprocessor, FPGA) and **little memory** to store problem **data** <u>and</u> **code**
- 3. Worst-case execution time must be (tightly) estimated for embedding the controller in a real-time platform

4. Code simple enough to be verifiable/certifiable (or at least understandable by production engineers)

Contents of my talk

• Explicit MPC and multiparametric quadratic programming

- Recent advances in embedded quadratic programming
 - Feasibility-based methods
 - Fixed-point implementations

Simulations and hardware-in-the-loop results, comparing different embedded QP solvers

Embedded Linear MPC

• Linear MPC requires solving a Quadratic Program (QP)

$$\min_{\substack{z \\ s.t. \\ Gz \le W + Sx(t)}} \frac{1}{2} z' Hz + x'(t)F'z + \frac{1}{2} x'(t)Yx(t) \\ z = \begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ u_{N-1} \end{bmatrix}$$

The control law $u(t) = u_0^*(x(t))$ is **implicitly** defined by the QP solver

• A variety of algorithms exist to solve the QP on-line given x(t):

active set (AS), interior point (IP), gradient projection (GP), alternating direction method of multipliers (ADMM), proximal methods, ...

• Explicit MPC: pre-solve the QP off-line for all x(t) to find the control law $u_0^*(x)$ explicitly via multiparametric quadratic programming (mpQP)

Properties of multiparametric QP

Theorem: Assume $H \succ 0$, $\begin{bmatrix} H & F \\ F' & Y \end{bmatrix} \succeq 0$ (always satisfied in QPs from MPC). $X^* = \{x \in \mathbb{R}^n : z^*(x) \text{ exists}\}$ \longrightarrow polyhedron $z^*(x) = \arg\min_z \frac{1}{2}z'Hz + x'F'z$ \longrightarrow continuous, piecewise affine s.t. $Gz \leq W + Sx$

$$V^{*}(x) = \frac{1}{2}x'Yx + \min_{z} \quad \frac{1}{2}x'Hz + x'F'z \longrightarrow \text{ convex, continuous,} \\ \text{s.t.} \quad Gz \leq W + Sx \qquad \text{ piecewise quadratic,} \\ (\text{even } C^{1}, \text{ if no degeneracy})$$

(Bemporad, Morari, Dua, Pistikopoulos, 2002)

Corollary: The linear MPC control law is continuous and piecewise affine

$$z^* = \begin{bmatrix} u_0^* \\ u_1 \\ \vdots \\ u_{N-1}^* \end{bmatrix} \qquad u(x) = \begin{cases} F_1 x + g_1 & \text{if } H_1 x \leq K_1 \\ \vdots & \vdots \\ F_M x + g_M & \text{if } H_M x \leq K_M \end{cases}$$

Multiparametric QP solvers

• A variety of mpQP solvers is available

(Bemporad et al., 2002) (Baotic, 2002) (Tøndel, Johansen, Bemporad, 2003) (Spjøtvold et al., 2006)(Patrinos, Sarimveis, 2010)

• Most computations are spent in operations on polyhedra (=critical regions)

$$\hat{G}z^*(x) \leq \hat{W} + \hat{S}x$$
 feasibility of primal solution
 $\tilde{\lambda}^*(x) \geq 0$ feasibility of dual solution

- checking emptiness of polyhedra
- removal of redundant inequalities
- checking full-dimensionality of polyhedra

• All such operations are usually done via linear programming (LP)

A new mpQP algorithm based on NNLS

(Bemporad, 2014)

• New approach: use **Nonnegative Least Squares** (NNLS) for polyhedral computations $\min_{v} \|Av - b\|_2^2$ efficiently solved e.g.

s.t. v > 0

Partially Nonnegative Least Squares (PNNLS) problem

 $\begin{array}{ll} \min_{v,u} & \|Av + Bu - c\|_2^2\\ \text{s.t.} & v \ge 0, \ u \ \text{free} \end{array}$

PNNLS = pseudo-inverse of *B* + solve NNLS

(Lawson, Hanson, 1974)

via active set algorithm

• Key result:

The polyhedron $P = \{u \in \mathbb{R}^n : Au \leq b\}$ is nonempty iff the PNNLS problem

$$(v^*, u^*) = \arg\min_{v,u} \|v + Au - b\|_2^2$$

s.t. $v \ge 0, u$ free

has zero residual $||v^* + Au^* - b||_2^2 = 0$

Polyhedral computations based on NNLS

(Bemporad, 2014)

• Three possible methods to check inequality redundancy via NNLS:

• Numerical results

0.0051	0.0035	0.0006	0.0046
0.0351	0.0301	0.0019	0.0103
0.1297	0.1233	0.0038	0.0193
0.4046	0.3976	0.0071	0.0340
1.0185	1.0082	0.0111	0.0554
2.0665	2.1030	0.0178	0.0955
4.5279	4.5546	0.0263	0 1426
7.9159	7.9133 (0.0357	0.1959
	0.0051 0.0351 0.1297 0.4046 1.0185 2.0665 4.5279 7.9159	0.00510.00350.03510.03010.12970.12330.40460.39761.01851.00822.06652.10304.52794.55467.91597.9133	0.00510.00350.00060.03510.03010.00190.12970.12330.00380.40460.39760.00711.01851.00820.01112.06652.10300.01784.52794.55460.02637.91597.91330.0357

NNLS = compiled Embedded MATLAB LP = compiled C code (GLPK)

CPU time = seconds (this Mac)

random polyhedra of \mathbb{R}^m with 10m inequalities

• Other polyhedral operations can be also tackled by NNLS (full-dimensionality check, Chebychev radius, union, projection)

A new mpQP algorithm based on NNLS

- New mpQP algorithm based on **NNLS** + **dual QP formulation** to compute active sets and deal with degeneracy (Bemporad, 2014)
- Comparison with:
 - Hybrid Toolbox (Bemporad, 2003)
 - Multiparametric Toolbox 2.6 (with default opts)

(Kvasnica, Grieder, Baotic, 2006)

Included in MPC Toolbox 5.0 (R2014b)
 The MathWorks

	q	m	Hybrid Tbx	MPT	NNLS
	4	2	0.0174	0.0256	0.0026
	4	3	0.0203	0.0356	0.0038
	4	4	0.0432	0.0559	0.0061
	4	5	0.0650	0.0850	0.0097
	4	6	0.0827	0.1105	0.0126
-	8	2	0.0347	0.0396	0.0050
	8	3	0.0583	0.0680	0.0092
	8	4	0.0916	0.0999	0.0140
	8	5	0.1869	0.2147	0.0322
	8	6	0.3177	0.3611	0.0586
	12	2	0.0398	0.0387	0.0054
	12	3	0.1121	0.1158	0.0191
	12	4	0.2067	0.2001	0.0352
	12	5	0.6180	0.6428	0.1151
	12	6	1.2453	1.3601	0.2426
	20	2	0.1029	0.0763	0.0152
	20	3	0.3698	0.2905	0.0588
	20	4	0.9069	0.7100	0.1617
	20	5	2.2978	1.9761	0.4395
	20	6	6.1220	6.2518	1.2853

Hardware (ASIC) implementation of explicit MPC

Complexity of multiparametric solutions

• The number of regions depends (exponentially) on the number of possible **combinations of active constraints**

• Weak dependence on the number of states and references

• Explicit MPC gets less attractive when number of regions grows: too much **memory** required, too much **time** to locate state x(t)

• Fast and simple on-line QP solvers may be preferable

Linear time-varying MPC

• MPC can easily extend to linear time-varying (LTV) problems

$$\begin{cases} x_{k+1} = A_k(t, x(t))x_k + B_k(t, x(t))u_k + f_k(t, x(t)) & \text{prediction} \\ y_k = C_k(t, x(t))x_k + D_k(t, x(t))u_k + g_k(t, x(t)) & \text{model} \end{cases}$$

$$E_k(t, x(t))x_k + F_k(t, x(t))u_k \le h_k(t, x(t))$$
 constraints
 $k = 0, 1, \dots, N-1$

$$\min \sum_{k=0}^{N} \ell_k(y_k, u_k, r(t+k), t, x(t)) \qquad \text{cost function} \\ \ell_k = \text{quadratic function of } y_k, u_k \\ \min \sum_{z} \frac{1}{2} z' H(t) z + F(t)' z + \alpha(t) \\ \text{s.t.} \quad G(t) z \leq W(t) \qquad \text{LTV-MPC still leads to} \\ \text{a convex QP} \\ \end{array}$$

• **QP matrices must be constructed on line,** H and G are a function of t

Reqs for embedded optimization algorithms

- Distinguish between **off-line** and **on-line** computations
 - off-line: double precision (MATLAB/Python/Julia) on a PC (arbitrarily complex)
 - **on-line**: single-precision/fixed-point on a μ-processor (please simple!)
- Have degrees of freedom to trade off **throughput** vs. **memory**
- Typical problem size: **10÷50 variables**, **10÷100 constraints**

• Numerical robustness (of on-line computations): must perform well in single precision (or even fixed-point) computations

Reqs for embedded optimization algorithms

• Limited linear algebra operations (in on-line computations) for code simplicity (example: at most matrix-vector products)

• **Dense problems**, no need for sparse linear algebra

• **Suboptimal solutions are ok.** Optimality is of less concern than feasibility (the prediction model is approximate, the cost function usually comes from trial & error tuning)

Reqs for embedded optimization algorithms

- Need to be able to estimate the **worst-case number of iterations**:
 - Iterative methods, for a given solution quality, are ok as long as the number of iterations can be well predicted (in theory and/or in experiments)
 - Active-set methods provide best solution quality (within machine precision)
- Insensitivity to problem scaling (or have good automatic scaling methods). Many QP problems from MPC are badly scaled (e.g.: soft constraints = high penalties)

• The simpler the code, the easier is to exploit super-optimized processor-specific functions (e.g.: scalar products)

Gradient projection method for QP (very simple!)

• QP problem:

$$\begin{array}{ll} \min_{z} & \frac{1}{2}z'Hz + x'Fz\\ \text{s.t.} & Gz \leq W + Sx \end{array}$$

Lana La a ha a

(Goldstein, 1964) (Levitin & Poljak, 1965)

- z = optimization vector
- x = parameter vector

• Apply gradient-projection to **dual QP**

 $\alpha \pi \pi - 1 \alpha l$

$$\min_{y\geq 0} \quad \frac{1}{2}y'My + (Dx+W)'y$$

$$M = GH^{-1}G' \qquad \text{prepared}$$

$$D = GH^{-1}F' + S \quad \text{off-line}$$

$$L = \max \text{ eigenvalue of } M, \text{ or } L = \sqrt{\sum_{i,j=1}^{m} |M_{i,j}|^2} \quad \text{(Frobenius norm)}$$

• Iterate
$$y_{k+1} = \max\{(I - \frac{1}{L}M)y_k - \frac{1}{L}(Dx + W), 0\}$$
 from $y_0 = 0$

until convergence to optimal y^* (guaranteed if QP is feasible)

• Set
$$z^* = -H^{-1}(G'y^* + F'x)$$

Fast gradient projection for (dual) QP

• Apply fast gradient method to dual QP:

(Nesterov, 1983) (Patrinos, Bemporad, IEEE TAC, 2014)

$$w_{k} = y_{k} + \beta_{k}(y_{k} - y_{k-1})$$

$$z_{k} = -Kw_{k} - Jx$$

$$s_{k} = \frac{1}{L}Gz_{k} - \frac{1}{L}(Sx + W)$$

$$y_{k+1} = \max\{y_{k} + s_{k}, 0\}$$

$$K = H^{-1}G'$$
 $y_{-1} = y_0 = 0$
 $J = H^{-1}F'$

$$\beta_k = \left\{ \begin{array}{ll} 0 & k = 0 \\ \frac{k-1}{k+2} & k > 0 \end{array} \right.$$

$$s_k^i \leq rac{1}{L} \epsilon_G^i, \ \forall i = 1, \dots, m$$

feasibility tol

• Termination criterion #2: primal optimality

$$f(z_k) - f^* \leq f(z_k) - \phi(w_k) = -w'_k s_k L \leq \epsilon_V$$

dual function

optimality tol
$$-w_k's_k \leq \frac{1}{L} \epsilon_V$$

Fast gradient projection for (dual) QP

- Main on-line operations involve only simple linear algebra
- For MPC problems, using Riccati-like iterations complexity per iteration is O(N)[N = prediction horizon]

• Tight bounds on maximum number of iterations

• Can be very useful to warm-start other methods !

A. Bemporad

(Patrinos, Bemporad, IEEE TAC, 2014)

Primal vs. dual methods

- Early stopping: primal methods usually provide a feasible solution if stopped prematurely (e.g.: max time elapsed, task pre-emption), dual methods do not (infeasible & super-optimal primal solutions)
- Better **control of primal solution quality** with primal methods

Warm starting easier in primal methods (shifted previous optimal solution [u₁*(x(t-1)) ... u_{N-1}*(x(t-1)), *] is often a good initial guess), more difficult with dual methods.

E.g.: in LCP methods w=Mz+d, an easy initial guess is z=0, w=d, that satisfies the complimentarity constraints.

Primal vs. dual methods

 Dual methods can usually handle more general linear constraints (Az≤b vs. l≤z≤u)

Often box-constraints *l*≤*z*≤*u* are enough, so no need to go to dual QP.
 Example: soft constraints can be remapped into cost function:

$$Az \le b \longrightarrow \min \rho \|Az + s - b\|^2, \ s \ge 0, \ \rho \gg 1$$

• Primal Hessian *H* always >0, dual Hessian $M=GH^{-1}G'$ usually only ≥0

• Dual Hessian $GH^{-1}G'$ may be larger to store than H and G

Primal vs. dual methods

• Sometimes **reconstructing primal solution** after solving dual problem is numerically troublesome (a small error in dual solution can propagate to a large error in primal solution)

• Dual methods more difficult for LTV (need to compute $GH^{-1}G'$ on-line)

Whether to prefer primal or dual method depends on constraint type ($Ax \le b \text{ vs. } l \le x \le u$) and LTI vs. LTV MPC control problem setup

Finite-precision arithmetics

How about numerical robustness?

- Fixed-point arithmetics is very attractive for embedded control:
 - Computations are fast and cheap
 - Hardware support in all platforms

- Cons:
 - Accumulation of quantization errors
 - Limited range (numerical overflow)

Gradient projection in fixed-point arithmetics

• Design guidelines for required #integer bits to avoid overflow also available

Hardware tests (floating vs fixed point)

(Patrinos, Guiggiani, Bemporad, 2013)

32-bit Atmel SAM3X8E **ARM Cortex-M3** processing unit: 84 MHz, 512 KB of flash memory and 100 KB of RAM.

Fixed	d-point hardw	vare implementation	
Size [variables/constraints]	Time $[ms]$	Time per iteration $[\mu s]$	Code Size $[KB]$
10/20	22.9	226	15
20/40	52.9 fi	xed 867	17
40/80	544.9 pc	<mark>pint</mark> 3382	27
60/120	1519.8	7561	43

Table 1

Table 2 Floating-point hardware implementation

Size [variables/constraints]	Time [ms]	Time per iteration $[\mu s]$	Code Size $[KB]$
10/20	88.6	974	16
20/40	220.1) fl	oating ³⁶⁰⁸	21
40/80	2240 pc	pint 13099	40
60/120	5816	30450	73

fixed-point about 4x faster than floating-point

Proximal Newton methods (fixed-point)

 $\min_{\underline{z} \le z \le \overline{z}} \quad \frac{1}{2} z' Q z + q' z$

• Proximal Netwon method applied to box-constrained QP

(Patrinos, Guiggiani, Bemporad, 2014)

Bound on round-off error accumulated at each iteration

• Number of integer bits to avoid **overflow**

integer bits
$$r \ge \log_2\left(\max\left\{\hat{z}, \hat{d}\right\} + 1\right) + 1$$

$$\max\left\{\|\underline{z}\|_{\infty}, \|\bar{z}\|_{\infty}\right\} + \varepsilon_z \qquad \|Q^{-1}\|_{\infty}\left(\|Q\|_{\infty}\hat{z} + \|q\|_{\infty}\right) + \varepsilon_d$$

Proximal gradient methods (fixed-point)

(Patrinos, Guiggiani, Bemporad, 2014)

fixed-point computations

relative accuracy

Hardware implementation

random box-constrained QPs

fixed point: 8+8 bits floating point: 32 bits

	fixed	floating	fixed	floating
Vars.	$T_{fi} \ [ms]$	$T_{fl} \ [ms]$	$Size_{fi} [KB]$	$Size_{fl} \ [KB]$
10	0.6	1.8	14.7	20.2
20	1.8	5	16	22
30	4.7	9.7	18	27
40	8.8	45.5	21	32.8
50	14.7	89.8	24.8	39.6
60	25.7	100.8	29.3	59.2
70	44.8	n/a	34.6	n/a
80	52.4	n/a	40.7	n/a

ARM-based Cortex-M3 (Atmel SAM3X8E) 84 MHz, 100 KB of RAM and 512 KB of flash memory

A. Bemporad

Anytime Embedded Optimization

What if the CPU time to solve QP exceeds sampling interval or optimization task is preempted ?

- Example: dual QP methods do not get a feasible solution until the end
- Anytime optimization idea:

Given a feasible solution, keep improving its optimality as long as CPU is available, otherwise stop and apply best solution found so far

- Key ingredients needed:
 - Proper solver that recursively improves optimality while maintaining feasibility
 - Proper **MPC setup**: a feasible solution always immediately available, and feasibility implies stability

(Bemporad, Bernardini, Patrinos, 2014)

• Convex feasibility problem: find a vector x such that

 $f_i(x) \leq 0, \ i = 1, \dots, m$ $f_i : \mathbb{R}^n \mapsto \mathbb{R}$ convex

• Key idea: solve unconstrained problem

min
$$F(x) = \frac{1}{2} \sum_{i=1}^{m} \max\{f_i(x), 0\}^2$$

• Use Newton-like method to minimize F(x)

$$\nabla F_I(x) = \sum_{i \in I} f_i(x) \nabla f_i(x)$$
$$\nabla^2 F_I(x) = \sum_{i \in I} \nabla f_i(x) \nabla f_i(x)' + f_i(x) \nabla^2 f_i(x)$$

 $F: \mathbb{R}^n \mapsto \mathbb{R} \text{ convex}$ and continuously differentiable

very simple to compute if fi's are linear or quadratic

 $I = \{i = 1, ..., m \text{ such that } f_i(x) > 0\}$

• Feasibility algorithm (regularized piecewise-smooth Newton method)

(Bemporad, Bernardini, Patrinos, 2014)

• Convex optimization problem:

min
$$f_0(x)$$

s.t. $f_i(x) \le 0, i = 1, ..., m$

 Solve feasibility problems recursively (bisection) by updating upper and lower bounds on optimal cost:

1.
$$\bar{f}_k = \frac{UB_{k-1} + LB_{k-1}}{2}$$

2. solve feasibility problem $\begin{array}{l} f_0(x) \leq \bar{f}_k \\ f_i(x) \leq 0, \ i = 1, \dots, m \end{array}$
3. If feasible, set $\begin{array}{l} UB_k &= \bar{f}_k \\ LB_k &= LB_{k-1} \end{array}$ otherwise set $\begin{array}{l} LB_k &= \bar{f}_k \\ UB_k &= UB_{k-1} \end{array}$
4. Repeat from step 1. until $UB_k - LB_k \leq \epsilon$

• Better improvements of upper and lower bounds are possible

(Bemporad, Bernardini, Patrinos, 2014)

• Numerical results

Anytime embedded MPC

• **Key idea:** only keep bisecting if CPU resources are available, otherwise stop and apply current best feasible solution

09

0.8	/		
0.7	/		
0.6			
0.4			
0.3			
0.2 ter	rminal	pol	lyhedral
0.1	nstraiv	rt.	
0	0.5	1	1

max CPU time (ms)	Cumulated cost J
unbounded	8.7865
60	22.6572
40	26.4663
20	31.4528

max CPU time (ms)	Cumulated cost J
unbounded	9.0075
10	23.4491
5	26.4646
1	26.7551

Convergence guaranteed whatever CPU time is available at each step !

Scaling (or preconditioning)

- **Preconditioning** can improve convergence rate of iterative algorithms (in particular first-order methods are very sensitive to scaling)
 - primal QP min $\frac{1}{2}z'Hz + f'z$ $M = GH^{-1}G'$ s.t. $Gz \le W$ $d = GH^{-1}f + W$
- Dual scaling:

$$\min_{y} \frac{1}{2}y'My + d'y$$

s.t. $y \ge 0$
$$P = \operatorname{diag}\left(\frac{1}{\sqrt{M_{ii}}}\right)$$

$$\min_{y_s} \frac{1}{2}y'_s(PMP)y_s + d'Py_s$$

s.t. $y_s \ge 0$
scaled dual QP

• This is equivalent to scale constraints in primal problem: $\frac{1}{\sqrt{M_{ii}}}G_i z \leq \frac{1}{\sqrt{M_{ii}}}W_i$

• Primal solution: $z^* = -H^{-1}(G'Py_s^* + f)$

Scaling example

- AFTI-16 linearized model (4th order, unstable)
 - 2 inputs (elevator & flap angles)
 - 2 outputs (attack & pitch angles)
- MPC problem:
 - prediction horizon=10, control horizon=2 (-> 4 free optimization vars)
 - feasibility threshold = optimality threshold = 0.01

only	inpul	cons	trair	nts
AFTI	M	ах	A	vg
	NS	S	NS	S
GPAD	287	153	28	21
ADMM	1458	456	148	111
PQP	2396	2119	152	138
DRSA	441	278	57	32
FBN	6	7	3	2

number of iterations (NS= Not Scaled, S=Scaled)

PQP = Projection-free parallel QP (Di Cairano, Brand, Bortoff, 2013) DRSA = Accelerated Douglas-Rachford Splitting (Patrinos, Stella, Bemporad, 2014)

Hardware-In-the-Loop experiments (DSP)

• Control of a brushless DC motor

Hardware-In-the-Loop experiments (DSP)

• Linear MPC setup:

$$\begin{cases} x(k+1) = Ax(k) + B_u u(k) + B_v(k) \\ y(k) = Cx(k) \end{cases}$$

$$x = \begin{bmatrix} i_d \\ i_q \end{bmatrix} \quad u = \begin{bmatrix} u_d \\ u_q \end{bmatrix}$$
$$A = \begin{bmatrix} -\frac{R}{L} & \bar{\omega} \\ 0 & -\frac{R}{L} \end{bmatrix}, \quad B_u = \begin{bmatrix} \frac{1}{L} & 0 \\ 0 & \frac{1}{L} \end{bmatrix}, \quad B_v = \begin{bmatrix} 0 \\ -\omega^2 \frac{\lambda}{L} \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

R = stator resistance [Ω] L = stator inductance [H] ω = rotor speed [rad/s] λ = motor flux leakage [Wb]

prediction horizon = 4 control horizon = 2 box constraints on i_q and u_q

$$-\epsilon I_{\max} \leq i_d \leq \epsilon I_{\max}$$
$$V_{\max} \leq u_q \leq V_{\max}$$

Hardware-In-the-Loop experiments (DSP)

- Experimental setup:
 - PC with MATLAB/Simulink
 - RS232 adapter
 - TMS320F28335 Experimenter Kit

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	var \times constr.	GPAD	AS	ADMM	FBN
8 × 24 1.1 ms (22) 446 μ s (5) 4 ms (77) 396 μ s (2)	4 × 16	332 μs (18)	(120 μ s)(3)	1.42 ms (62)	208 µs (2)
	8 × 24	1.1 ms (22)	440 µS (5)	4 ms (77)	396 µs (2)
12×32 2.59 ms (27) 1.19 ms (7) 8.25 ms (82) (652 μ s)2)	12×32	2.59 ms (27)	1.19 ms (7)	8.25 ms (82)	652 μs)2)
	1				

- Active set dominates on small problems (Goldfarb, Idnani, 1983)
- Forward-Backwards Newton (proximal method) better for larger problems

Conclusions

Which method to prefer for embedded MPC?

	Explicit			Implicit	(=on-line Q	P)	
	MPC	active set	interior point	gradient projection	proximal Newton	ADMM	PQP
speed (small probs)			•••	••		•••	••
speed (large probs)				•••		•••	() ()
worst-case estimates	00		6	•••	•••	T	
numerical arithmetics		••	•••				
off-line computations							0 0
solution quality (feas/opt)			•••	•••	•••	•••	••
data memory							
control code		•••	•••		••		
best for problem size	small	medium	large	medium	medium	medium	small

very rough classification: small \leq 6 vars, 15 constraints, 8 states/references medium \simeq 20 vars, 80 constraints, 50 states/references large \geq 500 vars, 3000 constraints, 2000 states/references

Conclusions

- Embedded QP solvers for MPC must be **very simple** to code, **fast**, amenable for **low-precision** arithmetic, and with proved bounds on **real-time execution**
- A **"best QP algorithm" does not exist**, must have a library of methods, depending on memory/throughput/precision reqs.
- Research on QP solution methods started ~60 years ago ...

(Beale, 1955)

ON MINIMIZING A CONVEX FUNCTION SUBJECT TO LINEAR INEQUALITIES

By E. M. L. BEALE

Admiralty Research Laboratory, Teddington, Middlesex

SUMMARY

THE minimization of a convex function of variables subject to linear inequalities is discussed briefly in general terms. Dantzig's Simplex Method is extended to yield finite algorithms for minimizing either a convex quadratic function or the sum of the t largest of a set of linear functions, and the solution of a generalization of the latter problem is indicated. In the last two sections a form of linear programming with random variables as coefficients is described, and shown to involve the minimization of a convex function.

More research on QP is still needed to have an impact in real applications !