
Chapter 5
Decentralized Model Predictive Control

Alberto Bemporad and Davide Barcelli

Abstract. Decentralized and distributed model predictive control (DMPC) ad-
dresses the problem of controlling a multivariable dynamical process, composed
by several interacting subsystems and subject to constraints, in a computation and
communication efficient way. Compared to a centralized MPC setup, where a global
optimal control problem must be solved on-line with respect to all actuator com-
mands given the entire set of states, in DMPC the control problem is divided into
a set of local MPCs of smaller size, that cooperate by communicating each other a
certain information set, such as local state measurements, local decisions, optimal
local predictions. Each controller is based on a partial (local) model of the overall
dynamics, possibly neglecting existing dynamical interactions. The global perfor-
mance objective is suitably mapped into a local objective for each of the local MPC
problems.

This chapter surveys some of the main contributions to DMPC, with an emphasis
on a method developed by the authors, by illustrating the ideas on motivating exam-
ples. Some novel ideas to address the problem of hierarchical MPC design are also
included in the chapter.

5.1 Introduction

Most of the procedures for analyzing and controlling dynamical systems developed
over the last decades rest on the common presupposition of centrality. Centrality
means that all the information available about the system is collected at a single
location, where all the calculations based on such information are executed. Infor-
mation includes both a priori information about the dynamical model of the system
available off-line, and a posteriori information about the system response gathered
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by different sensors on-line. When considering large-scale systems the presuppo-
sition of centrality fails because of the lack of a centralized information-gathering
system or of centralized computing capabilities. Typical examples of such systems
are power networks, water networks, urban traffic networks, cooperating vehicles,
digital cellular networks, flexible manufacturing networks, supply chains, complex
structures in civil engineering,and many others. In such systems the centrality as-
sumption often fails because of geographical separation of components (spatial
distribution), as the costs and the reliability of communication links cannot be
neglected. Moreover, technological advances and reduced cost of microprocessors
provide a new force for distributed computation. Hence the current trend for decen-
tralized decision making, distributed computations, and hierarchical control.

Several new challenges arise when addressing a decentralized setting, where most
of the existing analysis and control design methodologies cannot be directly ap-
plied. In a distributed control system which employs decentralized control tech-
niques there are several local control stations, where each controller observes only
local outputs and only controls local inputs. Besides advantages in controller imple-
mentation (namely reduced and parallel computations, reduced communications), a
great advantage of decentralization is maintenance: while certain parts of the over-
all process are interrupted, the remaining parts keep operating in closed-loop with
their local controllers, without the need of stopping the overall process as in case
of centralized control. Moreover, a partial re-design of the process does not nec-
essarily imply a complete re-design of the controller, as it would instead in case
of centralized control. However, all the controllers are involved in controlling the
same large-scale process, and is therefore of paramount importance to determine
conditions under which there exists a set of appropriate local feedback control laws
stabilizing the entire system.

Ideas for decentralizing and hierarchically organizing the control actions in in-
dustrial automation systems date back to the 70’s [37, 26, 27, 31, 11], but were
mainly limited to the analysis of stability of decentralized linear control of intercon-
nected subsystems, so the interest faded. Since the late 90’s, because of the advances
in computation techniques like convex optimization, the interest in decentralized
control raised again [14, 29], and convex formulations were developed, although
limited to special classes of systems such as spatially invariant systems [4]. Decen-
tralized control and estimation schemes based on distributed convex optimization
ideas have been proposed recently in [30, 20] based on Lagrangean relaxations.
Here global solutions can be achieved after iterating a series of local computations
and inter-agent communications.

Large-scale multi-variable control problems, such as those arising in the process
industries, are often dealt with model predictive control (MPC) techniques. In MPC
the control problem is formulated as an optimization one, where many different
(and possibly conflicting) goals are easily formalized and state and control con-
straints can be included. Many results are nowadays available concerning stability
and robustness of MPC, see e.g. [24]. However, centralized MPC is often unsuitable
for control of large-scale networked systems, mainly due to lack of scalability and
to maintenance issues of global models. In view of the above considerations, it is
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Fig. 5.1 Hierarchical and decentralized/distributed model predictive control of a large-scale
process

then natural to look for decentralized or for distributed MPC (DMPC) algorithms,
in which the original large-size optimization problem is replaced by a number of
smaller and easily tractable ones that work iteratively and cooperatively towards
achieving a common, system-wide control objective.

Even though there is not a universal agreement on the distinction between “de-
centralized” and “distributed”, the main difference between the two terms depends
on the type of information exchange:

• decentralized MPC: Control agents take control decisions independently on each
other. Information exchange (such as measurements and previous control deci-
sions) is only allowed before and after the decision making process. There is no
negotiation between agents during the decision process. The time needed to de-
cide the control action is not affected by communication issues, such as network
delays and loss of packets.

• distributed MPC: An exchange of candidate control decisions may also
happen during the decision making process, and iterated until an agreement is
reached among the different local controllers, in accordance with a given stop-
ping criterion.

In DMPC M subproblems are solved, each one assigned to a different control
agent, instead of a single centralized problem. The goal of the decomposition is
twofold: first, each subproblem is much smaller than the overall problem (that is,
each subproblem has far fewer decision variables and constraints than the central-
ized one), and second, each subproblem is coupled to only a few other subproblems
(that is, it shares variables with only a limited number other subproblems). Although
decentralizing the MPC problem may lead to a deterioration of the overall closed-
loop performance because of the suboptimality of the resulting control actions, be-
sides computation and communication benefits there are also important operational
benefits in using DMPC solutions. For instance local maintenance can be carried
out by only stopping the corresponding local MPC controller, while in a centralized
MPC approach the whole process should be suspended.

A DMPC control layer is often interacting with a higher-level control layer in a
hierarchical arrangement, as depicted in Figure 5.1. The goal of the higher layer is to
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possibly adjust set-points and constraint specifications to the DMPC layer, based on
a global (possibly less detailed) model of the entire system. Because of its general
overview of the entire process, such a centralized decision layer allows one to reach
levels of coordination and performance optimization otherwise very difficult (if not
impossible) using a decentralized or distributed action. For a recent survey on de-
centralized, distributed and hierarchical model predictive control architectures, the
reader is referred to the recent survey paper [32].

In a typical DMPC framework the steps performed by the local controllers at
each control instant are the following: (i) measure local variables and update state
estimates, (ii) solve the local receding-horizon control problem, (iii) apply the con-
trol signal for the current instant, (iv) exchange information with other controllers.
Along with the benefits of a decentralized design, there are some inherent issues
that one must face in DMPC: ensuring the asymptotic stability of the overall sys-
tem, ensure the feasibility of global constraints, quantify the loss of performance
with respect to centralized MPC.

5.2 Model Predictive Control

In this section we review the basic setup of linear model predictive control. Consider
the problem of regulating the discrete-time linear time-invariant system

{
x(t + 1) = Ax(t)+ Bu(t)

y(t) = Cx(t) (5.1)

to the origin while fulfilling the constraints

umin ≤ u(t)≤ umax (5.2)

at all time instants t ∈ Z0+ where Z0+ is the set of nonnegative integers, x(t) ∈
R

n,u(t) ∈ R
m and y(t) ∈ R

p are the state, input, and output vectors, respectively,
and the pair (A,B) is stabilizable. In (5.2) the constraints should be interpreted
component-wise and we assume umin < 0 < umax.

MPC solves such a constrained regulation problem as described below. At each
time t, given the state vector x(t), the following finite-horizon optimal control problem

V (x(t)) = min
U

x′t+NPxt+N +
N−1

∑
k=0

x′kQxk + u′kRuk (5.3a)

s.t. xk+1 = Axk + Buk, k = 0, . . . ,N−1 (5.3b)

yk = Cxk, k = 0, . . . ,N (5.3c)

x0 = x(t) (5.3d)

umin ≤ uk ≤ umax, k = 0, . . . ,Nu−1 (5.3e)

uk = Kxk, k = Nu, . . . ,N−1 (5.3f)
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Table 5.1 Classification of existing DMPC approaches.

acronym submodels constraints intersampling broadcast state stability references
iterations predictions constraints constraints

ABB coupled local inputs no no no none [2, 3, 5, 1]
VRW coupled local inputs yes no no none [35, 34]
MD coupled local inputs yes yes no none [25]
DM decoupled local inputs no yes yes compatibility [15]
KBB decoupled no yes yes none [21]
JK coupled local inputs no yes yes compatibility [17, 12, 18]

is solved, where U � {u0, . . . ,uNu−1} is the sequence of future input moves, xk de-
notes the predicted state vector at time t +k, obtained by applying the input sequence
u0, . . . ,uk−1 to model (5.1), starting from x(t). In (5.3) N > 0 is the prediction hori-
zon, Nu ≤N−1 is the input horizon, Q = Q′ ≥ 0, R = R′ > 0, P = P′ ≥ 0 are square
weight matrices defining the performance index, and K is some terminal feedback
gain. As we will discuss below, P, K are chosen in order to ensure closed-loop sta-
bility of the overall process.

Problem (5.3) can be recast as a quadratic programming (QP) problem (see
e.g. [24, 9]), whose solution U∗(x(t)) � {u∗0 . . . u∗Nu−1} is a sequence of optimal
control inputs. Only the first input

u(t) = u∗0 (5.4)

is actually applied to system (5.1), as the optimization problem (5.3) is repeated
at time t + 1, based on the new state x(t + 1) (for this reason, the MPC strategy
is often referred to as receding horizon control). The MPC algorithm (5.3)-(5.4)
requires that all the n components of the state vector x(t) are collected in a (possibly
remote) central unit, where a quadratic program with mNu decision variables needs
to be solved and the solution broadcasted to the m actuators. As mentioned in the
introduction, such a centralized MPC approach may be inappropriate for control of
large-scale systems, and it is therefore natural to look for decentralized or distributed
MPC (DMPC) algorithms.

5.3 Existing Approaches to DMPC

A few contributions have appeared in recent years in the context of DMPC,
mainly motivated by applications of decentralized control of cooperating air ve-
hicles [10, 28, 22]. We review in this section some of the main contributions on
DMPC, summarized in Table 5.1, that have appeared in the scientific literature. An
application of some of the results surveyed in this chapter in a problem of distributed
control of power networks with comparisons among DMPC approaches is reported
in [13].
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In the following sections, we denote by M be the number of local MPC con-
trollers that we want to design, for example M = m in case each individual actuator
is governed by its own local MPC controller.

5.3.1 DMPC Approach of Alessio, Barcelli, and Bemporad

In [2, 3, 5, 1] a decentralized MPC design approach for possibly dynamically cou-
pled processes was proposed. A (partial) decoupling assumption only appears in the
prediction models used by different MPC controllers. The chosen degree of decou-
pling represents a tuning knob of the approach. Sufficient criteria for analyzing the
asymptotic stability of the process model in closed loop with the set of decentralized
MPC controllers are provided. If such conditions are not verified, then the structure
of decentralization should be modified by augmenting the level of dynamical cou-
pling of the prediction submodels, increasing consequently the number and type
of exchanged information about state measurements among the MPC controllers.
Following such stability criteria, a hierarchical scheme was proposed to change the
decentralization structure on-line by a supervisory scheme without destabilizing the
system. Moreover, to cope with the case of a non-ideal communication channel
among neighboring MPC controllers, sufficient conditions for ensuring closed-loop
stability of the overall closed-loop system when packets containing state measure-
ments may be lost were given. We review here the main ingredients and results of
this approach.

5.3.1.1 Decentralized Prediction Models

Consider again process model (5.1). Matrices A, B may have a certain number of
zero or negligible components corresponding to a partial dynamical decoupling of
the process, especially in the case of large-scale systems, or even be block diagonal
in case of total dynamical decoupling. This is the case for instance of independent
moving agents each one having its own dynamics and only coupled by a global
performance index.

For all i = 1, . . . ,M, we define xi ∈ R
ni as the vector collecting a subset Ixi ⊆

{1, . . . ,n} of the state components,

xi = W ′i x =

⎡

⎢
⎣

xi
1

...
xi

ni

⎤

⎥
⎦ ∈R

ni (5.5a)

where Wi ∈ R
n×ni collects the ni columns of the identity matrix of order n corre-

sponding to the indices in Ixi, and, similarly,

ui = Z′iu =

⎡

⎢
⎣

ui
1

...
ui

mi

⎤

⎥
⎦ ∈ R

mi (5.5b)
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as the vector of input signals tackled by the i-th controller, where Zi ∈R
m×mi collects

mi columns of the identity matrix of order m corresponding to the set of indices
Iui ⊆ {1, . . . ,m}. Note that

W ′i Wi = Ini , Z′iZi = Imi , ∀i = 1, . . . ,M (5.6)

where I(·) denotes the identity matrix of order (·). By definition of xi in (5.5a) we
obtain

xi(t + 1) = W ′i x(t + 1) = W ′i Ax(t)+W ′i Bu(t) (5.7)

An approximation of (5.1) is obtained by changing W ′i A in (5.7) into W ′i AWiW ′i and
W ′i B into W ′i BZiZ′i , therefore getting the new prediction reduced order model

xi(t + 1) = Aix
i(t)+ Biu

i(t) (5.8)

where matrices Ai = W ′i AWi ∈ R
ni×ni and Bi = W ′i BZi ∈ R

mi×mi are submatrices of
the original A and B matrices, respectively, describing in a possibly approximate
way the evolution of the states of subsystem #i.

The size (ni,mi) of model (5.8) in general will be much smaller than the size
(n,m) of the overall process model (5.1). The choice of the pair (Wi,Zi) of decou-
pling matrices (and, consequently, of the dimensions ni, mi of each submodel) is a
tuning knob of the DMPC procedure proposed in the sequel of the paper.

We want to design a controller for each set of moves ui according to prediction
model (5.8) and based on feedback from xi, for all i = 1, . . . ,M. Note that in general
different input vectors ui, u j may share common components. To avoid ambiguities
on the control action to be commanded to the process, we impose that only a sub-
set I #

ui ⊆ Iui of input signals computed by controller #i is actually applied to the
process, with the following conditions

M⋃

i=1

I#
ui = {1, . . . ,m} (5.9a)

I#
ui∩ I#

u j = /0, ∀i, j = 1, . . . ,M, i �= j (5.9b)

Condition (5.9a) ensures that all actuators are commanded, condition (5.9b) that
each actuator is commanded by only one controller. For the sake of simplicity of
notation, since now on we assume that M = m and that I#

ui = i, i = 1, . . . ,m, i.e., that
each controller #i only controls the ith input signal. As observed earlier, in general
Ixi ∩Ix j �= /0, meaning that controller #i may partially share the same feedback
information with controller # j, and Iui∩Iu j �= /0. This means that controller #i may
take into account the effect of control actions that are actually decided by another
controller # j, i �= j, i, j = 1, . . . ,M, which ensures a certain degree of cooperation.

The designer has the flexibility of choosing the pairs (Wi,Zi) of decoupling
matrices, i = 1, . . . ,M. A first guess of the decoupling matrices can be inspired
by the intensity of the dynamical interactions existing in the model. The larger
(ni,mi) the smaller the model mismatch and hence the better the performance of the
overall-closed loop system. On the other hand, the larger (ni,mi) the larger is the
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communication and computation efforts of the controllers, and hence the larger the
sampling time of the controllers. An example of model decomposition is given later
in Section 5.4.1.

5.3.1.2 Decentralized Optimal Control Problems

In order to exploit submodels (5.8) for formulating local finite-horizon optimal con-
trol problems that lead to an overall closed-loop stable DMPC system, let the fol-
lowing assumptions be satisfied (these will be relaxed in Theorem 5.5):

Assumption 5.1. Matrix A in (5.1) is strictly Hurwitz1.

Assumption 5.1 restricts the strategy and stability results of DMPC to processes
that are open-loop asymptotically stable, leaving to the controller the mere role of
optimizing the performance of the closed-loop system.

Assumption 5.2. Matrix Ai is strictly Hurwitz, ∀i = 1, . . . ,M.

Assumption 5.2 restricts the degrees of freedom in choosing the decentralized mod-
els. Note that if Ai = A for all i = 1, . . . ,M is the only choice satisfying Assump-
tion 5.2, then no decentralized MPC can be formulated within this framework. For
all i = 1, . . . ,M consider the following infinite-horizon constrained optimal control
problems

Vi(x(t)) = min
{ui

k}∞k=0

∞

∑
k=0

(xi
k)
′W ′i QWix

i
k +(ui

k)
′Z′iRZiu

i
k = (5.10a)

= min
ui

0

(xi
1)
′Pix

i
1 + xi(t)′W ′i QWix

i(t)+ (ui
0)
′Z′iRZiu

i
0 (5.10b)

s.t. xi
1 = Aix

i(t)+ Biu
i
0 (5.10c)

xi
0 = W ′i x(t) = xi(t) (5.10d)

ui
min ≤ ui

0 ≤ ui
max (5.10e)

ui
k = 0, ∀k ≥ 1 (5.10f)

where Pi = P′i ≥ 0 is the solution of the Lyapunov equation

A′iPiAi−Pi =−W ′i QWi (5.11)

that exists by virtue of Assumption 5.2. Problem (5.10) corresponds to a finite-
horizon constrained problem with control horizon Nu = 1 and linear stable pre-
diction model. Note that only the local state vector xi(t) is needed to solve
Problem (5.10).

1 While usually a matrix A is called Hurwitz if all its eigenvalues have strictly negative
real part (continuous-time case), in this paper we say that a matrix A is Hurwitz if all the
eigenvalues λi of A are such that |λi|< 1 (discrete-time case).
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At time t, each controller MPC #i measures (or estimates) the state xi(t) (usually
corresponding to local and neighboring states), solves problem (5.10) and obtains
the optimizer

u∗i0 = [u∗i10 , . . . ,u∗ii0 , . . . ,u∗imi
0 ]′ ∈ R

mi (5.12)

In the simplified case M = m and I#
ui = i, only the i-th sample of u∗i0

ui(t) = u∗ii0 (5.13)

will determine the i-th component ui(t) of the input vector actually commanded to
the process at time t. The inputs u∗i j

0 , j �= i, j ∈Iui to the neighbors are discarded,
their only role is to provide a better prediction of the state trajectories xi

k, and there-
fore a possibly better performance of the overall closed-loop system.

The collection of the optimal inputs of all the M MPC controllers,

u(t) = [u∗11
0 . . . u∗ii0 . . . u∗mm

0 ]′ (5.14)

is the actual input commanded to process (5.1). The optimizations (5.10) are re-
peated at time t + 1 based on the new states xi(t + 1) = W ′i x(t + 1), ∀i = 1, . . . ,M,
according to the usual receding horizon control paradigm. The degree of coupling
between the DMPC controllers is dictated by the choice of the decoupling matrices
(Wi,Zi). Clearly, the larger the number of interactions captured by the submodels,
the more complex the formulation (and, in general, the solution) of the optimization
problems (5.10) and hence the computations performed by each control agent. Note
also that a higher level of information exchange between control agents requires
a higher communication overhead. We are assuming here that the submodels are
constant at all time steps.

5.3.1.3 Convergence Properties

As mentioned in the introduction, one of the major issues in decentralized RHC is to
ensure the stability of the overall closed-loop system. The non-triviality of this issue
is due to the fact that the prediction of the state trajectory made by MPC #i about
state xi(t) is in general not correct, because of partial state and input information and
of the mismatch between u∗i j (desired by controller MPC #i) and u∗ j j (computed
and applied to the process by controller MPC # j).

The following theorem, proved in [1, 2], summarizes the closed-loop conver-
gence results of the proposed DMPC scheme using the cost function V (x(t)) �
∑M

i=1 Vi(W ′i x(t)) as a Lyapunov function for the overall system.

Theorem 5.3. Let Assumptions 5.1, 5.2 hold and define Pi as in (5.11) ∀i = 1, . . . ,M.
Define

Δui(t) � u(t)−Ziu∗i0 (t), Δxi(t) � (I−WiW ′i )x(t)
ΔAi � (I−WiW ′i )A, ΔBi � B−WiW ′i BZiZ′i

(5.15)
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Also, let

ΔY i(x(t)) � WiW
′
i (AΔxi(t)+ BZiZ

′
iΔui(t))+ΔAix(t)+ΔBiu(t) (5.16a)

and

ΔSi(x(t)) �
(
2(AiW

′
i x(t)+ Biu

∗i
0 (t))′+ΔY i(x(t))′Wi

)
PiW

′
i ΔY i(x(t)) (5.16b)

If the condition

(i) x′
(

M

∑
i=1

WiW
′
i QWiW

′
i

)

x−
M

∑
i=1

ΔSi(x)≥ 0, ∀x ∈ R
n (5.17a)

is satisfied, or the condition

(ii) x′
(

M

∑
i=1

WiW
′
i QWiW

′
i

)

x−αx′x−
M

∑
i=1

ΔSi(x)+
M

∑
i=1

u∗i0 (x)′Z′iRZiu
∗i
0 (x)≥ 0,

∀x ∈ R
n (5.17b)

is satisfied for some scalar α > 0, then the decentralized MPC scheme defined in
(5.10)–(5.14) in closed loop with (5.1) is globally asymptotically stable.

By using the explicit MPC results of [9], each optimizer function u∗i0 : R
n �→R

mi ,
i = 1, . . . ,M, can be expressed as a piecewise affine function of x

u∗i0 (x) = Fi jx + Gi j if Hi jx≤ Ki j, j = 1, . . . ,nri (5.18)

Hence, both condition (5.17a) and condition (5.17b) are a composition of quadratic
and piecewise affine functions, so that global stability can be tested through linear
matrix inequality relaxations [19] (cf. the approach of [16]).

As umin < 0 < umax, there exists a ball around the origin x = 0 contained in one
of the regions, say {x ∈ R

n : Hi1x≤ Ki1}, such that Gi1 = 0. Therefore, around the
origin both (5.17a) and (5.17b) become a quadratic form x′(∑M

i=1 Ei)x of x, where
matrices Ei can be easily derived from (5.15), (5.16) and (5.17). Hence, local stabil-
ity of (5.10)–(5.14) in closed loop with (5.1) can be simply tested by checking the
positive semidefiniteness of the square n× n matrix ∑M

i=1 Ei. Note that, depending
on the degree of decentralization, in order to satisfy the sufficient stability criterion
one may need to set Q > 0 in order to dominate the unmodeled dynamics arising
from the terms ΔSi.

In the absence of input constraints, Assumptions 5.1, 5.2 can be removed to ex-
tend the previous DMPC scheme to the case where (A,B) and (Ai,Bi) may not be
Hurwitz, although stabilizable.

Theorem 5.4 ([1, 3]). Let the pairs (Ai,Bi) be stabilizable, ∀i = 1, . . . ,M. Let Prob-
lem (5.10) be replaced by



5 Decentralized Model Predictive Control 159

Vi(x(t)) = min
{ui

k}∞k=0

∞

∑
k=0

(xi
k)
′W ′i QWix

i
k +(ui

k)
′Z′iRZiu

i
k = (5.19a)

= min
ui

0

(xi
1)
′Pix

i
1 + xi(t)′W ′i QWix

i(t)+(ui
0)
′Z′iRZiu

i
0 (5.19b)

s.t. xi
1 = Aix

i(t)+ Biu
i
0 (5.19c)

xi
0 = W ′i x(t) = xi(t) (5.19d)

ui
k = KLQi x

i
k, ∀k ≥ 1 (5.19e)

where Pi = P′i ≥ 0 is the solution of the Riccati equation

W ′i QWi + K′LQi
Z′iRZiKLQi +(Ai + BiKLQi)

′Pi(Ai + BiKLQi) = Pi (5.20)

and KLQi = −(Z′iRZi + B′iPiBi)−1B′iPiAi is the corresponding local LQR feedback.
Let ΔY i(x(t)) and let ΔSi(x(t)) be defined as in (5.16), in which Pi is defined as
in (5.20).

If condition (5.17a) is satisfied, or condition (5.17b) is satisfied for some scalar
α > 0, then the decentralized MPC scheme defined in (5.19), (5.14) in closed-loop
with (5.1) is globally asymptotically stable.

So far we assumed that the communication model among neighboring MPC con-
trollers is faultless, so that each MPC agent successfully receives the information
about the states of its corresponding submodel. However, one of the main issues in
networked control systems is the unreliability of communication channels, which
may result in data packet dropout.

A sufficient condition for ensuring convergence of the DMPC closed-loop in the
case packets containing measurements are lost for an arbitrary but upper-bounded
number N of consecutive time steps was proved in [1, 5]. The underlying operat-
ing assumption is that if the actual number of lost packets exceeds the given N, the
decentralized controllers are turned off and u = 0 is applied persistently, so that a
number of packet drops larger than N is not considered. The results shown here are
based on formulation (5.10) and rely on the open-loop asymptotic stability Assump-
tions 5.1 and 5.2. The issue is still non-trivial, as if a set of measures for subsystem
i is lost, this would affect not only the trajectory of subsystem i because of the im-
proper control action ui, but, due to the dynamical coupling, also the trajectories of
subsystems j ∈ J, where J = { j | i ∈Ix j ∪Iu j}, and thus the closed-loop stability
of the overall system may be endangered.

By relying on open-loop stability, setting u(t) = 0 is a natural choice for backup
input moves when no state measurements are available because of a communica-
tion blackout. Different backup options may be considered, such as solving (5.10)
by replacing xi(t) with an estimate obtained through model (5.8) and the available
measurements. Of course whether one or the other approach is better strongly de-
pends on the amount of model mismatch introduced by the decentralized modeling.
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The next theorem, proved in [1], provides conditions for asymptotic closed-loop
stability of decentralized MPC under packet loss, generalizing and unifying the re-
sults of [2, 3].

Theorem 5.5. Let N be a positive integer such that no more than N consecutive
steps of channel transmission blackout can occur. Assume u(t) = 0 is applied when
no packet is received. Let Assumptions 5.1, 5.2 hold and ∀i = 1, . . . ,M define Pi as
in (5.11), Δui(t), Δxi(t), ΔAi, ΔBi as in (5.15), ΔY i(x(t)) as in (5.16a),

ΔSi
j(x) � [2(AiW

′
i x + Biu

∗i
0 (x))′W ′i +ΔY i(x)′](A j−1)′WiPiW

′
i A j−1ΔY i(x) (5.21)

and let
ξi(x) � AiW

′
i x + Biu

∗i
0 (x)

If the condition

(i)
M

∑
i=1

(
x′WiW

′
i QWiW

′
i x + ξi(x)′(Pi−W ′i (A

j−1)′WiPiW
′
i A j−1Wi)ξi(x)−ΔSi

j(x)
)

≥ 0, ∀x ∈R
n, ∀ j = 1, . . . ,N (5.22a)

is satisfied, or the condition

(ii)
M

∑
i=1

(
x′WiW

′
i QWiW

′
i x + ξi(x)′(Pi−W ′i (A

j−1)′WiPiW
′
i A j−1Wi)ξi(x)+

−ΔSi
j(x)+ u∗i0 (x)′Z′iRZiu

∗i
0 (x)

)
αx′x≥ 0, ∀x ∈ R

n, ∀ j = 1, . . . ,N (5.22b)

is satisfied for some scalar α > 0, then the decentralized MPC scheme defined in
(5.10)–(5.14) in closed loop with (5.1) is globally asymptotically stable under packet
loss.

Note again that around the origin the conditions in (5.22) become a quadratic form
to be checked positive semidefinite, so local stability of (5.10)–(5.14) in closed loop
with (5.1) under packet loss can be tested for any arbitrary fixed N. Note also that
conditions (5.22) are a generalization of (5.17), as for j = 1 (no packet drop) matrix
Pi−W ′i (A j−1)′WiPiW ′i A j−1Wi = Pi−Pi = 0.

5.3.1.4 Extension to Set-Point Tracking

Consider the following discrete-time linear global process model
{

z(t + 1) = Az(t)+ Bv(t)+ Fd(t)
h(t) = Cz(t) (5.23)

where z ∈ R
n is the state vector, v ∈ R

m is the input vector, y ∈ R
p is the output

vector, Fd ∈ R
d is a vector of measured disturbances. Let A satisfy Assumption 5.1

and assume Fd is constant. The considered set-point tracking problem is that of h
tracking a given reference value r ∈ R

p, despite the presence of Fd . In order to



5 Decentralized Model Predictive Control 161

recast the problem as a regulation problem, assume steady-state vectors zr ∈R
n and

vr ∈R
m exist solving the static problem

{
(I−A)zr = Bvr + Fd

r = Czr
(5.24)

and let x = z− zr and u = v− vr. Input constraints vmin ≤ v≤ vmax are mapped into
constraints vmin− vr ≤ u≤ vmax− vr

2.

Proposition 5.1. Under the global coordinate transformation (5.24), the process
(5.23) under the decentralized MPC law (5.10)–(5.14) is such that h(t) converges
asymptotically to the set-point r, either under the assumption of Theorem 5.3 or, in
the presence of packet drops, of Theorem 5.5.

Note that problem (5.24) is solved in a centralized way. Defining local coordinate
transformations vir, zir based on submodels (5.8) would not lead, in general, to
offset-free tracking, due to the mismatch between global and local models. This
is a general observation one needs to take into account in decentralized tracking.
Note also that both vr and zr depend on Fd as well as r, so problem (5.24) should be
solved each time the value of Fd or r change and retransmitted to each controller.

5.3.2 DMPC Approach of Jia and Krogh

In [17, 12] the system under control is composed by a number of unconstrained
linear discrete-time subsystems with decoupled input signals, described by the
equations

⎡

⎢
⎣

x1(k + 1)
...

xM(k + 1)

⎤

⎥
⎦=

⎡

⎢
⎣

A11 . . . A1M
...

. . .
...

AM1 . . . AMM

⎤

⎥
⎦

⎡

⎢
⎣

x1(k)
...

xM(k)

⎤

⎥
⎦+

⎡

⎢
⎣

B1 0
. . .

0 BM

⎤

⎥
⎦

⎡

⎢
⎣

u1(k)
...

uM(k)

⎤

⎥
⎦ (5.25)

The effect of dynamical coupling between neighboring states is modeled in pre-
diction through a disturbance signal v, for instance the prediction model used by
controller # j is

x j(k + i+ i|k) = A j jx j(k + i|k)+ B j + u j(k + i|k)+ Kjv j(k + i|k) (5.26)

where Kj = [A j1 . . . A j, j−1 A j, j+1 . . . A jM]. The information exchanged between
control agents at the end of each sample step is the entire prediction of the local
state vector. In particular, controller # j receives the signal

2 In case vr �∈ [vmin,vmax], perfect tracking under constraints is not possible, and an alterna-
tive is to set

[ zr
vr ] = argmin

∥∥[ I−A −B
C 0

]
[ zr
vr ]−

[
Fd
r

]∥∥

s.t. vmin ≤ vr ≤ vmax
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v j(k + i|k) =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

x1(k + i|k−1)
...

x j−1(k + i|k−1)
x j+1(k + i|k−1)

...
xM(k + i|k−1)

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

where i is the prediction time index, from the other MPC controllers at the end of
the previous time step k−1. The signal v j(k + i|k) is used by controller # j at time k
to estimate the effect of the neighboring subsystem dynamics in (5.26).

Under certain assumptions of the model matrix A, closed-loop stability is proved
by introducing a contractive constraint on the norm of x j(k+1|k) in each local MPC
problem, which the authors prove to be a recursively feasible constraint.

The authors deal with state constraints in [18] by proposing a min-max approach,
at the price of a possible conservativeness of the approach.

5.3.3 DMPC Approach of Venkat, Rawlings, and Wright

In [35, 36, 34] the authors propose distributed MPC algorithm based on a process
of negotiations among DMPC agents. The adopted prediction model is

⎧
⎨

⎩

xii(k + 1) = Aiixii(k)+ Biiui(k) (local prediction model)
xi j(k + 1) = Ai jxi j(k)+ Bi ju j(k) (interaction model)

yi(k) = ∑M
j=1Ci jxi j(k)

The effect of the inputs of subsystem # j on subsystem #i is modeled by using an
“interaction model”. All interaction models are assumed stable, and constraints on
inputs are assumed decoupled (e.g., input saturation).

Starting from a multiobjective formulation, the authors distinguish between a
“communication-based” control scheme, in which each controller #i is optimizing
his own local performance index Φi, and a “cooperation-based” control scheme,
in which each controller #i is optimizing a weighted sum ∑M

j=1α jΦ j of all perfor-
mance indices, 0 ≤ α j ≤ 1. As performance indices depend on the decisions taken
by the other controllers, at each time step k a sequence of iterations is taken be-
fore computing and implementing the input vector u(k). In particular, within each
sampling time k, at every iteration p the previous decisions up−1

j �=i are broadcast to

controller #i, in order to compute the new iterate up
i . With the communication-based

approach, the authors show that if the sequence of iterations converges, it con-
verges to a Nash equilibrium. With the cooperation-based approach, convergence
to the optimal (centralized) control performance is established. In practical situa-
tions the process sampling interval may be insufficient for the computation time
required for convergence of the iterative algorithm, with a consequent loss of per-
formance. Nonetheless, closed-loop stability is not compromised: as it is achieved
even though the convergence of the iterations is not reached. Moreover, all iterations
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are plantwide feasible, which naturally increases the applicability of the approach
including a certain robustness to transmission faults.

5.3.4 DMPC Approach of Dunbar and Murray

In [15] the authors consider the control of a special class of dynamically decoupled
continuous-time nonlinear subsystems

ẋi(t) = fi(xi(t),ui(t))

where the local states of each model represent a position and a velocity signal

xi(t) =
[
qi(t)
q̇i(t)

]

State vectors are only coupled by a global performance objective

L(x,u) = ∑
(i, j)∈E0

ω‖qi−q j + di j‖2 +ω‖qΣ −qd‖2 +ν‖q̇‖2 + μ‖u‖2 (5.27)

under local input constraints ui(t) ∈ U , ∀i = 1, . . . ,M, ∀t ≥ 0. In (5.27) E0 is the
set of pair-wise neighbors, di j is the desired distance between subsystems i and j,
qΣ = (q1 + q2 + q3)/3 is the average position of the leading subsystems 1,2,3, and
qd = (qc

1 + qc
2 + qc

3)/3 the corresponding target.
The overall integrated cost (5.27) is decomposed in distributed integrated cost

functions
Li(xi,x−i,ui) = Lx

i (xi,x−i)+ γμ‖ui‖2 + Ld(i)

where x−i = (x j1, . . . ,x jk) collects the states of the neighbors of agent subsystem #i,
Lx

i (xi,x−i) = ∑ j∈Ni
γω
2 ‖qi−q j + di j‖2 + γν‖q̇i‖2, and

Ld(i) =
{
γω‖qΣ −qd‖2/3 i ∈ {1,2,3}
0 otherwise

It holds that

L(x,u) =
1
γ

N

∑
i=1

Li(xi,x−i,ui)

Before computing DMPC actions, neighboring subsystems broadcast in a syn-
chronous way their states, and each agent transmits and receives an “assumed” con-
trol trajectory ûi(τ;tk). Denoting by up

i (τ; tk) the control trajectory predicted by con-
troller #i, by u∗i (τ;tk) the optimal predicted control trajectory, by T the prediction
horizon, and by δ ∈ (0,T ] the update interval, the following DMPC performance
index is minimized
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min
up

i

Ji(xi(tk),x−i(tk),u
p
i (·;tk))

= min
up

i

∫ tk+T

tk
Li(x

p
i (s;tk), x̂−i(s; tk),u

p
i (s; tk))ds+ γ‖xp

i (tk + T ; tk)− xC
i ‖2

Pi

s.t. ẋp
i (τ;tk) = fi(x

p
i (τ; tk),u

p
i (τ; tk))

˙̂xp
i (τ;tk) = fi(x̂

p
i (τ; tk), û

p
i (τ; tk))

˙̂xp
−i(τ;tk) = f−i(x̂

p
−i(τ; tk), û

p
−i(τ; tk))

up
i (τ;tk) ∈U

‖xp
i (τ;tk)− x̂i(τ;tk)‖ ≤ δ 2κ

xp
i (tk + T ;tk) ∈Ωi(εi)

The second last constraint is a “compatibility” constraint, enforcing consistency be-
tween what agent #i plans to do and what its neighbors believe it plans to do. The
last constraint is a terminal constraint.

Under certain technical assumptions, the authors prove that the DMPC problems
are feasible at each update step k, and under certain bounds on the update interval δ
convergence to a given set is also proved. Note that closed-loop stability is ensured
by constraining the state trajectory predicted by each agent to stay close enough
to the trajectory predicted at the previous time step that has been broadcasted.
The main drawback of the approach is the conservativeness of the compatibility
constraint.

5.3.5 DMPC Approach of Keviczy, Borrelli, and Balas

Dynamically decoupled submodels are also considered in [21], where the special
nonlinear discrete-time system structure

xi
k+1 = f i(xi

k,u
i
k)

is assumed, subject to local input and state constraints xi
k ∈ X i, ui

k ∈ U i, i =
1, . . . ,M. Subsystems are coupled by the cost function

l(x̃, ũ) =
Nv

∑
i=1

li(xi,ui, x̃i, ũi)

and by the global constraints

gi, j(xi,ui,x j,u j)≤ 0, (i, j) ∈A

where A is a given set. Each local MPC controller is based on the optimization of
the following problem
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min
Ũt

N−1

∑
k=0

l(x̃k,t , ũk,t)+ lN(x̃N,t ) (5.28a)

s.t. xi
k+1,t = f i(xi

k,t ,u
i
k,t) (5.28b)

xi
k,t ∈X i, ui

k,t ∈U i, k = 1, . . . ,N−1 (5.28c)

xi
N,t ∈X i

f (5.28d)

x j
k+1,t = f j(x j

k.t ,u
j
k,t),(i, j) ∈A (5.28e)

x j
k,t ∈X j, u j

k,t ∈U j,(i, j) ∈A k = 1, . . . ,N−1 (5.28f)

x j
N,t ∈X j

f ,(i, j) ∈A (5.28g)

gi, j(xi
k,t ,u

i
k,t ,x

j
k,t ,u

j
k,t)≤ 0,(i, j) ∈A k = 1, . . . ,N−1 (5.28h)

xi
0,t = xi

t , x̃
i
0,t = x̃i

t (5.28i)

where (5.28b)–(5.28d) are the local model and constraints of the agent, (5.28e)–
(5.28g) are the model and constraints of the neighbors, and (5.28h) represent inter-
action constraints of agent #i with its own neighbors.

The information exchanged among the local MPC agents are the neighbors’ cur-
rent states, terminal regions, and local models and constraints. As in (5.13), only the
optimal input ui

0,t computed by controller #i is applied; the remaining inputs u j
k,t are

completely discarded, as they are only used to enhance the prediction.
Stability is analyzed for the problem without coupling constraints (5.28h), under

the assumption that the following inequality holds

N−1

∑
k=1

2‖Q(x j, j
k,t − x j,i

k,t)‖p +‖R(u j, j
k,t −u j,i

k,t)‖p ≤ ‖Qxi
t‖p +‖Qx j

t ‖p +

‖Q(xi
t − x j

t )‖p +‖Rui,i
0,t‖p +‖Ru j,i

0,t‖p

where ‖Qx‖2 � x′Qx, and ‖Qx‖1, ‖Qx‖∞ are the standard q and ∞ norm, respec-
tively.

5.3.6 DMPC Approach of Mercangöz and Doyle

The distributed MPC and estimation problems are considered in [25] for square
plants (the number of inputs equals the number of outputs) perturbed by noise,
whose local prediction models are

{
xi(k + 1) = Aixi(k)+ Biui(k)+∑M

j=1 B ju j(k)+ wi(k)
yi(k) = Cixi(k)+ vi(k)

(5.29)

A distributed Kalman filter based on the local submodels (5.29) is used for state es-
timation. The DMPC approach is similar to Venkat et al.’s “communication-based”
approach, although only first moves u j(k) are transmitted and assumed frozen in
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prediction, instead of the entire optimal sequences. Only constraints on local inputs
are handled by the approach. Although general stability and convergence results are
not proved in [25], experimental results on a four-tank system are reported to show
the effectiveness of the approach.

5.3.7 DMPC Approach of Magni and Scattolini

Another interesting approach to decentralized MPC for nonlinear systems has been
formulated in [23]. The problem of regulating a nonlinear system affected by dis-
turbances to the origin is considered under some technical assumptions of regularity
of the dynamics and of boundedness of the disturbances. Closed-loop stability is
ensured by the inclusion in the optimization problem of a contractive constraint.
The considered class of functions and the absence of information exchange between
controllers leads to some conservativeness of the approach.

5.4 Example of Decentralized Temperature Control in a Railcar

5.4.1 Example Description

In this section we test the DMPC approach of Alessio, Barcelli, and Bemporad for
decentralized control of the temperature in different passenger areas in a railcar [5].
The system is schematized in Figure 5.2. Each passenger area has its own heater and
air conditioner but its thermal dynamics interacts with surrounding areas (neighbor-
ing passenger areas, external environment, antechambers) directly or through win-
dows, walls and doors. Passenger areas are composed by a table and the associated
four seats. Temperature sensors are located in each four-seat area, in each antecham-
ber, and along the corridor. The goal of the controller is to adjust each passenger area
to its own temperature set-point to maximize passenger comfort. Temperature sen-
sors may be wired or wireless, in the latter case we assume that information packets
may be dropped, because of very low power transmission, simplified transmission
protocols, and no acknowledgement and retransmission and because of time-varying
communication disturbances due for example to passengers’ electronic equipment.

Let 2N be the number of four-seat areas (N = 8 in Figure 5.2), N the number
of corridor partitions, and 2 the number of antechambers. Under the assumption of
perfectly mixed fluids in each jth volume, j = 1, . . . ,n where n = 3N + 2, the heat
transmission equations by conduction lead to the linear model

dTj(τ)
dτ = ∑n

i=0 Qi j(τ)+ Qu j, Qi j(τ) = Si jKi j(Ti(τ)−Tj(τ))
CjLi j

, j = 1, . . . ,n (5.30)

where Tj(τ) is the temperature of volume # j at time τ ∈ R, T0(τ) is the ambient
temperature outside the railcar, Qi j(τ) is heat flow due to the temperature difference
Ti(τ)−Tj(τ) with the neighboring volume #i, Si j is the contact surface area, Qu j is
the heat flow of heater # j, Ki j is the thermal coefficient that depends on the materials,
Cj = K j

cVj is the (material dependent) heat capacity coefficient K j
c times the fluid
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Fig. 5.2 Physical structure of the railcar

volume Vj, and Li j is the thickness of the separator between the two volumes #i
and # j. We assume that Qi j(τ) = 0 for all volumes i, j that are not adjacent, ∀τ ∈
R. Hence, the process can be modeled as a linear time-invariant continuous-time
system with state vector z ∈ R

3N+2 and input vector v ∈ R
2N

{
ż(τ) = Acz(τ)+ Bcv(τ)+ FT0(τ)
h(τ) = Cz(τ) (5.31)

where F ∈ R
n is a constant matrix, T0(τ) is treated as a piecewise constant mea-

sured disturbance, and C ∈ R
p×n is such that h ∈ R

p contains the components of
z corresponding to the temperatures of the passenger seat areas, p = 2N. Since we
assume that the thermal dynamics are relatively slow compared to the sampling time
Ts of the decentralized controller we are going to synthesize, we use first-order Euler
approximation to discretize dynamics (5.31) without introducing excessive errors:

{
z(t + 1) = Az(t)+ Bv(t)+ FdT0(t)

h(t) = Cz(t) (5.32)

where A = I + AcTs, B = BcTs, and Fd = FTs. We assume that A is asymptotically
stable, as an inheritance of the asymptotic stability of matrix Ac.

In order to track generic temperature references r(t), we adopt the coordinate
shift defined by (5.24). The next step is to decentralize the resulting global model.
The particular topology of the railcar suggests a decomposition of model (5.1) as
the cascade of four-seat areas. There are two kinds of four-seat areas, namely (i) the
ones next to the antechambers, and (ii) the remaining ones. Besides interacting with
the external environment, the areas of type (i) interact with another four-seat-area,
an antechamber, and a section of the corridor, while the areas of type (ii) only with
the four-seat areas at both sides and the corresponding section of the corridor. Note
that the decentralized models overlap, as they share common states and inputs. The
decoupling matrices Zi are chosen so that in each subsystem only the first component
of the computed optimal input vector is actually applied to the process.
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Fig. 5.3 Exogenous signals used in the reported simulations

As a result, each submodel has 5 states and 2 or 3 inputs, depending whether
it describes a seat area of type (i) or (ii), which is considerably simpler than the
centralized model (5.1) with 26 states and 16 inputs.

We apply the DMPC approach (5.10) with

Q = 2

[
102I16 0

0 I10

]
, R = 105I16,vmin =−0.03 W, vmax = 0.03 W, Ts = 9 min

(5.33)
where vmin is the lower bound on the heat flow subtracted by the air-conditioners,
and vmax is the maximum heating power of the heaters (with a slight abuse of no-
tation we denoted by vmin, vmax the entries of the corresponding lower and upper
bound vectors of R

16). Note that the first sixteen diagonal elements of matrix Q cor-
respond to the temperatures of the four-seat areas. It is easy to check that with the
parameters in (5.33) condition (5.17a) for local stability is satisfied. For comparison,
a centralized MPC approach (5.3) with the same weights, horizon, and sampling
time as in (5.33) is also designed. The associated QP problem has 16 optimiza-
tion variables and 32 constraints, while the complexity of each DMPC controller
is either 2 (or 3) variables and 4 (or 6) constraints. The DMPC approach is in fact
largely scalable: for longer railcars the complexity of the DMPC controllers remains
the same, while the complexity of the centralized MPC problem grows with the in-
creased model size. Note also that, even if a centralized computation is taken, the
DMPC approach can be immediately parallelized.

5.4.2 Simulation Results

We investigate different simulation outcomes depending on four ingredients: i) type
of controller (centralized/decentralized), ii) packet-loss probability, iii) change in
reference values, iv) changes of external temperature (acting as a measured distur-
bance). Figure 5.3 shows the external temperature and reference scenarios used in
all simulations.
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Fig. 5.4 Comparison between centralized MPC (dashed lines) and decentralized MPC (con-
tinuous lines): output h1 (upper plots) and input v1 (lower plots). Gray areas denote packet
drop intervals

In order to compare closed-loop performances in different simulation scenarios,
the following performance index

J = ∑Nsim
t=1 (z(t)− r(t))′Q(z(t)− r(t))+ (v(t)− vr)′R(v(t)− vr) (5.34)

is defined, where Nsim = 160 (one day) is the total number of simulation steps.
The initial condition is 17◦C for all seat-area temperatures, except for the an-

techamber, which is 15◦C. Note that the steady-state value of antechamber temper-
atures is not relevant for the posed control goals. The closed-loop trajectories of
centralized MPC feedback vs. decentralized MPC with no packet-loss are shown in
Figure 5.4.2 (we only show the first state and input for clarity). In both cases the
temperatures of the four-seat areas converge to the set-point asymptotically. Figure
5.4.2 shows the temperature vector h(t) tracking the time-varying reference r(t) in
the absence of packet-loss, where the coordinate transformation (5.24) is repeated
after each set-point and external temperature change.

To simulate packet loss, we assume that the probability of losing a packet depends
on the state of a Markov chain with N states (see Figure 5.6). We parameterize with
the probability parameter p, 0≤ p≤ 1 the probabilities associated with the Markov
chain: the Markov chain is in the jth state if j− 1 consecutive packets have been
lost. The probability of losing a further packet is 1− p in every state of the chain,
except for the (N + 1)th state where no packet can be lost any more.
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Fig. 5.5 Decentralized MPC results. Upper plots: output variables h (continuous lines) and
references r (dashed lines). Lower plots: command inputs v. Gray areas denote packet drop
intervals

Fig. 5.6 Markov chain model of packet-loss probability

Let π be the stationary probability vector of the Markov chain of Figure 5.6,
obtained through the one-step probability matrix

P =

⎡

⎢
⎣

p 1−p 0 ··· 0
p 0 1−p ··· 0
...

...
...

. . .
...

p 0 0 ··· 1−p
1 0 0 ··· 0

⎤

⎥
⎦

by solving {
π ′ = π ′P
∑N

i=1πi = 1
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Fig. 5.7 Markov chain packet-loss probability with N = 10 and p = 0.7
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Fig. 5.8 Performance indices of Centralized MPC (dashed line) and Decentralized MPC
(solid line)

Recalling the meaning of the Markov chain nodes, the steady-state probability πi

of the ith state is the probability of loosing consecutively exactly i−1 packets. The
packet-loss discrete probability is shown in Figure 5.7 when N = 10 maximum con-
secutive packet-losses are possible and p = 0.7.

Figure 5.7 highlights the exponential decrease of the stationary probabilities as a
function of consecutive packets lost. Such a probability model is confirmed by the
experimental results on relative frequencies of packet failure burst length observed
in [38]. Note that our model assumes that the probability of losing a packet is null
after N packets, hence satisfying the assumption of an upper-bound on the number
of consecutive drops (as mentioned earlier, we can assume for instance that if k > N
consecutive packets are lost, the control loops are shut down). The simulation results
obtained with p = 0.5 are shown in Figure 5.4.2 and Figure 5.4.2.

In case of packet loss, we also compare the performance of centralized vs. de-
centralized MPC. Note that in case packet loss occurs also on the communication
channel between the point computing the coordinate shift and the decentralized con-
trollers, the last received coordinate shift is kept. The stability condition (5.22a) of
Theorem 5.5 was tested and proved satisfied for values of j up to 160.
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Figure 5.8 shows that the performance index J defined in Eq. (5.34) increases as
the packet-loss probability grows, implying performance to deteriorate due to the
conservativeness of the backup control action u = 0 (that is, v = vr). The results of
Figure 5.8 are averaged over 10 simulations per probability sample. As a general
consideration, centralized MPC dominates over the decentralized, although for cer-
tain values of p the average performance of decentralized MPC is slightly better,
probably due to the particular packet loss sequences that have realized. However,
the loss of performance due to decentralization, with regard to the present example,
is largely negligible.

The simulations were run on a MacBook Air 1.86 GHz running Matlab R2008a
under OS X 10.5.6 and the Hybrid Toolbox for Matlab [7]. The average CPU time
for solving the centralized QP problem associated with (5.3) is 6.0ms (11.9ms in
the worst case). For the decentralized case, the average CPU time for solving the
QP problem associated with (5.10) is 3.3ms (7.4ms in the worst case). Although
the decrease of CPU time is only a few milliseconds, we remark that for increasing
N the complexity of DMPC remains constant, while the complexity of centralized
MPC would grow with N. To quantify this aspect consider that, if one thinks to the
explicit form of the MPC controllers [9], the number of regions of the centralized
MPC is upper bounded by 316, while in decentralized case by 32 for submodels with
two inputs and by 33 for submodels with three inputs.

Note that the reference vectors vr, zr are computed globally in all simulations. In
this example the complexity of such a static calculation is negligible with respect to
solving the QP problems. Moreover, the communication burden is also negligible,
as new reference vectors are transmitted individually to each MPC agent only when
set-point and disturbances change.

5.5 Hierarchical MPC

5.5.1 Problem Description

In this section we provide some novel ideas on how to possibly couple a DMPC
layer with a higher centralized (hybrid) MPC layer in the hierarchical setting of
Figure 5.1. The idea is to design a centralized hybrid MPC controller to achieve
global coordination, namely to enforce global constraints (linear, logical, mixed lin-
ear & logical) and to optimize a global objective (such as an economically-driven
objective). To achieve the goal, we need an abstract (hybrid) model of the under-
lying closed-loop dynamics, without resorting to a global dynamical model of the
process and to the need of full state feedback.

Under the assumption that the higher MPC layer runs in real-time at a lower
sampling frequency than the underlying DMPC layer, a sensible choice is to use the
static global model

y(k + 1) = G(1)u(k)
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Fig. 5.9 Hierarchical and decentralized MPC of system composed by five dynamically-
coupled masses moving vertically

as a centralized abstract model, where G(1) is the DC-gain of (5.1), and k represents
the sampling step of the higher-level MPC controller.

Then, the centralized higher-level MPC controller solves the following problem

min
u(k)

f (y(k + 1)− rd(k),u(k))

s.t. g(u(k),y(k),rd(k))≤ 0

and defines
r(k) = G(1)u(k)

as the current setpoints for the DMPC layer. Extensions of these ideas, including
quantitative ways of choosing a suitable sampling time for the higher control layer,
have been formulated very recently in [6].

5.5.2 Illustrative Example

Consider the system depicted in Figure 5.9, composed by five dynamically-coupled
masses moving vertically. The dynamics of each mass #i is described by the
dynamics

Miÿi = ui−βiẏi− kiyi− ki j(yi− y j)︸ ︷︷ ︸
j=i−1,i+1

(5.35)

where Mi = 5 [kg], βi = 0.1 [kg/s], ki = 1 [kg/s2], ki j = 0.5 [kg/s2]. For local
prediction purposes, each DMPC controller #i neglects the velocities of the neigh-
boring masses, ẏi−1 = ẏi+1 = 0, and therefore only considers yi, ẏi,yi−1,yi+1 as local
states.

After discretizing the dynamics (5.35) with sampling time TL = 0.25 [s], each
DMPC agent solves the following on-line optimal control problem
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min
ui(k),...,ui(k+Nu−1)

Ny−1

∑
j=0

(yi(k+ j)−ri(k))2+0.1
Nu−1

∑
j=0

(ui(k + j)−ui(k + j−1))2 + 104ε2

s.t. ui
min ≤ ui(k+ j)≤ ui

max(k) j=0, . . . ,Nu−1
yi

min− ε ≤ yi(k + j)≤ yi
max + ε j = 0, . . . ,N

ui(k + j) = ui(k + Nu−1) j = Nu, . . . ,Ny−1
(5.36)

where ui
min = yi

min = 0 [m], yi
max = 2 [m], Ny = 20 is the prediction horizon, Nu = 4 is

the control horizon, ε is a slack variable used to soften output constraints to prevent
the possible infeasibility of the quadratic program associated with (5.36). The input
bounds ui

max(k) are decided at multiple of the higher-level sampling time TH = 3
[s] by a centralized hybrid MPC, together with the local setpoint vector r(k). The
hybrid MPC controller [8, 33] is designed to enforce the following constraints:

(i) at most Ku inputs can be over a certain threshold ulim = 0.7 [m], ui(k)≥ ulim;
(ii) set-point changes are bounded by a quantity Δr=0.5 [m]

|G(1)u(k)− yi(k)| ≤ Δr (5.37)

The logical “at most” constraint (i) is enforced by defining auxiliary binary inputs
u�i(k) ∈ {0,1}, i = 1, . . . ,5, and by setting

ui
max(k) =

{
yi

max if u�i(k) = 1
ulim if u�i(k) = 0

(5.38)

By letting rd(k) = [0.2 0.5 0.75 1 0.75]′ [m] be the vector of desired vertical
positions of the masses, every TH/TL = 12 steps the hybrid MPC controller solves
the following problem

min
u(k)
‖G(1)u(k)− rd(k)‖2 +

5

∑
i=1

(u�i−1)2

subject to the linear constraints defined by (5.37) and the mixed-integer reformula-
tion of constraint (5.38) [8] to determine the reference vector r(k) = G(1)u(k) for
the DMPC layer, and the input upper limit ui

max(k), which is set either to yi
max or to

ulim, depending on the logical constraint.
We simulate the hierarchical control system from initial positions y1(0) = 1,

y2(0) = 0.4, y3(0) = 0.7, y4(0) = 0.8, y5(0) = 0.2 and null velocities. The closed-
loop results are reported in Figure 5.10. Note that in the absence of the higher-level
hybrid MPC controller the red, purple, cyan, and blue input force signals (ui(k))
overpass the limit threshold ulim(k) (Figure 5.10(a)). When the hybrid MPC con-
troller is used with Ku = 3, we obtain the plots depicted in Figure 5.10(b), where
only the red, purple, and cyan input signals are set greater than ulim(k). For Ku = 2,
we obtain the plots depicted in Figure 5.10(c), where only the red and purple input
signals get above ulim(k).
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(a) DMPC with r(k) =
rd(k) (no hybrid MPC)
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(b) hierarchical MPC,
Ku = 3
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(c) hierarchical MPC,
Ku = 2

Fig. 5.10 Hierarchical and decentralized MPC results for the five-mass system. The limit
ulim is shown as a dashed black line

Both the linear DMPC and the hybrid MPC controllers were implemented in
Simulink using the Hybrid Toolbox for MATLAB [7].

5.6 Conclusions

In this chapter we have surveyed different approaches to the problem of controlling
a distributed process through the cooperation of multiple decentralized model pre-
dictive controllers. Each controller is based on a submodel of the overall process,
and different submodels may share common states and inputs, to possibly decrease
modeling errors in case of dynamical coupling, and to increase the level of co-
operativeness of the controllers. The DMPC approach is suitable for control of
large-scale systems subject to constraints: the possible loss of global optimal per-
formance is compensated by the gain in controller scalability, reconfigurability, and
maintenance. Although a few contributions have been given in the last few years, the
DMPC theory is not yet mature and homogenous. In this chapter we have tried to
highlight similarities and differences among the various approaches that have been
proposed, a little step towards the consolidation of a general theoretical framework
for DMPC design.

Open research topics in DMPC include: systematic ways to decompose the model
into local submodels, when this is not obvious from the physics of the process, deter-
mining the optimal model decomposition (i.e., the best achievable closed-loop per-
formance) for a given channel capacity and computer power available to the control
agents; better awareness of DMPC algorithms of the communication efforts, espe-
cially when operating over wireless sensor networks (for instance, to save battery
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energy and hence increase the device life span); stochastic DMPC formulations to
take into account imperfect communication in a less conservative way than robust
approaches; output-feedback DMPC by using suitable complementary decentralized
estimation schemes; hierarchical MPC schemes, for instance combining centralized
hybrid MPC and decentralized linear MPC; design better distributed MPC algo-
rithms by taking into account the progress in distributed optimization approaches
(e.g., to handle coupled input and state constraints), as described in Chapter 3 of
this book.
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