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Abstract

This paper considers the problem of deciding multi-period investments for maintenance and upgrade of electrical energy
distribution networks. After describing the network as a constrained hybrid dynamical system, optimal control theory is applied
to optimize profit under a complex incentive/penalty mechanism imposed by public authorities. The dynamics of the system
and the cost function are translated into a mixed integer optimization model, whose solution gives the optimal investment
policy over the multi-period horizon. While for a reduced-size test problem the pure mixed-integer approach provides the
best optimal control policy, for real-life large scale scenarios a heuristic solution is also introduced. Finally, the uncertainty
associated with the dynamical model of the network is taken care of by adopting ideas from stochastic programming.

Key words: Multi-period Investments, Optimal Control, Hybrid Systems, Mixed Integer Optimization, Stochastic
Programming

1 Introduction

National regulations were recently applied in several
countries for encouraging electrical energy distribution
companies to improve the continuity of energy sup-
ply. Such regulations include incentives/penalties to
energy distribution companies that depend on a few
quality indicators. The introduced incentives/penalty
mechanisms usually reflect customers’ preferences and
requirements, and their willingness to pay for quality.
Better quality standards are considered for customers
that are more sensitive to quality of energy supply. In
addition, incentives/penalties are not homogenous on
the territory, but depend on the present status of the
network, in particular they are larger in areas where
the current quality of energy supply is worse. Average
standards and yearly rate of improvement standards
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are more relevant to promoting overall improvement
or to maintaining quality and can be used to adjust
continuity differentials between regions.

Quality management has become a strategic issue for
electricity suppliers. The aforementioned regulations not
only impact considerably the economic activities of the
supplier, but also provide guidelines to the company
management for deciding the multi-annual investment
plans for renovating energy distribution lines, in order
to maximize the quality of energy supply perceived by
customers while satisfying financial and operational con-
straints.

In this paper we consider the Italian regulation sys-
tem introduced in 2004 [14]. In Italy, companies that
do not achieve the yearly improvement standards must
pay a penalty, while companies that exceed the yearly
improvement standards receive an incentive payment.
Penalties and incentives are defined by complex rules
that include dead bands, saturations, penalty cancella-
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tions, etc.

By taking into account national regulations, the state of
the network, previous actions and other historical data,
the managers of the company currently decide the multi-
annual investment plan for maintaining and upgrading
the energy distribution lines according to a manual trial-
and-error procedure. This activity is time-consuming,
does not always bring to optimal choices that exploit the
available resources to maximize the resulting quality of
energy supply, and in any case always make the manage-
ment wonder if better plans could have made. The above
disadvantages are amplified by the fact that such deci-
sions should be made according to a “rolling horizon”
philosophy (or “receding horizon” philosophy, using the
terminology of model predictive control [7, 20]), that is,
decisions should be re-iterated during the multi-period
horizon in order to take into account poorly forecasted
or unexpected events.

Planning for investments forms a crucial part of the
strategic level decision-making in many other applica-
tions. Examples can be found in many different fields,
such as heavy process industries, electric utilities or au-
tomobile industries [12, 22, 24]. In all these applications
the investments require the commitment of substantial
capital resources over long periods of time. Algorithms
that allow one to plan “optimal” decisions over such a
time horizon would automatically provide strategies for
maximizing profits. Optimization algorithms based on
the solution of linear programs have been successfully
applied in economics since the 1940s. However, there are
fewer references of mixed integer linear programming,
see for example [16, 31]. Furthermore, the uncertainties
associated with long-range forecasts make these deci-
sion problems very complex. Stochastic programming [6]
is one of the most powerful analytical tools to support
decision-making under uncertainty. As a scientific field,
it exists since many years and has received many contri-
butions (see, for example, http://stoprog.org). Sto-
chastic optimization has gathered renewed attention in
the last years (see [8, 29] and the references therein),
probably due to improvements in computing platforms.

In this paper we propose an automatic method for taking
decisions about multi-annual investments that is based
on optimal control ideas. After modelling the network
as a simple (but large-scale) hybrid dynamical system
with integrating dynamics and a piecewise affine out-
put function, and after expressing the nonlinear incen-
tive/penalty function by means of mixed-integer vari-
ables, an optimal control problem is solved to optimize
the profit of investments. Standard mixed-integer pro-
gramming solvers provide the best optimal control pol-
icy only for reduced-size test problems. In order to cope
with the actual large scale scenario of a regional network,
a heuristic solution is introduced. Finally, by taking into
account the uncertainty associated with the nonlinear
function relating investments with benefits, we propose

a model to optimize the profit of maintenance and up-
grade of a electrical distribution network under uncer-
tainty.

2 Optimal Control Problem

The aim of this section is to set up an optimal control
problem to determine the optimal allocation of invest-
ments for maintenance and upgrade of electrical energy
distribution networks on a multi-period (four years) time
basis. In our context, a control action is considered op-
timal if the profit of the electrical distribution company
is maximized (indirectly, this would also imply that the
quality of energy supply perceived by customers is max-
imized).

We treat the electrical distribution network as a (large-
scale) discrete-time dynamical system whose sampling
time is one year (decisions are taken on a yearly basis),
whose states define the quality of energy supply in each
individual district, and whose input is the amount of
money invested in that district at a given year. The de-
cision of the optimal investments depends on the predic-
tion over a certain number N of future years of the evo-
lution of the quality of the network. The prediction is re-
peated every year, according to the so-called “receding-
horizon” (or “rolling-horizon”) principle, over a multi-
annual horizon that has been shifted forward by one
year. The dynamical model of the network and its cur-
rent state is needed at a certain year i to evaluate the ef-
fect of current and future control actions (investments)
in the prediction, and therefore for computing the value
of the corresponding performance index.

Contrarily to standard model predictive control prob-
lems where the objective is to regulate the state of the
system to the origin or to track a given reference profile,
here the goal is to optimally controlling the state of the
system to a condition (determined a posteriori) where
the profit of the investment project is maximized. The
objective function is defined by the incentive-penalty
mechanism described in Section 2.2.

2.1 Dynamical System

An electrical distribution company must decide the
amount of money that must be invested in each district
j ∈ D, where D = {1, 2, . . . , D} is a finite set of dis-
tricts, in order to maintain a certain quality of energy
supply, which is measured in each district j ∈ D by the
amount of minutes of power outage per customer per
year (Customers Minutes Lost, CML), an indicator of
the continuity of supply service.

In order to improve the CML in their districts of com-
petence, distribution companies invest money in main-
tenance and upgrade of the energy distribution network.
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Districts are usually heterogeneous among them, have
different sizes and levels of quality, so that each district
must have its own investment project. Each project has
a cost and provides an expected improvement of qual-
ity. In general, CML does not decrease linearly with the
invested money, but rather has a more complex nonlin-
ear dependence. In this paper we consider two different
kinds of investment projects. The first one are local im-
provement interventions on a district. We model quality
of supply as a piecewise affine function of the invested
money (see Figure 1). The second one are big network
upgrade projects (such as the construction of a distribu-
tion substation) which may affect more than one district
and are defined by a fixed cost and a fixed gain. These
are yes/no interventions, i.e., either are carried out at
that fixed cost producing a fixed gain, or not. In gen-
eral, each project can be carried out at any year over the
optimization horizon, but also time constraints can be
addressed in the optimization model.

To evaluate an investment policy along a multi-period
time basis, we used a hybrid dynamical model [1, 4, 19].
The system state is made up of both continuous and bi-
nary variables. The continuous variables represent the
money invested in local improvement projects, while the
binary states indicate if a given upgrade project has been
realized. Although the dynamics of the system are very
simple, a hybrid model is suited to model both non-
linearities (once these are described as piecewise affine
functions), discrete states, and discrete inputs.

For each district j ∈ D and each time period i ∈ Y,
where Y = {0, 1, . . . , N}, N ∈ N, we characterize the
quality level as a piecewise affine function of the money
invested in local improvement projects. The money in-
vested in the local improvement of district j ∈ D from
the initial time period up to year i ∈ Y is denoted by xc

ij .
For the investment problem tackled in this paper, the
time period goes from 2003 (i = 0) to 2007 (i = N = 4).
This is the period of definition of the Italian normative
described in [14].

As mentioned earlier, the investment problem also allows
yes/no upgrade investments affecting more than one dis-
trict. The l-th of such investments, l ∈ I = {1, . . . , I},
is defined by the cost of the investment and the quality
increase in each affected district. For each possible up-
grade l ∈ I, the binary state xb

il indicates if the upgrade
has been done by time period i ∈ Y. The cost of invest-
ment l is denoted by Cup

l and the quality increase in dis-
trict j by ΔIlj . Matrix ΔI ∈ R

I×D contains the quality
increase factors for all upgrades and districts (ΔIlj = 0
if upgrade investment l does not affect district j).

At each time period i ∈ Y, one must decide the con-
tinuous inputs uc

ij , which is the money invested in each
district j ∈ D for maintenance, and the binary input ub

il,
which decides whether network upgrade l must be real-

f(xc
ij)

xc
ij

l1j l2j l3j l4j

d1
j

d2
j

d3
j

d4
j

Fig. 1. Quality of electricity supply improvement function.

ized. Hence, the equations that determine the dynamics
of the system are

xc
i+1,j = xc

ij + uc
ij , ∀j ∈ D, (1a)

xb
i+1,l = xb

il ∨ ub
il, ∀l ∈ I, (1b)

where “∨” denotes the logical or. Hybrid dynamics (1)
is a collection of simple continuous linear dynamics and
finite state machines.

The CML of district j at time period i is denoted by Cij

and can be described as follows. Consider the piecewise
affine function f : R �→ R defined as

f(xc
ij) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d1
jx

c
ij if xc

ij ≤ l1ij

f(l1j ) + d2
j(x

c
ij − l1j ) if l1j ≤ xc

ij ≤ l2j

f(l2j ) + d3
j(x

c
ij − l2j ) if l2j ≤ xc

ij ≤ l3j

f(l3j ) + d4
j(x

c
ij − l3j ) if l3j ≤ xc

ij ≤ l4j

f(l4j ) if xc
ij ≥ l4j

(2)

which is depicted in Figure 1. Then,

Cij(xc
ij) = C0j − f(xc

ij) −
∑
l∈I

xb
ilΔIlj , (3)

where ΔIlj is the quality increase in district j if upgrade
l is realized. The minus signs in (3) take into account that
CML decreases when the quality of electricity supply
increases.

The dynamics of each district j are only coupled by bi-
nary upgrade decisions, as graphically shown in Figure 2.
A further coupling is due to constraints on the capital
that can be invested at each time period i, namely

∑
j∈D

uc
ij +

∑
l∈I

ub
ilC

up
l ≤ Umax, ∀i ∈ Y,
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Fig. 2. Hybrid dynamical model relating investments to quality of supplied electrical energy

where Umax is the maximum amount of money that can
be invested each year i. Note that other constraints on
the invested money (i.e., on the inputs of the system)
and on the quality level (i.e., on the states of the system)
may be imposed similarly.

2.2 Cost Function

Distribution agencies must select the allocation of invest-
ments depending on complex incentive-penalty mech-
anisms imposed by national authorities for energy. In
this paper we consider the Italian normative described
in [14], that we summarize here below.

Each year and for each district the company is given an
incentive if the two-year moving average CML of that
district is under a given basic standard, or must pay a
penalty if it is higher. The objective is to maximize the
overall profit, i.e., the difference between the incentive
obtained and the invested money or paid penalties, dur-
ing the time period 2004–2007. The initial state C0j of
the network is the CML for year 2003.

The incentive-penalty mechanism is defined by the fol-
lowing set of rules:

• Incentive-penalty evaluation: The basic standards for
each district j and period i, denoted as Sij , are data
computed from the initial quality level C0j and from
the density level ρj of the district, where ρj can be
“High”, “Medium” or “Low”. Each density level is
treated with a different incentive/penalty function.

The incentive value for a given district j and period
i is a piecewise affine function of (i) the two-years
moving average of the CML of the district, and of (ii)
the basic standard. It is also proportional to the power
supplied to the district to both domestic users (PD

j )
and non-domestic users (PN

j ).

The values of Sij , C0j , ρj , PD
j and PN

j are known
data of the problem, not decision variables. The
incentive-penalty evaluation will be described more
in detail in Section 3.2.

• Dead band : For each district, a dead band is defined
around the basic standard level where neither incen-
tives nor penalties are due. For each district j and pe-
riod i the band is [Sij − f−

ij , Sij + f+
ij ], where f−

ij and
f+

ij are data provided in [14, Articles 23.1, 23.2 and
23.3].

• Maximum and minimum incentive-penalty: Incentives
and penalties are saturated: the maximum incentive is
J+

ij and the maximum penalty is−J−
ij . Such saturation

levels depend on the density ρj of each district and on
the corresponding basic standards Sij and are defined
in [14, Articles 23.6 and 23.7].

• Discount Rate: We suppose a discount rate r = 7%
to evaluate the Weighted Average Cost of Capital
(WACC) with respect to year 2004.

• Penalty cancellation for 2004-2005 : The law provides
a special treatment for the penalties of years 2004 and
2005. If the distribution company incurs in a penalty in
either year 2004 or 2005, the debt is not payed imme-
diately. It is instead subdivided in three installments
to be payed in the following three years. In addition,
if at any time the CML goes under the basic standard,
then the remaining installments are canceled.

The above regulations define a nonlinear function relat-
ing investments to profit. Such a function is composed by
a piecewise affine function and by a set of logical condi-
tions, which can be handled by a suitable mixed-integer
optimization model, as detailed in the following section.

3 Optimization Model

In this section we propose a mixed integer optimization
model which takes into account both the hybrid dynam-
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ics (1)–(3) and piecewise affine/logical relations describ-
ing the objective function.

For solving optimal control problems for discrete-time
hybrid dynamical systems subject to linear and logical
constraints, the Mixed Logical Dynamical (MLD) for-
malism was introduced in [4]. MLD models allow one
to specify the evolution of continuous variables through
linear dynamic equations, of discrete variables through
propositional logic statements and automata, and the
mutual interaction between the two. The key idea of the
approach consists of embedding the logic part in the
state equations by transforming Boolean variables into
0-1 integers, and by expressing the relations as mixed-
integer linear inequalities [4, 23, 25, 33, 34]. The tool
HYSDEL (HYbrid System DEscription Language) de-
scribed [33] allows one to automatically perform such a
translation of linear/logical relations into mixed-integer
inequalities. A Matlab interface to HYSDEL is provided
in the Hybrid Toolbox for Matlab [3].

The hybrid optimal control problem tackled in this pa-
per can be treated using similar techniques. Here the ob-
jective is to maximize the total profit cumulated over a
set of periods i ∈ Y for a given set of districts j ∈ D. The
decision variables are the sums invested each year for im-
provements and for upgrades: uc

ij is the money invested
during period i in district j, ub

il is a binary variable that
indicates if upgrade project l is realized during period i.
The optimization problem can be schematically stated
as follow:

max Jprofit

s.t. Constraints defining system dynamics

Constraints defining Jprofit

Input constraints (money spent)

State constraints (quality levels).

(4)

In order to express the dynamics of the system and the
cost function as (mixed-integer) linear inequalities, sev-
eral auxiliary variables and linear constraints are needed,
as explained below.

3.1 System Dynamics

The following variables are considered in the optimiza-
tion model: xc

ij is the cumulated money invested in dis-
trict j during period i and is the continuous state of each
district; Cij is the predicted CML level [min/yr] in dis-
trict j during period i; ΔCij is the cumulated improve-
ment from the initial CML level in district j during pe-
riod i. The cumulated investment xc

ij is simply given by
the sum of all previous investments

xc
ij =

i∑
k=1

uc
kj . (5)

Rather than considering the discrete state xb
il that indi-

cates if a given upgrade l has been realized during year
i as an optimization variable, we consider the following
binary variables ub

il ∈ {0, 1}, where ub
il = 1 implies that

investment l is done during period i. A given invest-
ment can only be done once, so the following constraint
is added:

∑
i∈Y

ub
il ≤ 1, ∀ l ∈ I. (6)

We assume that a minimum level of investment is made
in each district in order to maintain, independently on
making upgrade investments, at least the CML level ex-
isting at year 2003. For this reason, we consider the dif-
ference

ΔCij = C0j − Cij −
∑
l∈I

i∑
h=1

ub
hlΔIjl = f(xc

ij) (7)

as an optimization variable, where C0j is the CML level
at year 2003 and ΔIjl ≥ 0 is the CML improvement of
district j if upgrade l is realized. By the above assump-
tion, ΔCij ≥ 0. Function f(xc

ij) represents a given lo-
cal improvement investment project. Each district has
a different project which is defined as a piecewise affine
function of the cumulated invested money, where each
different linear segment of the function represents a dif-
ferent stage of the project. As described in (2), in this
paper we consider a continuous piecewise affine function
with four different gains (four projects stages) and a sat-
uration. This description well models data provided by
the company ENEL. Parameters l1ij and d4 model the
investment project stage costs and gains, respectively.
Figure 1 shows an example of a piecewise affine function
with four different gains and a saturation.

In order to represent function f(xc
ij) through mixed-

integer linear inequalities, the following auxiliary op-
timization variables are introduced: α1

ij ∈ {0, 1} indi-
cating if xc

ij ≥ l1j ; α2
ij ∈ {0, 1} indicating if xc

ij ≥ l2j ;
α3

ij ∈ {0, 1} indicating if xc
ij ≥ l3j ; s1

ij ≥ 0 denoting the
part of the investment under l1j ; s2

ij ≥ 0 denoting the
part of the investment between l1j and l2j ; s3

ij ≥ 0 denot-
ing the part of the investment between l2j and l3j ; s4

ij ≥ 0
denoting the part of the investment between l3j and l4j .
Then, as at optimality certainly holds that xc

ij ≤ l4j be-
cause of saturation, the CML level improvement is mod-
eled by the following set of constraints for each district
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Seg. h Ch
1 Ch

2

1 0.240 0.120

2 0.360 0.180

3 0.480 0.240

Table 1
Parameters defining different minutes segments from [14]
[ke/(MW(min/yr))].

j and period i:

xc
ij = s1

ij + s2
ij + s3

ij + s4
ij

α1
ij l

1
j ≤ s1

ij ≤ l1j

α2
ij(l

2
j − l1j ) ≤ s2

ij ≤ α1
ij(l

2
j − l1j )

α3
ij(l

3
j − l2j ) ≤ s3

ij ≤ α2
ij(l

3
j − l2j )

s4
ij ≤ α3

ij(l
4
j − l3j )

α1
ij ≥ α2

ij ≥ α3
ij

ΔCij = d1
js

1
ij + d2

js
2
ij + d3

js
3
ij + d4

js
4
j

s1
ij , s

2
ij , s

3
ij , s

4
ij ≥ 0, α1

ij , α
2
ij , α

3
ij ∈ {0, 1}.

(8)

3.2 Profit

According to [14] the incentive-penalty value for a given
district and period depends on the expected CML value,
the basic standards and the density of the districts. The
basic standard levels Sij of CML reference for a given
district j during year i are data of the optimization prob-
lem. The expected incentive (or penalty) J t

ij in district
j during period i is defined as a piecewise affine function
that depends on the two-year moving average CML level
Bij = Ci−1,j+Ci,j

2 . Without taking into account [14, Ar-
ticle 23] , we have

J t
ij =

3∑
h=1

(PD
j Ch

1 + PN
j Ch

2 )(thij − bh
ij), (9)

where PD
j and PN

j are data for each district and
period, Ch

1 and Ch
2 , h = 1, 2, 3, are the parame-

ters in [ke/(MW(min/yr))] given in [14, Table 1]
and in Table 1 for different segments [sg1ρj , sg2ρj ],
ρj ∈ {“High”,“Medium”,“Low”} is the density of the
district, reported in Table 2, and where the auxiliary
quantities thij represent the number of minutes of Sij

over segment h, and bh
ij the number of minutes of Bij

over segment h. While tlij are data computable from
Sij , bh

ij are instead decision variables. To define them,
we need to introduce two binary variables β1

ij , β2
ij which

indicate if Bij is greater than the limit of each segment

Density ρj Seg. 1 Seg. 1 Seg. 3 sg1ρj sg2ρj

High 0-25 25-75 +75 25 75

Medium 0-40 40-120 +120 40 120

Low 0-60 60-180 +180 60 180

Table 2
Segment definition ([min/yr]) for different densities as de-
fined in [14]

[min/yr]

sg1ρj

sg2ρj

t1ij

t2ij

t3ij

Sij

Segment 1

Segment 2

Segment 3

Fig. 3. Auxiliary variable definition

sg1ρj , sg2ρj , respectively:

[Bij ∈ Segment 1 ] → [
β1

ij = β2
ij = 0

]

[Bij ∈ Segment 2 ] → [
β1

ij = 1, β2
ij = 0

]

[Bij ∈ Segment 3 ] → [
β1

ij = β2
ij = 1

]
.

Accordingly, the cost function J t
ij can be defined by (9)

and by the following set of constraints

Bij = b1
ij + b2

ij + b3
ij

β1
ijsg1ρj ≤ b1

ij ≤ sg1ρj

β2
ij(sg2ρj − sg1ρj ) ≤ b2

ij ≤ β1
ij(sg2ρj − sg1ρj )

b3
ij ≤ β2

ij Ĉ
β2

ij ≤ β1
ij

b1
ij , b

2
ij , b

3
ij ≥ 0, β1

ij , β
2
ij ∈ {0, 1}.

(10)

where Ĉ is an upper bound on Cij and ρj is the density
of the district j.

3.2.1 Dead Band

A dead band [Sij − f−
ij , Sij + f+

ij ] around the basic stan-
dard where neither incentive nor penalty are applied is
defined for each district j and year i in [14, Articles 23.1,
23.2 and 23.3] and can be modeled by a set of logical
constraints over the value of J t

ij . Introduce two binary
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variables δ−ij and δ+
ij defined as

[
δ−ij = 1

] ↔ [
Sij − Cij ≥ f−

ij

]
[
δ+
ij = 1

] ↔ [
Sij − Cij ≥ f+

ij

]
.

(11)

The profit with dead band Jf
ij is given by

Jf
ij = (1 − δ−ij + δ+

ij)J
t
ij . (12)

Logic constraints (11) and the nonlinear relation (12)
can be modelled by a set of mixed-integer linear con-
straints using standard procedures [34].

3.2.2 Maximum Incentive/Penalty

The maximum incentives and penalties are values de-
fined in [14, Articles 23.6 and 23.7] that depend on the
density ρj of the district and on the basic standard Sij .
In order to take such saturation constraints into account
in the optimization model, a new set of auxiliary vari-
ables and constraints is needed.

Let the maximum incentive be J+
ij and the maximum

penalty be −J−
ij . The saturated version Js

ij of Jf
ij lies in

[J−
ij , J+

ij ], ∀j ∈ D and year i ∈ Y. Introduce two variables
γ−

ij ∈ {0, 1} and γ+
ij ∈ {0, 1}, defined as

[
γ−

ij = 1
] ↔

[
Jf

ij ≥ J−
ij

]

[
γ+

ij = 1
] ↔

[
Jf

ij ≥ J+
ij

]
.

(13)

Then, the saturated value function is defined as

Js
ij = (1 − γ−

ij )J
−
ij + (γ−

ij − γ+
ij)J

f
ij + γ+

ijJ
+
ij . (14)

Logic constraints (13) as well as the product (γ−
ij−γ+

ij)J
f
ij

of real and binary variables can be linearized by intro-
ducing an auxiliary continuous variable and a set of lin-
ear constraints, as described in [34].

3.2.3 Profit Definition

As mentioned in Section 2.2, discount rates and penalty
cancellations for 2004-2005 must be taken into account.
The latter requires the introduction of binary variables
ζij defining whether the CML level has reached the basic
standard or not:

[ζij = 1] ↔ [Cij − Sij ≥ 0] . (15)

The overall objective function Jprofit is defined as

− ∑
i∈Y

∑
j∈D

σi−1uc
ij −

∑
i∈Y

∑
l∈I

σi−1ub
ilC

up
il

+σ2Js
1j(1 − ζ1j) + σ3Js

2j(1 − ζ2j) + σ4Js
3j + σ5Js

4j

+ 1
3σ2Js

1jζ1j + 1
3σ3Js

1jζ1jζ2j + 1
3σ4Js

1jζ1jζ3j

+ 1
3σ3Js

2jζ2j + 1
3σ4Js

2jζ2jζ3j + 1
3σ5Js

2jζ2jζ4j ,

(16)
where σ = 1

1+r/100 and Cup
l is the cost for upgrade l. The

product between binary variables and expected penalties
is again modelled by introducing a set of auxiliary con-
tinuous variables and mixed-integer linear constraints as
in [34].

3.3 Input and State Constraints

The constraints on the money spent can represent any
limits on uc

ij and ub
ij , for example “global” constraints

on the overall money spent in different districts, differ-
ent years, etc. In the case at hand, limited total budget
and maximum budget over collections of districts (called
“regions”) are considered. Also, a constraint on the min-
imum CML level during the last year is imposed for each
district, in order to prevent an excessive worsening of
quality (in particular for design reasons the minimum
level is equal to the basic standard of 2007). Note that
other linear constraints (such as constraints on the max-
imum difference of quality levels between different dis-
tricts) could be easily modeled, although they are not
considered in our model, which is suited for the Italian
normative [14] and include the following constraints:

∑
j∈D

uc
ij +

∑
l∈I

ub
ilC

up
l ≤ Umax, ∀i ∈ Y

∑
j∈Regh

uc
ij ≤ URegh

max , ∀i ∈ Y, ∀h ∈ R

C4j ≥ S4j , ∀j ∈ D.

(17)

where Regh is the set of districts of region h, h ∈ R =
{1, , . . . , R}, and URegh

max is the corresponding yearly limit
of investments.

4 Solution Strategies

The optimum control problem providing the desired in-
vestment allocation has been recast as the following op-
timization problem

maxu,z Jprofit

s.t. (5)–(17)
(18)

The optimization variables u, z are listed in Table 3.
These variables have been subdivided into two cate-
gories: “actual” decision variables u = {uc

ij , u
b
il}, that
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Name Description

u Decision variables (command inputs)

ub
il Investment decision on upgrade l in time pe-

riod i [binary]

uc
ij Money invested in district j on period i [ke]

z Auxiliary variables

xc
ij Accumulated money invested in district j on

period i [ke]

Cij CML level in district j on period i [(min/yr)]

ΔCij Accumulated CML level decrease in district j
on period i [(min/yr)]

sl
ij Auxiliary variables for defining piecewise affine

function ΔCij(x
c
ij) [ke]

αij Auxiliary binary variable for defining piecewise
affine function ΔCij(x

c
ij) [ke]

Bij Mean biannual CML level in district j on pe-
riod i [(min/yr)]

Jt
ij Incentive/penalty [ke]

bl
ij Auxiliary variables for defining piecewise affine

function Jt
ij [(min/yr)]

βl
ij Auxiliary variables for defining piecewise affine

function Jt
ij [binary]

Jf
ij Incentive/penalty taking into account the dead

band [ke]

δ±ij Auxiliary variables for defining the dead band
[binary]

Js
ij Incentive/penalty taking into account dead

band and saturation [ke]

γ±
ij Auxiliary variables for defining the saturation

[binary]

Jprofit Profit [ke]

Jij Auxiliary variable for defining the profit [ke]

ζij Auxiliary variables for defining the profit [bi-
nary]

Table 3
MILP formulation: optimization variables

constitute the investment policy over the prediction hori-
zon, and the auxiliary variables z that are introduced to
evaluate the dynamics and the cost function. Note that
both u and z vectors have binary and real components.
Using such a notation, the optimization problem (18)
can be written as the following mixed-integer linear pro-
gram (MILP)

max
u,z

cT u + fT z

s.t. Au ≤ b

Wz ≤ h + Tu

u ∈ R
nc × {0, 1}nc

z ∈ R
mc × {0, 1}mc,

(19)

Name Description

D Set of districts 1, . . . , D

Y Set of periods 0, . . . , N

I Set of network upgrade investments
1, . . . , I

R Set of regions 1, . . . , R

Cup
l The cost of each investment l [ke]

ΔIlj CML decrease in district j if upgrade l is
realized [(min/yr)]

dh
j ,lhj Parameters of the improvement investment

of district j [ke],[(min/yr)/ke]

Sij Basic standards for each district j and pe-
riod i [(min/yr)]

tl
ij Minutes of Sij over segment l [(min/yr)]

C0j Initial CML level (year 2003) [(min/yr)]

ρj Density of the district [“High”, “Medium”
or “Low”]

P D
j Power of non domestic users for each dis-

trict j [MWh]

P N
j Power of domestic users for each district j

[MWh]

f−
ij ,f+

ij Size of dead band [(min/yr)]

J+
ij ,−J−

ij Saturation limits [ke]

r Discount rate [%]

Ch
1 ,Ch

2 Parameters in ke/(MW(min/yr))

sg1ρj , sg2ρj Limits of each segment for a given density
ρj [(min/yr)]

Umax Maximum total budget for each year [ke]

Regh Set of districts in region h [Regh ⊆ 2D]

U
Regh
max Maximum budget over region h for each

year [ke]

Table 4
Problem parameters

where matrices c, f, A, b, W, h, T depend on the parame-
ters listed in Table 4.

The constraints in (19) are divided into two categories:
(i) constraints that affect only the decision variables u,
and (ii) the remaining constraints. The first ones are the
constraints on budget and upgrade projects. The rest of
the constraints model all the auxiliary constraints to de-
fine the dynamics of the system and the cost function,
as well as state constraints on the CML level. Such a
categorization of constraints will be important in Sec-
tion 5 where uncertainty is taken into account. We will
refer to problem (19) as the “deterministic optimization
problem”, as we are assuming that all its parameters are
known. A “stochastic optimization model” that takes
into account possible uncertainties in the parameters is
presented in Section 5.
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4.1 Pure MILP Approach

Problem (19) can be solved by standard MILP solvers,
such as GLPK [21] (public domain), Cplex [15] (commer-
cial), or Xpress-MP [10] (commercial), for which Matlab
interfaces are available at http://www.dii.unisi.it/
hybrid/tools.html.

Although the aforementioned MILP solvers are very ef-
ficient, MILP is still an NP -hard problem, and its com-
plexity is in general exponential with the number of bi-
nary variables. The size of Problem (19) grows linearly
with the number N of time periods and the number D of
districts. In many cases of practical relevance, the prob-
lem may be too large to be solved to optimality. How-
ever, most MILP solvers are based on branch and bound
algorithms which may give good suboptimal feasible so-
lutions after reaching a predefined time or memory limit.
In the study presented in Section 6, the MILP problem
cannot be solved to optimality on a standard PC be-
cause the solver runs out of memory. In order to han-
dle such complex cases, next section provides a heuris-
tic approach to get good solutions to Problem (19) with
limited computations.

4.2 Heuristic Approach

One of the most widely used heuristics are greedy al-
gorithms. The idea is to start from a simple solution,
change relevant variables sequentially, each time select-
ing the variable that achieves the greatest immediate
improvement in the objective function. Moreover, once
the value of a variable is fixed it is not changed further.

In the case at hand, the algorithm starts from the ini-
tial feasible solution where no investment is done, i.e.
uc

ij(0) = 0 and ub
il(0) = 0 for all periods i ∈ Y, districts

j ∈ D and upgrades l ∈ I. The initial profit, Jprofit(0), is
the predicted profit of this policy. The algorithm keeps
track of the money that has not been invested (remain-
ing budget) through variables Umax

i (k). At iteration k of
the greedy algorithm, the value of Umax

i (k) is the money
left for period i. The initial money constraint is equal to
the maximum budget, Umax

i (0) = Umax for all i ∈ Y.

At each iteration k, an investment U is added to the
current solution and the cost of U is subtracted from
the remaining budget. The added investment U is cho-
sen according to an optimality index, which is the ratio
between the corresponding obtained profit and the cost
of investment U . The investment with the highest op-
timality index is chosen among the local improvement
projects of each district and the different network up-
grades. For each district j for which an investment has
not been fixed yet, the following MILP problem deter-
mines the obtained profit and the corresponding optimal

investment:

Jprofit
j (k) = max Jprofit

s.t. (5) − (17)

uc
ih = uc

ih(k − 1), ∀i ∈ Y, ∀h 
= j ∈ D
ub

il = ub
il(k − 1), ∀i ∈ Y, ∀l ∈ I

uc
ij ≤ Umax

i (k − 1), ∀i ∈ Y.

(20)
Problem (20) evaluates the profit Jprofit

j (k) of the best
investment that can be done in district j, with the re-
maining budget after k − 1 iterations. The optimality
index for a given investment option in district j is then
given by

Ij(k) =
Jprofit

j (k) − Jprofit(k − 1)∑
i∈Y

βi−1uc
ij

. (21)

For each investment project l that is not fixed, the fol-
lowing MILP problem is solved:

Jprofit
l (k) = max Jprofit

s.t. (5) − (17)

uc
ij = uc

ih(k − 1), ∀i ∈ Y, ∀j ∈ D
ub

ih = ub
il(k − 1), ∀i ∈ Y, ∀h 
= l ∈ I

ub
ilC

up
l ≤ Umax

i (k − 1), ∀i ∈ Y.

(22)
The optimality index for a given upgrade investment l
in the network is

Il(k) =
Jprofit

l (k) − Jprofit(k − 1)∑
i∈Y

βi−1ub
ilC

up
l

. (23)

Note that optimization problems (20) and (22) are easy
to solve because most of the the decision variables (i.e.
the inputs to the system) are fixed. In particular, as
the dynamics of each district are independent, only the
variables and constraints of that district have to be taken
into account to solve the corresponding proboem. In the
case of network upgrades, the optimization of each of
the districts affected by the investment must be taken
into account. At each iteration the investment project
with the maximum optimality index is chosen and the
current solution and budget is updated as

I∗(k) = max
j∈D,l∈I

{Ij(k), Il(k)}

9



If Ij(k) = I∗(k) then

Jprofit(k) = Jprofit
j (k)

Umax
i (k) = Umax

i (k − 1) − uc
ij , ∀i ∈ Y

uc
ih(k) = uc

ih(k − 1), ∀i ∈ Y, ∀h 
= j ∈ D
uc

ij(k) = uc
ij , ∀i ∈ Y

ub
il(k) = ub

ih(k − 1), ∀i ∈ Y, ∀l ∈ I

otherwise, if Il(k) = I∗(k),

Jprofit(k) = Jprofit
l (k)

Umax
i (k) = Umax

i (k − 1) − ub
ilCIl, ∀i ∈ Y

uc
ij(k) = uc

ih(k − 1), ∀i ∈ Y, ∀j ∈ D
ub

ih(k) = ub
ih(k − 1), ∀i ∈ Y, ∀h 
= l ∈ I

ub
il(k) = ub

il, ∀i ∈ Y.

The algorithm iterates until the solution does not im-
prove any more, i.e., Jprofit(k) = Jprofit(k − 1). The fea-
sible suboptimal solution is given by {uc

ij(k), ub
lj(k)}.

The heuristic algorithm presented above only takes into
account total budget constraints. To add maximum in-
vestment on a given region h ∈ R additional variables
can be used to carry the remaining budget of the region,
as done with variables Umax

i (k) for the global constraint.

5 Stochastic Optimal Control

A large number of problems in production planning and
scheduling, location, transportation, finance, and engi-
neering design require that decisions be made in the pres-
ence of uncertainty. Uncertainty, for instance, governs
the prices of fuels, the availability of electricity, and the
demand for chemicals. In the problem tackled in this pa-
per uncertainty affects the function in (2), which is de-
picted in Figure 1, between quality of supply and money
invested in improvement projects.

Stochastic programming (SP) is a special class of math-
ematical programming that involves optimization under
uncertainty (see [6, 17, 27]). The original applications
were agricultural economics, aircraft route planning and
production of heating oil back in the 50’s. Nowadays SP
is becoming a mature theory that is successfully applied
in several other application domains, see for instance
the survey [28]. For other contributions in control the-
ory of SP techniques the reader is referred to [2, 13, 18].
From the computational viewpoint specific efficient al-
gorithms for stochastic LP and QP are available in the
literature (see for example [5,9,26,32]) and commercial
solutions to SP were announced recently [11]. In this sec-
tion a two-stage stochastic integer programming formu-

lation is proposed for the investment problem described
in previous sections.

The increase of quality caused by an investment project
is very difficult to predict. We suppose a 20% error mar-
gin in the predictions: For each district j and upgrade
project l we define a pair of independent continuous ran-
dom variables ξi, ξl ∈ [0.8, 1.2]. These random variables
model the possible error in the forecasted quality in-
crease of each project

ΔCij = ξjf(xc
ij),

ΔIlj(ξl) = ξlΔIlj .

The uncertainty affects the definition of the CML of each
district, and therefore the hybrid dynamical model (1)–
(3) of the system. As a consequence, constraints (7)
and (8) are directly affected by uncertainty. Moreover,
all the variables (and so the constraints) defined to eval-
uate the profit depend on the quality level of each dis-
trict and period, so they are also affected indirectly by
uncertainty.

Stochastic programming optimizes the mean value of the
cost function taking into account causality. This means
that the decision on how to invest the available money
must be done “before” knowing the real effect of the in-
vestment projects, i.e., before knowing the value of the
random variables ξ and so the actual evolution of the
CML of the districts. In this problem we propose to use
a two-stage model [6]. The investments along the whole
prediction horizon are decided as first stage variables
that must be decided without any prior knowledge. The
recourse variables are the state variables and the auxil-
iary variables needed to evaluate the expected profit and
are decided “a posteriori”, once the value of the uncer-
tainty is known.

Using the notation presented in previous sections the
stochastic MILP problem is defined as

max
u

cT u + E[max
z

f(Ξ)T z|Ξ]

s.t. Au ≤ b

W (Ξ)z ≤ h(Ξ) + T (Ξ)u, ∀Ξ

u ∈ R
nc × {0, 1}nc

z ∈ R
mc × {0, 1}mc,

(24)

where Ξ = {ξi, ξl} collects all the random variables as-
sociated with uncertainty of the relation between im-
provement/upgrade investments and CML. Note that
the constraints on the budget and the discount rate are
deterministic parameters, so matrices c, A and b are fixed
because they do not depend on CML, and hence on Ξ.

In general, uncertainty is best modeled as a continu-
ous random variable. However, in complex practical

10



2

0

Q

1

Scenario Tree

Recourse variablesDecision variables

Ξ1, z1

Ξ2, z2

ΞQ, zQ

...u

Fig. 4. Tree with Q different scenarios.

problems, continuous probability distributions are of-
ten too difficult to handle from a computational view-
point. Therefore, discrete probability measures have
a prominent role in approaches based on stochastic
programming. Besides turning integrals into sums, dis-
crete distributions allow equivalent representations of
optimization models as block-structured large scaled
deterministic optimization mathematical programs.

We resort to sampling each of the independent contin-
uous distributions ξj,l. The number q of possible values
of each uncertain variable determines the complexity of
the stochastic optimal control problem. For the study
tackled in Section 6 we have considered that {ξi, ξl} take
values on {0.8, 0.9, 1, 1.1, 1.2} with equal probabilities
p = 0.2, i.e., we consider q = 5 possible realizations. In
this way, as each variable in independent, the uncertain
variable Ξ may take values Ξ1, . . . , ΞQ with probabilities
p1, . . . , pQ respectively, where Q = qD+I .

For each fixed value of the uncertainty Ξi, referred to as
scenario, all problem parameters f(Ξi), T (Ξi), W (Ξi),
h(Ξi) become fixed. By enumerating all possible Q sce-
narios, a large scale MILP problem can be posed. To
each scenario, a set of “recourse” auxiliary variables zi

are assigned, but the problem optimizes only a single set
of decision variables u. In this way, the causality of the
decision process is maintained, as illustrated in Figure 4.
The (large scale) equivalent MILP problem (24) is

max
u,zi

cT u +
Q∑

i=1

pif(Ξi)T zi

s.t. Au ≤ b

W (Ξi)zi ≤ h(Ξi) + T (Ξi)u, i = 1, . . . , Q

u ∈ R
nc × {0, 1}nc

zi ∈ R
mc × {0, 1}mc, i = 1, . . . , Q.

(25)

5.1 Solution Strategies

The complexity of the two-stage stochastic problem (25)
heavily depends on the number Q of scenarios. In the op-
timization model proposed in this paper the uncertainty
affects investment projects. If each project is supposed
to be independent, and the uncertainty is supposed to
take q different values, the number of scenarios of the
optimization problem is Q = qD+I . Although stochas-
tic programming for linear and quadratic problems is
nowadays a mature field, stochastic MILP problems are
still in general hard to solve, we refer again to [28] for a
complete survey of the state of the art.

Given that even the deterministic MILP approach (19)
is too complex to handle instances of the investment al-
location problem if interest, we avoid solving (25) us-
ing stochastic MILP solution techniques, but rather pro-
pose again a heuristic algorithm. By decoupling each
investment project using the heuristic approach of Sec-
tion 4.2, one can deal with each random pair {ξi, ξl}
independently. Each local improvement project can be
dealt without taking into account the realization of the
random variables associated with other districts, as such
variables only affect the corresponding CML, and hence
evaluating the investment project of district j only re-
quires the enumeration of q scenarios, corresponding to
the possible realizations of ξj . Districts affected by up-
grade projects must take into account also the uncer-
tainty associated with upgrade projects, so the number
of scenarios may be larger than q.

Having reduced the number of scenarios in each smaller
subproblem associated with a single district, one can use
an MILP formulation to solve the stochastic equivalent
of the optimization problems described in Section 4.2.
In this way, it is possible to obtain a feasible subopti-
mal investment policy that takes into account the uncer-
tain nature of each investment project. Note that more
efficient solvers [29–31] of two-stage stochastic integer
problems may be used here in the heuristic algorithm.

6 A Case Study

We apply the optimal control approach developed in the
previous sections for solving a real-life investment allo-
cation problem. We consider three different problems 1 :

• P9: System with 9 districts;
• P18: System with 18 districts and 5 network upgrade

projects;
• P36: System with 36 districts.

1 Numerical data were generated by perturbing actual con-
fidential data provided by the Italian electrical company
ENEL.
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The data defining P18 are provided in Tables 5, 6, 8,
and 9. Other parameters that are not provided in these
tables (such as dead band values) can be obtained from
[14]. Table 6 shows the parameters that define the dis-
tricts of P18. The districts are divided into R = 12 re-
gions. In the optimization problem, maximum invest-
ment constraints on some of these regions are also taken
into account. Budget constraints are defined in Table 5.
The parameters for each local improvement project are
given in Table 8. The cost and quality increase para-
meters of network upgrade investments are given in Ta-
ble 9. The data of P9 and 36 are not provided for lack
of space. Total investment constraints of 500 and 5000
[ke], respectively, are considered.

In the three cases, deviations of up to 20% of estimated
CML predictions in all districts are considered as ex-
plained in Section 5. The uncertain variables take five
possible values ({0.8, 0.9, 1, 1.1, 1.2}) with equal proba-
bility (p = 0.2). It is also taken into account that there
is a probability p = 0.2 that some of the investments fail
during the first two years for unexpected reasons.

Table 10 shows the profit and computation time of the
different solutions strategies developed in the previous
sections for both the deterministic and the stochastic
case 2 .

For the deterministic problem, the optimal solution has
been obtained only for P9. In this case, the MILP solver
of CPLEX obtains the optimal investment policy even
faster than the greedy algorithm of Section 4.2. For P18
the computer runs out of memory after 2300 s while solv-
ing the MILP problem (19) to optimality. The solutions
obtained by CPLEX after 200 and 2000 s are shown. For
P36, the computer runs out of memory after 1100 s. The
reported solution is the one obtained after 1000 s of CPU
time. The heuristic algorithm is instead very fast and
converges in less that 20 s for P36. Although subopti-
mal, the obtained solution is considered a valid decision
by the company.

The optimization problem associated with the stochastic
formulation is in all cases too large to be solved by one
large MILP. A suboptimal solution is obtained by using
the greedy approach of Sections 4.2, 5.1.

We remark that the decision making problem is quite
complex to be solved by hand, and in any case the op-
timal solutions, obtained using any of the optimization
methods mentioned above, are of great use to the invest-
ment department, as they give insights on directions to
take to pursue the most profitable investments.

2 The results were obtained in MATLAB 6.3 using CPLEX
9.0 on a AMD AthlonTMXP 2800+ with 512 MB of RAM.

Umax U
Reg2
max U

Reg6
max U

Reg11
max

1000 400 500 400

Table 5
Budget for P18: Umax is the total amount of money available

each year and U
Regh
max the maximum budget available each

year for region h, from 2004 to 2007 [ke]

District Reg. CML03 P D P N ρj

3 1 203.4 7.9 6 Low

4 2 40.3 27.6 11.1 High

5 2 91.6 70.9 16.5 Medium

6 2 125.5 15.5 3 Low

8 3 90.3 23.4 8 Medium

9 3 130.4 10 5.8 Low

11 4 80 194.3 60.8 Medium

12 4 139.1 24.3 5.6 Low

17 6 78.9 93.8 32.5 Medium

18 6 113.9 15 5.6 Low

20 7 85.9 53.4 20.1 Medium

23 8 72.1 53.7 18.6 Medium

27 9 86.3 16.2 9.3 Low

29 10 53.8 133.9 42.9 Medium

30 10 65.6 38.3 17.4 Low

31 11 60.6 19.3 6 Medium

32 11 86 17.3 8.4 Low

34 12 67.5 46.1 6.6 Medium

Table 6
District parameters for P18: “Region” denotes the region
h ∈ R the district belongs to, “CML(2003)” is the initial
CML in [min/yr], P D and P N [MWh] are the power served to
domestic and non-domestic clients, respectively, “Density”
is the density of the district

7 Conclusions

In this paper we have proposed a novel application of
optimal control of hybrid dynamical systems for solving
a management problem in allocation of investments for
maintenance of the electrical distribution network in a
territory composed by several districts. Because of non-
trivial national regulations and of complex relations be-
tween invested money and resulting quality of supply,
allocating investments for both local improvements and
major upgrades is a complex problem, usually solved
heuristically after a series of tedious iterations and with-
out any guarantee of having taken the best decision.
We have shown that an optimal control setup and opti-
mization tools provide a systematic way of making the
best (or at least good) investment allocation. We also
have considered a stochastic mixed-integer linear pro-
gramming formulation for taking into account the uncer-
tainty associated with the relation between investments
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District l1 l2 l3 l4

3 205.7 845.2 914.1 1000

4 648.6 1000 1000 1000

5 806.1 806.1 883.6 1000

6 385.5 699.3 833.2 1000

8 452.3 809.3 915.3 1000

9 259.1 505.2 609.4 1000

11 496.5 755.9 849.1 1000

12 643.4 860.7 910.8 1000

17 337.2 395.3 717 1000

18 170.6 737.8 1000 1000

20 535.1 653.6 839.2 1000

23 344.1 525.6 686.4 1000

27 117.1 176.5 575.3 1000

29 561.8 887.5 1000 1000

30 214.3 495.5 527.1 1000

31 827 900.9 1000 1000

32 809.1 885.7 885.7 1000

34 471.2 753.7 863.5 1000

Table 7
Parameters of improvement investments for P18: lh is the
h-th stage cost [ke] of the local improvement project, dh is
the gain on the h-th stage [min/ke] (see Figure 1)

and benefits, and provided heuristic algorithms for solv-
ing the problem suboptimally, that are especially useful
when computation time and/or memory constraints are
imposed.

The strategies described in this paper are not those
that are currently employed by the electrical distribu-
tion company “Enel Distribuzione”. However, the com-
pany is currently considering to apply such strategies for
the allocation plan of next year.
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P9 Jdet [Ke] E[Jstc] [Ke] time [s]

MILP 1829 1534 1.7

Greedy 1807 1363 2.3

SP (Greedy) 1649 1603 72.17

P18 Jdet E[Jstc] time [s]
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elettrica e il gas in materia di qualità dei servizi di
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