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Abstract

For continuous-time switched linear systems, this pa-
per proposes an approach for solving infinite-horizon op-
timal control problems where the decision variables are the
switching instants and the sequence of operating modes.
The procedure iterates between a “master” procedure that
finds an optimal switching sequence of modes, and a
“slave” procedure that finds the optimal switching instants.
The effectiveness of the approach is shown through simple
simulation examples.

1 Introduction

Switched systems are a particular class of hybrid sys-
tems that switch between many operating modes, where
each mode is governed by its own characteristic dynami-
cal law [1]. Typically, mode transitions are triggered by
variables crossing specific thresholds (state events), by the
elapse of certain time periods (time events), or by exter-
nal inputs (input events). The problem of determining op-
timal control laws for this class of hybrid systems has been
widely investigated in the last years and many results can
be found in the control and computer science literature. For
continuous-time hybrid systems, most of the literature is
focused on the study of necessary conditions for a trajec-
tory to be optimal [16], and on the computation of opti-
mal/suboptimal solutions by means of dynamic program-
ming or the maximum principle [5,6,10,13,14,18]. For de-
termining the optimal feedback control law some of these
techniques require the discretization of the state space in
order to solve the corresponding Hamilton-Jacobi-Bellman
equations. In [9] the authors use a hierarchical decom-
position approach to break down the overall problem into
smaller ones. In so doing, discretization is not involved and
the main computational complexity arises from a higher-
level nonlinear programming problem.

The hybrid optimal control problem becomes less com-
plex when the dynamics is expressed in discrete-time or as
discrete-events. For discrete-time linear hybrid systems, in
[4] we introduced a rather general hybrid modeling frame-
work and showed how mixed-integer quadratic program-
ming (MIQP) can be efficiently used to determine optimal

control sequences. We also showed that when optimal con-
trol is implemented in a receding horizon fashion by repeat-
edly solving MIQPs on-line, this leads to an asymptotically
stabilizing control law. For those cases where on-line opti-
mization is not viable, in [2] we proposed multiparametric
programming as an effective means for synthesizing piece-
wise affine optimal controllers, that solve in state-feedback
form the finite-time hybrid optimal control problem with
performance criteria based on linear (1 or infinity) norms,
or, as shown more recently, on quadratic norms. Such a
control design flow for hybrid systems was applied to sev-
eral industrial case studies, in particular to automotive prob-
lems where the simplicity of the control law is essential for
its applicability.

In the discrete-time case, the main source of complex-
ity is the combinatorial number of possible switching se-
quences. By combining reachability analysis and quadratic
optimization, in [3] we proposed a technique that rules out
switching sequences that are either not optimal or simply
not compatible with the evolution of the dynamical system.
An algorithm to optimize switching sequences that has an
arbitrary degree of suboptimality was presented in [11].

In the continuous-time case, and in particular for
switched linear systems composed by stable autonomous
dynamics, by assuming that the switching sequence is pre-
assigned (and, therefore, that the only decision variables to
be optimized are the switching instants), in [7,8] we proved
an important result: the control law is a state-feedback and
there exists a numerically viable procedure to compute the
switching regionsCi,N , i.e., the points of the state space
where thei-th switch of a sequence of lengthN should oc-
cur.

In this paper we solve the optimal control problem for
continuous-time switched linear systems in which both the
switching instants and the switching sequence are decision
variables. The procedure exploits a synergy of discrete-
time and continuous-time techniques, by alternating be-
tween a “master” procedure that finds an optimal switch-
ing sequence and a “slave” procedure that finds the optimal
switching instants. A few simple heuristics can be added to
the algorithm to improve its performance. Although the fi-
nal optimal switching policy is computed for a given initial
state, as a by-product of the algorithm it has a state-feedback
nature, which is only valid however for “small” perturba-
tions of the initial state such that the optimal switching se-



quence does not change. A related approach that optimizes
hybrid processes by combining mixed-integer linear pro-
gramming (MILP) to obtain a candidate switching sequence
and dynamic simulation was proposed in [12]. A two-stage
procedure was also proposed in [18].

Although we formally prove that the algorithm always
converges to a local minimum, the global minimum is not
always reached. We run the algorithm on about100 random
tests and observed that it converges extremely quickly to the
global optimum on about 95% of the problems, and in the
remaining 5% the difference between the solution and the
global solution (computed via enumeration) is below 1%.

2 Problem Formulation

In this paper we consider the following class of hybrid
systems

ẋ(t) = Ai(t)x(t), i(t) ∈ S (1)

that we denote asswitched linear systems, wherex(t) ∈
R

n, i(t) ∈ S is the control variable, andS � {1, 2, . . . , s}
is a finite set of integers, each one associated with a lin-
ear dynamics. We assume that all matricesAi (i ∈ S) are
strictly Hurwitz (i.e., all dynamics are asymptotically sta-
ble) and that a positive semi-definite weight matrixQ i is
associated to each dynamics. For such a class of hybrid sys-
tems we want to solve the following optimal control prob-
lem

V ∗
N � min

I,T

{
F (I, T ) �

∫ ∞

0

x′(t)Qi(t)x(t)dt

}

s.t. ẋ(t) = Ai(t)x(t)
x(0) = x0

i(t) = ik for τk−1 ≤ t < τk

ik ∈ S, k = 1, . . . , N + 1
τ0 = 0, τN+1 = +∞
τk ∈ R≥0 ∀k = 1, . . . , N

(2)

where N is the maximum allowed number of switches
(fixed a priori),T � {τ1, . . . , τN} is a finite sequence of
switching times,I � {i1, . . . , iN+1} is a finite sequence of
switching indices, andx0 is the initial state of the system.
We denote byi∗(t), t ∈ [0, +∞), i∗(t) = i∗k for τ∗

k−1 ≤
t < τ∗

k the switching trajectory solving (2), andI ∗, T ∗ the
corresponding optimal sequences.

This framework may be easily generalized. One may as-
sume that whenever at timeτk a switch fromik to ik+1

occurs, the state should jump fromx(τ −
k ) to x(τ+

k ) =
Mkx(τ−

k ) as in [8]. One may also assume that a cost is as-
sociated to each switch as in [7]. However, to avoid heavy
notation in this paper we only restrict to the basic frame-
work.

The optimal control problem (2) may also be rewritten

as:

min
I,T

N+1∑
k=1

x′
k−1

[
Zik

− Ā′
ik

(k)Zik
Āik

(k)
]
xk−1

s.t. xk = Āik
(k)xk−1, k = 1, . . . , N + 1

x0 = x(0)

(3)

where
Āi(k) � e(τ̄k−τ̄k−1)Ai , (4)

andZi is the unique1 solution of the Lyapunov equation

A′
iZi + ZiAi = −Qi. (5)

Consider a decomposition of (3) into the following “mas-
ter” and “slave” subproblems:

Problem 1 (Master) For a fixed sequence of switched
times τ̄1, . . . , τ̄N , solve the optimal control problem (3) with
respect to i1, . . . , iN+1. Denote by

{i1, . . . , iN+1} = fM (τ̄1, . . . , τ̄N ) (6)

and VM (τ̄1, . . . , τ̄N ) the optimizing index sequence and op-
timal value, respectively.

Problem 2 (Slave) For a fixed sequence of switching in-
dices ı̄1, . . . , ı̄N+1, solve the optimal control problem (3)
with respect to τ1, . . . , τN . Denote by

{τ1, . . . , τN} = fS (̄ı1, . . . , ı̄N+1) (7)

and VS (̄ı1, . . . , ı̄N+1) the optimizing timing sequence and
optimal value, respectively.

3 Master Algorithm

For a fixed sequence of switched timesτ̄1, . . . , τ̄N , the
master algorithm solves the optimal control problem (3)
with respect toi1, . . . , iN+1. It is a purely combinatorial
problem that can be rephrased as:

min
ik∈S

N+1∑
k=1

x′
k−1Q̄ik

(k)xk−1

s.t. xk = Āik
(k)xk−1, k = 1, . . . , N + 1

x0 = x(0),

(8)

where

Q̄i(k) � Zik
− Ā′

ik
(k)Zik

Āik
(k). (9)

Problem (8) can be efficiently solved via Mixed-
Integer Quadratic Programming (MIQP) (see
e.g. [15] or the free Matlab solver available at
http://control.ethz.ch/˜hybrid/miqp).
To this end, we need to introduce binary variables

1Because eachAi is asymptotically stable.



γk
i ∈ {0, 1} and continuous variableszk

i ∈ R
n, i ∈ S,

k = 1, . . . , N + 1, where

[γk
i = 1] ↔ [i(k) = i], ∀k = 1, . . . , N + 1,

∀i ∈ S (10a)

zk+1
i = Āi(k)xk−1γ

k
i ,

∀k = 1, . . . , N,
∀i ∈ S (10b)

z1
i = x0γ

1
i , ∀i ∈ S (10c)

xk =
s∑

i=1

zk+1
i , ∀k = 0, . . . , N (10d)

s⊕
i=1

γk
i = 1, ∀k = 1, . . . , N + 1 (10e)

where the last exclusive-or constraint follows by the fact
that only one dynamics can be active in each intervalk.
Constraints (10b) can be transformed into the following set
of mixed-integer linear inequalities by using the so-called
“big-M” technique (see e.g. [4,17] for details):

zk
i ≤ Mγk

i , ∀k = 1, . . . , N + 1 (11a)

−zk
i ≤ Mγk

i , ∀k = 1, . . . , N + 1 (11b)

zk+1
i ≤ Āi(k)xk−1 + M(1 − γk

i ),
∀k = 1, . . . , N

(11c)

−zk+1
i ≤ −Āi(k)xk−1 + M(1 − γk

i ),
∀k = 1, . . . , N

(11d)

z1
i ≤ x0 + M(1 − γ1

i ) (11e)

−z1
i ≤ −x0 + M(1 − γ1

i ) (11f)

for all i ∈ S, whereM ∈ R
n is an upper bound on the

state vectorx (more precisely, thej-th componentM j of
M is an upper bound on|xj |, wherexj is thej-th compo-
nent of the state vector), and therefore an upper bound on
Ai(k)xk−1 = xk, for all k = 2, . . . , N + 1, i ∈ S. Usually
M can be estimated on the basis of physical considerations
on the hybrid system. Eq. (10e) can be instead expressed as

s∑
i=1

γk
i = 1, ∀k = 1, . . . , N + 1. (12)

Summing up, the master problem (8) is equivalent to the
MIQP

min
xk, γk

i , zk
i

k = 1, . . . , N + 1
i = 1, . . . , s

N+1∑
k=1

s∑
i=1

(zk
i )′Q̄i(k)zk

i

s.t. (10d), (11), (12).

(13)

4 Slave Algorithm

For a fixed sequence of switching indicesı̄1, . . . , ı̄N+1,
the slave algorithm solves the optimal control problem (3)
with respect toτ1, . . . ,τN .

A solution to this problem where the switching sequence
is pre-assigned was already presented in [8] where it was
shown that the optimal control law turns out to be a ”ho-
mogeneous feedback”, in the sense that for allk ≤ N : (a)
it is possible to identify a regionCk,N of the state space
such that thek–th switch should occur if and only if we are
within this region; (b) this region is homogeneous, i.e., if
x ∈ Ck,N , thenλx ∈ Ck,N , for all real numbersλ. We also
provide an algorithmic way to construct the regions. In fact,
we observe that it is sufficient to determine which points on
the unitary semi–sphere belong to a region to completely
determine the region (because it is a homogeneous space).
In [8] we have also shown that theseswitching regions have
to be computed starting from the last one. More precisely,
let us first define the residual cost from thek-th to N -th
switch, given a statex, as:

Fk(x, δk, δk+1, · · · , δN ) =
∑N

j=k−1 x′
jQ̄jxj (14)

whereδj = τj − τj−1 is the j–th switching interval and
xk−1 = x. We also define the correspondingk-th optimal
switching interval as:

δ∗k(x) = arg min
δk∈R

+
0

Fk(x, δk, δ∗k+1(xk), · · · , δ∗N (xN−1))

wherexj = eAjδ∗
j (xj−1)xj−1. Finally we can write that

Ck,N = {x | δ∗k(x) = 0} (k = 1, · · · , N) (15)

Thus, we choose a suitable discretization step and for each
point x on the unitary semi–sphere we determine if it be-
longs toCN,N , CN−1,N , etc., also computing step by step
the corresponding values of the remaining cost.

The output of this procedure is the set of switching re-
gions. To determine the optimal switching instants, the evo-
lution of the systems is simulated starting from the initial
state and switching as soon as the next switching region is
reached.

5 Master-Slave Algorithm

The proposed master-slave algorithm is structured as fol-
lows:

Algorithm 1

1. Initialize T (0) ← {τ1, . . . , τN} (e.g., τk

are randomly or uniformly distributed),

k = 1, I(0) = {−1, . . . ,−1}; Let ε > 0 a given

tolerance;

2. Solve the master problem I(k) ← fM (T (k −
1));

3. If |F (T (k−1), I(k))−F (T (k−1), I(k−1))| ≤ ε set

T (k)← T (k − 1) and go to 7.

4. Solve the slave problem T (k)← fS(I(k));

5. k← k + 1;

6. Go to 2.;

7. Set {τ1, . . . , τN} ← T (k), {i1, . . . , iN+1} ← I(k);

8. End



Proposition 1 Algorithm 1 stops after a finite number of
steps Nstop.

Proof : Let V (k) � F (T (k), I(k)). Clearly,

V (k − 1) = F (T (k − 1), I(k − 1)) ≥ F (T (k − 1), I(k))
≥ F (T (k), I(k)) = V (k).

Since{V (k)} is a monotonically nonincreasing sequence
bounded betweenV (0) and 0, it admits a limit ask → ∞.
Therefore,V (k) − V (k − 1) → 0 ask → ∞, and hence 3.
is satisfied after a finite number of iterationkε for any given
positive toleranceε. �

Assumption 1 The optimal control problem (2) is said
switch-degenerateif there exist a sequence T and I1 �= I2

such that F (I1, T ) = F (I2, T ), time-degenerateif there
exist a sequence I and T1 �= T2 such that F (I, T1) =
F (I, T2).

Proposition 2 Let ε = 0 and assume problem (2) is not
switch-degenerate. Let step 3. be modified as follows

3’. If I(k) = I(k − 1) go to 7.;

Then Algorithm 1 stops after a finite number of steps
Nstop.

Proof : By contradiction, assume the stopping criterion 3’.
is never met. Since the number of possible sequencesI is
finite, there must exist indicesj, k such thatI(j) = I(k).
Since step 3’. never succeeds, necessarily|j − k| ≥ 2, and
moreoverI(j +1) �= I(j). As (2) is not switch-degenerate,

V (j) = F (T (j), I(j)) > F (T (j), I(j + 1))
≥ V (j + 1) ≥ V (k) = F (T (k), I(k))
= F (T (k), I(j)),

which contradicts the optimality ofT (j) for the slave prob-
lem at stepj. �

Note that Proposition 2 proves that Algorithm 1 cannot cy-
cle over the same switching sequences, andI(k) �= I(j) for
all j �= k, j, k ∈ {1, . . . , Nstop − 1}.

We remark that although Algorithm 1 converges to a so-
lution I, T after a finite numberNstop of steps, such a so-
lution may not be the optimal one, as it may be a local min-
imum where both the master and the slave problems do not
give any further improvement. Note that the global solution
can be computed by enumeration by solving a slave prob-
lem for all possiblesN switching sequencesI. As we will
exemplify later, our computational experience with about
100 random tests shows convergence to the global optimum
on about 95% of the problems, and in the remaining 5%
the difference between the solution and the global solution
(computed via enumeration) is below 1%.

Algorithm 1 computes the optimal switching policy for a
given initial state. On the other hand, for small enough per-
turbations of the initial state such that the optimal switching
sequence does not change, the optimal time-switching pol-
icy is immediately available as a by-product of the slave
algorithm, because of its state-feedback nature.

We finally remark that Algorithm 1 may be formulated
by optimizing with respect toT first, for a given initializa-
tion of the switching sequenceI. The advantage of switch-
ing between the master and slave procedures depends on
the information available a priori about the optimal solu-
tion. For instance when the algorithm is solved repeatedly
for subsequent values of the state vector (such as in a reced-
ing horizon scheme), it may be useful to use the previous
switching sequence as a warm start and optimize with re-
spect toT first.

5.1 Degeneracies

We remark the following about degeneracies:

1. Time-degeneracy:ik = ik−1 implies that the switch-
ing instantτk is undetermined (multiple solutions for
T )

2. Switch-degeneracy:τk = τk−1 implies that the
switching indexik is undetermined (multiple solutions
for I)

6 Numerical Examples

Example 1 Let us consider a second order linear sys-
tem whose dynamics may be chosen within a finite set
{A1, A2, A3}. In particular, we assume:

A1 =
[−5.179 −1.414

1 0

]
, A2 =

[ −10.115 −3.082
2 0

]
,

A3 =
[ −2.414 −1.414

1 0

]

Each dynamics has an associated weighting matrix:Q1 =
diag{1, 1}, Q2 = diag{8, 2}, Q3 = [ 1 0.5

0.5 1 ].
We also assume that only three switchings are possible,

thusN = 3 and the control variablei(t) may only take
values from the finite set of integersS = {1, 2, 3}. The
initial state vector has been taken equal tox0 = [1 1]T .

We apply the master–slave algorithm to determine the
optimal index sequence. The initial timing sequence
has been randomly generated and taken equal toT 0 =
{0.290, 0.498, 0.672}. The master–slave algorithm finds
out that the optimizing index sequence isI ∗ = {1, 2, 3, 3}
and the optimal cost value isV ∗

3 = 1.44026. Note that in
this case only two switches are required to get the optimal
cost value.

Detailed intermediate results are reported in Table 1
where we may also observe that the procedure converges
after only5 steps. This also implies that the most burden-
some part of the algorithm, i.e., the slave problem, has only
been solved twice.

The correctness of the solution has been validated
through an exhaustive inspection of all admissible index
sequences. More precisely, for each admissible index se-
quence we have computed the optimizing timing sequence
and the corresponding cost value using the slave algo-
rithm. In such a way we have verifiedV ∗

3 = 1.44026
is indeed the global optimum. Obviously, being only two



step τ1 τ2 τ3 i1 i2 i3 i4 F(I,Τ )
1 M 0.290 0.498 0.672 1 3 3 3 1.44619
1 S 0.280 0.290 0.300 1 3 3 3 1.44615
2 M 0.280 0.290 0.300 1 2 3 3 1.44459
2 S 0.180 0.240 0.240 1 2 3 3 1.44026
3 M 0.180 0.240 0.240 1 2 3 3 1.44026

Table 1: Detailed results of the numerical example 1.

the switches required to optimize the cost value, the min-
imum cost may also be obtained by using other index se-
quences. As an example, if we considerI = {3, 1, 2, 3}
andT = {0, 0.180, 0.240}, this solution is optimal as well.

In Figure 1 we have reported the switching regionsC j,3,
j = 1, 2, 3, when the index sequence is the optimal one.
The darker region represents the set of states where the sys-
tem still evolves with the same dynamics, while the lighter
region represents the set of states where the system switches
to the next dynamics. Clearly, inC3,3 we have no light por-
tion because it corresponds to a non–effective switch, being
i(3) = i(4) = 3.

Finally, in the bottom right of Figure 1 we have shown
the system evolution for the chosen initial statex0 = [1 1]T .

On the basis of several random tests we performed, we
observed that the convergence of the algorithm to a global
minimum is heavily influenced by two factors. Firstly, the
initial switching times sequence should be such thatτk >
τk−1: in fact, if τk = τk−1 for somek, only a suboptimal
solution — that corresponds to a minor number of switches
— is usually computed. Secondly, the first switching time
should not be greater than two or three times the maximum
time constant associated to each dynamics: if this is not the
case, only degenerate solutions with no switch are usually
found.

Example 2 In this second example we present an heuris-
tics that in some cases improves the performance of the al-
gorithm.

We consider a second order linear system whose dynam-
ics may be chosen within a finite set{A1, A2, A3} where:

A1 =
[

−1.851 −1.002
1 0

]
,

A2 =
[

−0.7445 −1.289
1 0

]
,

A3 =
[

−2.754 −2.839
1 0

]
.

To each dynamic we associate a weighting matrix:
Q1 = diag{1, 1}, Q2 = diag{0.466, 0.4186}, Q3 =
diag{2, 8}.

As in the previous example we assume thatN = 3, i.e.,
at most three switchings are possible, andx0 = [1 1]T .

We take as initial timing sequenceT0 =
{0.011, 0.145, 0.234} and apply the master–slave al-
gorithm to determine the optimal index sequence. The
provided solution isI = {1, 1, 1, 2} and the corresponding
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Figure 1: The switching regions for the system in example 1
when the initial state isx0 = [1 1]T and the index sequence
is the optimal one: (a)C1,3, (b)C2,3, (c)C3,3. (c) The system
evolution forx0 = [1 1]T .

step τ1 τ2 τ3 i1 i2 i3 i4 F(I,Τ )
1 M 0.011 0.145 0.234 2 2 2 2 1.66123
1 S 0.000 0.000 0.000 2 2 2 2 1.66123
2 M 0.000 0.000 0.000 1 1 1 2 1.66123
2 S 0.000 0.000 0.000 1 1 1 2 1.66123
3 M 0.000 0.000 0.000 1 1 1 2 1.66123

Table 2: Detailed results of the numerical example 2 when
the master–slave algorithm is applied in its original form.

performance index isV3 = 1.66123. Detailed results
are reported in Table 2. Nevertheless, this solution is
not optimal and this may be easily verified through an
exhaustive inspection of all admissible index sequences.

A careful examination of the solution, suggests us
that such a case may be considered as degenerate, being
{1, 1, 1, 2} an index sequence that corresponds to only one
switch. Thus, when it is used by the slave algorithm at the
fourth step, it may only compute a suboptimal solution.

A simple heuristic solution to this problem — that is ef-
fective in this case, as well as in many other numerical ex-
amples we have examined — may be summarized as fol-
lows. The index sequence computed via the master algo-
rithm that corresponds to a number of switches that is less
that N , is modified before being used by the slave algo-
rithm. In particular, we suggest to arbitrarily change the in-
dex sequence so that the original sequence is still contained
in the new one but two consecutive indices should never be
the same.

In the numerical case at hand the results of the master–
slave algorithm, when the above caution is adopted, are
those reported in Table 3. In particular, we may observe
that at the second step of the whole procedure, the slave
algorithm does not examine the index sequence firstly com-
puted by the master algorithm, but computes the optimal
timing sequence corresponding to a new index sequence



step τ1 τ2 τ3 i1 i2 i3 i4 F(I,Τ )
1 M 0.011 0.145 0.234 2 2 2 2 1.66123
1 S 0.000 0.000 0.000 1 3 1 2 1.66123
2 M 0.000 0.000 0.000 1 1 1 2 1.66123
2 S 1.780 3.130 4.860 1 3 1 2 1.51340
3 M 1.780 3.130 4.860 1 3 1 2 1.51340

Table 3: Detailed results of the numerical example 2 when
the master–slave algorithm is applied with the proposed
heuristic.

I = {1, 3, 1, 2}, that has been randomly generated by ar-
bitrarily modifying all indices — apart from the last one —
so as to avoid switch degeneracy. At this step, the value of
the performance index does not decrease, thus the artifice is
useless. The same reasoning is repeated at the fourth step
and in this case we find out a better value of the cost and
at the following fifth step the procedure stops. Moreover,
the results of the exhaustive search show that the computed
solution is optimal thus revealing the effectiveness of the
modified procedure.

Although this heuristic is not always effective, it often
improves the performance of the algorithm while it may
never make it worse. Its only drawback is that, to avoid cy-
cling, it is necessary to add a stopping condition that detects
loops.

7 Conclusions

In this paper we have proposed an approach for solving
infinite-horizon optimal control problems for continuous-
time switched linear systems, where both the switching in-
stants and the sequence of operating modes must be deter-
mined.1

There are several ways in which the proposed approach
can be extended. In many practical applications a direct
switch from dynamicsi to dynamicsj may not be admis-
sible. Generalizing, it may be useful to restrict the set of
switching sequences based on reachability sets of finite au-
tomata. This additional constraint may be easily taken into
account in the master algorithm. We believe that it should
be possible to relax the assumptions (required by the slave
algorithm) that all dynamics are stable and linear. In partic-
ular we plan to explore the case in which all subsystems are
affine systems.
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