Is MPC a Mature Technology for Guidance and Navigation?

Alberto Bemporad

http://www.imtlucca.it/alberto.bemporad

University of Trento

Department of Mechanical and Structural Engineering

IMT Institute for Advanced Studies Lucca

Outline

- What is Model Predictive Control (MPC) (in a nutshell)
- Computation and memory requirements of MPC
- MATLAB tools for MPC design and code-generation
- Applications of MPC
- Conclusions

Outline

- What is Model Predictive Control (MPC) (in a nutshell)
- Computation and memory requirements of MPC
- MATLAB tools for MPC design and code-generation
- Applications of MPC
- Conclusions

Model Predictive Control (MPC)

By using a dynamical **model** of the process **predict** its future evolution to choose the "best" **control** action

MPC algorithm

• At time t: solve an optimal control problem over a future horizon of N steps

- Apply only the first optimal move $u^*(t)$, throw the rest of the sequence away
- At time t+1: Get new measurements, repeat the optimization. And so on ...

MPC transforms open-loop optimal control into a feedback control law

Outline

√What is Model Predictive Control (MPC) (in a nutshell)

- Computation and memory requirements of MPC
- MATLAB tools for MPC design and code-generation
- Applications of MPC
- Conclusions

MPC optimization problem

Problem nature depends on prediction model, cost function, constraints:

```
min \sum_{k=0}^{N-1} \ell(y_{t+k} - r_{t+k}, u_{t+k})
s.t. x_{t+k+1} = f(x_{t+k}, u_{t+k})
y_{t+k} = g(x_{t+k}, u_{t+k})
constraints on u_{t+k}, x_{t+k}, y_{t+k}
x_t = x(t)
```

Linear model and constraints, quadratic costs

• Linear model and constraints, "linear" costs (e.g.: infinity norms)

• Nonlinear models, costs, constraints

Hybrid dynamical models

Pros and cons of on-line optimization

√ Continuously update the best decision, reacting to unexpected events (disturbances, faults, obstacles,...)

- ✓ Excellent LP/QP/MIP/NLP solvers exist today ("LP is a technology" S. Boyd)
- **Computation time** may be too long: ok for large sampling times (>10 ms) but not for fast-sampling applications (< 1 ms).
- **X** Requires relatively <u>expensive hardware</u> (microprocessor)
- ★ Software complexity: solver code must be embedded in the application
- **Real-time**: Worst-case CPU time often hard to estimate

Any way to use MPC without on-line solvers?

Explicit model predictive control

$$\min_{U} \frac{1}{2}U'HU + \mathbf{x}'(t)F'U + \frac{1}{2}x'(t)Yx(t)$$
 subj. to
$$GU \leq W + S\mathbf{x}(t)$$

<u>Idea</u>: solve the QP for all x(t) within a given range of \mathbb{R}^n off-line

multi-parametric programming problem

The linear MPC controller is a **continuous piecewise affine** function of the state vector

$$u(x) = \begin{cases} F_1x + g_1 & \text{if } H_1x \leq K_1 \\ \vdots & \vdots \\ F_Mx + g_M & \text{if } H_Mx \leq K_M \end{cases}$$
 (Bemporad, Morari, et al., 2002)

Applies to linear and hybrid MPC formulations!

Complexity of explicit MPC

- Number of regions depends on # possible combinations of active constraints
- Weak dependence on #states
- QP-based vs. Explicit MPC:

2N	QP (ms)		explicit (ms)		regions	[storage kb]
	average	worst	average	worst	79 Trans	
4	(1.1)	1.5	0.005	(0.1)	25	16
8	1.3	1.9	0.023	1.1	175	78
20	2.5	2.6	0.038	3.3	1767	811
30	5.3	7.2	0.069	4.4	5162	2465
40	(10.9)	13.0	0.239	(15.6)	11519	(5598)
(Intel Centrino 1.4 GHz)					rino 1.4 (iHz)	

Explicit MPC typically limited to 6-8 free control moves and 8-12 states+references

Linear MPC: summary of computation effort

MPC type	off-line computations	on-line computations
LTI model, explicit MPC	build QP/LP problem, solve multiparametric problem	evaluate PWA function
LTI model, implicit	build QP/LP problem	solve QP/LP problem
LTV model	none	build QP/LP problem solve QP/LP problem

LTI = Linear Time-Invariant

LTV = Linear Time-Varying

Outline

- ✓ What is Model Predictive Control (MPC) (in a nutshell)
- √ Computation and memory requirements of MPC
- MATLAB tools for MPC design and code-generation tools
- Applications of MPC
- Conclusions

Model Predictive Control Toolbox

(Bemporad, Ricker, Morari, 1998-2011)

- MPC Toolbox 4.0 (The Mathworks, Inc.)
 - Object-oriented implementation (MPC object)
 - MPC Simulink Library
 - MPC Graphical User Interface
 - Code generation [RTW, xPC Target, dSpace, etc.]
 - Linked to OPC Toolbox v2.0.1, SYS-ID Toolbox

Complete solution for linear MPC design based on on-line QP

http://www.mathworks.com/products/mpc/

MPC Toolbox for MATLAB

(Bemporad, Ricker, Morari, 1998-2011)

New features coming in next version:

- MPC Simulink block coded in EML

- New QP solver (EML)

On-line tuning

– ...

MPC Controlle

Hybrid Toolbox for MATLAB

(Bemporad, 2003-2011)

Features:

- Hybrid models: design, simulation, verification
- Control design for linear systems w/ constraints and hybrid systems (on-line optimization via QP/MILP/MIQP)
- Explicit MPC control (via multi-parametric programming)
- C-code generation
- Simulink library

3500+ download requests since October 2004

http://www.ing.unitn.it/~bemporad/hybrid/toolbox

MPCTOOL - An MPC Toolbox extension for ESA

(Bemporad, 2009-'11)

• Developed within the ORCSAT project funded by ESA (2009-2011)

• Large emphasis on real-time implementation capabilities of MPC

• MPC applications: orbit synchronization, impulsive hopping

Toolbox features:

- Set **terminal** weights and constraints in linear MPC (and ∞-horizon MPC)
- CAMBRIDGE

- MPC with discrete-valued inputs (quantized, variable horizon)

- ® ReliaCon
- Return the optimal sequence in Simulink for higher-level safety checks
- MPC with **PWA stage costs** on inputs and outputs
- MPC with mixed input and output constraints
- MPC for linear time-varying (LTV) models (EML)
- LP and QP solvers for LTV-MPC (EML)

MPCTOOL - An MPC Toolbox extension for ESA

- Hardware requirements for LTV-MPC based on LP tested by ThalesAleniaSpace (I) and Univ. Bristol (UK)
- AT697F processor not adequate, co-processor is needed

 Proposed solution: PowerPC750FX fully dedicated to solve MPC problem

MPCSoft - A new ESA toolbox for LTV-MPC

(Bemporad, 2010-'11)

Developed within the ROBMPC project funded by ESA (2010-2012)

• Large emphasis on exploring MPC capabilities in new space apps

- Selected applications for LTV-MPC:
 - Planetary rover locomotion wheel slip control
 - Planetary rover locomotion path planning
 - Cooperative UAV navigation formation forming and flying

Example: navigation demo using LTV-MPC

• Two vehicles avoiding each other and obstacles towards their targets

- Target position #1 = (35,30)
- Initial position #2 = (35,-3)
- Target position #2 = (0,20)

Example: navigation demo using LTV-MPC

Outline

- ✓ What is Model Predictive Control (MPC) (in a nutshell)
- √ Computation and memory requirements of MPC
- ✓ MATLAB tools for MPC design and code-generation tools
- Applications of MPC
- Conclusions

Industrial applications of MPC

Area	Aspen Technology	Honeywell Hi-Spec	Adersa ^b	Invensys	SGS ^c	Total
Refining	1200	480	280	25		1985
Petrochemicals	450	80		20		550
Chemicals	100	20	3	21		144
Pulp and paper	18	50				68
Air & Gas	_	10	_	_		10
Utility	_	10	_	4		14
Mining/Metallurgy	8	6	7	16		37
Food Processing	_	_	41	10		51
Polymer	17			_		17
Furnaces	_	_	42	3		45
Aerospace/Defense	_	_	13	_		13
Automotive		_	7	_		7
Unclassified	40	40	1045	26	450	1601
Total	1833	696	1438	125	450	4542
First App.	DMC:1985	PCT:1984	IDCOM:1973			
8.04	IDCOM-M:1987	RMPCT:1991	HIECON:1986	1984	1985	
Largest App.	OPC:1987 603 × 283	225 × 85	_	31 × 12	_	

(snapshot survey conducted in mid-1999)

(Qin, Badgewell, 2003)

"For us multivariable control is predictive control"

Tariq Samad, Honeywell (past President of IEEE Control System Society) (1997)

• MPC Toolbox 3.0 most successful webinar in 2009!

Automotive applications of MPC

<u>PhD students</u>: Bernardini, Borrelli, Di Cairano, Giorgetti, Ripaccioli, Trimboli (2001-2011) & Hrovat, Kolmanovsky, Tseng (Ford)

magnetic actuators

engine control

active steering

traction control

semiactive suspensions

robotized gearbox

NICE project - European Defence Agency

- NICE project funded by EDA (2010-2012) (project coordinator: Onera, France)
- Univ. Trento responsible for "MPC-based guidance design" (UniTN, Bertin, MBDA)
- Develop hybrid models of UAV + environment
- Hybrid MPC design
- Tuning and validation in provided realistic simulation environment
- Evaluation criteria: time to complete the mission, fuel consumption, ability to avoid obstacles, smoothness of manoeuvres.

LAAS
Univ. Roma TV
TU Munich
E&Q
IRIDA
DLR
BERTIN
DASSAULT
LFK
MBDA-France
MBDA-Italy

MPC applications in aerospace (universities)

• Linear Time-Varying MPC for wheel momentum damping by thrust orientation mechanism

(Bemporad, Losa, Piliego, Ramirez-Prado, 2009)

- LTI MPC for stabilization, Hybrid MPC for navigation of small UAVs
- Hybrid MPC for formation flying of small UAVs

(Bemporad, Rocchi, IFAC 2011)

Decentralized LTV-MPC for formation flying

- Many other contributors:
- A. Richards, P. Trodden (Bristol, UK)
- J. Maciejowski, E.N. Hartley (Cambridge, UK)
- G. Balas, F. Borrelli, T. Keviczky (Minnesota)
- R. Murray, W.B. Dunbar (Caltech)
- J. How, L. Breger, M. Tillerson (MIT)
- (...)

Embedded optimization in aerospace

• PRISMA project for autonomous formation flying

(S. Persson, S. Veldman, P. Bodin, 2009)

http://www.prismasatellites.se/

 Objective function: minimize fuel consumption subject to keeping motion within a box constraint (solved by linear programming)

Conclusions

- MPC is a very versatile technique for solving rather complex control problems:
 - Nonlinear/switching/multivariable dynamics and constraints on inputs and outputs
 - Performance is optimized
 - Systematic design approach, MPC designs are easy to maintain
 - MATLAB tools exist to assist the design and for code generation
- MPC is constantly spreading in industry, due to advances in:
 - Science: more efficient numerical algorithms
 - Technology: control units are more powerful and cheaper
 - Market: increasing performance requirements and complexity
- Started in the 80's in the process industries, reached automotive in 2000. Now spreading to aeronautics and aerospace!
- Europe is ahead of North America and Asia (also thanks to ESA). But US companies are currently investigating MPC for aero applications ...
- Is MPC a mature technology for guidance and navigation?

Announcements

4th HYCON2 PhD School on Control of Networked and Large-Scale Systems

Trento, June 21-24, 2011

Wireless control systems	K.H. Johansson	(Sweden)
Stability of NCS	M. Heemels	(NL)
Distributed DES	C. Cassandras	(USA)
Quantization in NCS	H. Ishii	(Japan)
Event-triggered control	J. Lunze	(Germany)
Decentralized control	S. Stankovic	(Serbia)
Real-time control	L. Palopoli	(Italy)
Consensus & estimation	S. Zampieri	(Italy)
Distributed optimization	S. Boyd	(USA)
Model predictive control	A. Bemporad	(Italy)
Traffic networks	C. Canudas-de-Wit	(France)
Smart grids	K. Poolla	(USA)

HYCON2 network of excellence (ICT-FP7, 2010-2015)

"Highly complex networked control systems"

http://control.ing.unitn.it/4hycon2

• Spin-off company starting soon ... (consulting & software customization for development of optimization-based control solutions)