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Abstract: This paper addresses the problem of identification of piecewise affine (PWA)
models, which involves the joint estimation of both the parameters of the affine submodels
and the partition of the PWA map from data. According to ideas from set-membership
identification, the key approach is to characterize the model by its maximum allowed
prediction error, which is used as a tuning knob for trading off between prediction
accuracy and model complexity. At initialization, the proposed procedure for PWA iden-
tification exploits a technique for partitioning an infeasible system of linear inequalities
into a (possibly minimum) number of feasible subsystems. This provides both an initial
clustering of the datapoints and a guess of the number of required submodels, which
therefore is not fixed a priori. A refinement procedure is then applied in order to improve
both data classification and parameter estimation. The partition of the PWA map is finally
estimated by considering multicategory classification techniques. Copyright ©2003 IFAC
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1. INTRODUCTION

Black-box identification of nonlinear systems has
been widely addressed in different contexts. A large
number of model classes have been considered and
their properties deeply investigated, see the survey
papers (Sjöberg et al., 1995; Juditsky et al., 1995)
and references therein. In this paper, we deal with
the problem of identifying a piecewise affine (PWA)
model of a discrete-time nonlinear system from input-
output data. Recently, this problem has deserved
more and more attention, given the equivalence of
PWA systems with several classes of hybrid systems
(Bemporad et al., 2000; Heemels et al., 2001). Iden-
tification of PWA models is a challenging problem,
as it involves the simultaneous estimation of both the
parameters of the affine submodels and the partition
of the PWA map. It is crucial to point out that the first

issue is closely related to the problem of classifying
the data, i.e. the problem of correctly assigning each
datapoint to one affine submodel. In (Ferrari-Trecate
et al., 2003) the classification problem is reduced to
an optimal clustering problem, in which the number
of clusters is fixed. Once the datapoints have been
classified, linear regression is used to compute the
final submodels. In (Münz and Krebs, 2002) the au-
thors propose an identification algorithm consisting
of analysis of the knowledge available a priori, data
clustering, and optimization of the cluster shapes. The
user can affect the accuracy of the identification by
modifying the number of clusters. In (Bemporad et
al., 2001) the attention is focused on two subclasses
of PWA models, for which the identification problem
can be formulated as a suitable mixed-integer linear,
or quadratic, programming problem that can be solved
for the global optimum.



The procedure for PWA identification proposed in this
paper does not fix the number of affine submodels
a priori, rather this number is estimated from data,
together with the parameters of the submodels and
the partition of the PWA map. The key approach in
this work is the selection of a bound on the predic-
tion error, which induces a set of linear inequality
constraints on the parameters of the PWA model to
be estimated. Unless a single affine model fits all the
data within the chosen bound, the whole set of con-
straints is, in general, infeasible. Hence, in Section 3 a
suitable strategy is suggested for picking a number of
submodels which is consistent with the available data
and the bounded-error condition. In particular, a par-
tition of the above system of linear inequalities into a
minimum number of feasible subsystems (Amaldi and
Mattavelli, 2002) is sought. Given any solution of this
problem, the partition of the inequalities provides the
initial classification of the datapoints, whereas a set of
feasible parameter vectors for the corresponding affine
submodel is associated to each feasible subsystem ac-
cording to the bounded-error condition. In Section 4
a refinement procedure alternating between datapoint
reassignment and parameter update is proposed in or-
der to improve both data classification and parameter
estimation, and to possibly reduce the number of sub-
models. Notice that the final number of submodels and
the corresponding parameter vectors will depend on
the selected bound on the prediction error, so that this
allows one to trade off between the complexity and the
accuracy of the model. The estimation of the partition
of the PWA map is addressed in Section 5. The final
clusters of regression vectors are separated via clas-
sification methods such as Linear (Vapnik, 1998) or
Multicategory (Bredensteiner and Bennett, 1999) Sup-
port Vector Machines. The identified PWA model as-
sociates to each submodel a set of feasible parameters,
thus allowing for evaluation of the parametric uncer-
tainty associated with it (Milanese and Vicino, 1991) .

2. PROBLEM STATEMENT

Consider the discrete-time nonlinear dynamic system

yk = F(uk−1,yk−1)+ ek , (1)

where F is a (possibly non-smooth) nonlinear func-
tion, uk−1 and yk−1 are, respectively, past system in-
puts and outputs up to time k− 1, and ek is additive
noise. Assuming that a finite collection of input-output
samples (uk,yk) is given, the aim is to estimate a
PieceWise Affine (PWA) model ŷk = f (xk) of sys-
tem (1), where f is the PWA map
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xk ∈ R
n is a suitable regression vector depending on

uk−1 and yk−1, θi ∈ R
n+1, i = 1, . . . ,s, are parameter

vectors, and {Xi}
s
i=1 is a partition of the regressor

set X ⊆ R
n, i.e. the region of validity of the PWA

model 1 . Each region Xi is assumed to be a convex
polyhedron, represented in the form
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where Hi ∈ R
qi×(n+1), i = 1, . . . ,s. In this paper, the

focus is on PWARX (PieceWise affine AutoRegres-
sive eXogenous) models, for which xk is the standard
regression vector, i.e.

xk = [yk−1 . . .yk−na uk−1 . . .uk−nb ]
′ .

In this case, n = na + nb, and the parameter vectors
θi contain the coefficients of the ARX submodels.
For a more compact notation, hereafter the extended
regression vector ϕk = [x′k 1]′ will be considered. The
key approach in this paper consists in selecting a
bound on the prediction error,

|yk − f (xk)| ≤ δ , (3)

for a fixed δ > 0. Accordingly, the considered identi-
fication problem can be stated as follows.

Problem 1. Given N datapoints (yk,xk), k = 1, . . . ,N,
and δ > 0, estimate a minimum positive integer s,
a partition {Xi}

s
i=1, and parameter vectors {θi}

s
i=1,

such that the corresponding PWA model (2) of system
(1) satisfies condition (3).

From the above formulation, it is clear that one seeks
the “simplest” PWA model that is consistent with the
data and condition (3), where, for a given δ , “sim-
plicity" is measured in terms of the number of affine
submodels. Notice that the bound δ is not necessarily
given a priori, it is rather a tuning knob of the proce-
dure. A reliable choice can often be made a posteriori
by performing a series of trials for different values of
δ , and then selecting a value that provides a suitable
trade-off between model complexity (in terms of num-
ber of submodels) and quality of fit (in terms of mean
square error).
The proposed procedure for solving Problem 1 con-
sists of the following steps: Initialization, exploiting a
greedy strategy for partitioning a (possibly infeasible)
system of linear inequalities into a minimum number
of feasible subsystems; Refinement of the estimates,
alternating between datapoint reassignment and pa-
rameter update; Estimation of the regions, exploiting
multicategory classification techniques.

3. INITIALIZATION

In the first part of the proposed identification pro-
cedure, the problem of estimating the hyperplanes
defining the polyhedral partition of the regressor set
is provisionally not addressed. The focus is only on
classifying the datapoints according to the fact that

1 ⋃s
i=1 Xi = X and Xi

⋂

X j = /0 if i 6= j



they are fitted by the same affine submodel. In this
phase, it is reasonable to look for the minimum num-
ber of submodels (namely s) fitting all (or most of,
due to possible outliers) the datapoints. By requiring
condition (3), the initial classification problem can be
stated as follows.

Problem 2. Given δ > 0 and the system of N comple-
mentary inequalities

∣

∣yk −ϕ ′
kθ

∣

∣≤ δ , k = 1, . . . ,N, (4)

find a partition of this system into a minimum number
s of feasible subsystems.

The above formulation enables to address simulta-
neously the two fundamental issues of data classifi-
cation and parameter estimation. Given any solution
of Problem 2, the partition of the complementary in-
equalities provides the classification of the datapoints,
whereas each feasible subsystem defines the set of
feasible parameter vectors for the corresponding affine
submodel, according to the bounded-error condition.
This naturally leads to a set-membership or bounded-
error approach to the identification problem, see, e.g.,
(Milanese and Vicino, 1991; Milanese et al., 1996).
Since each complementary inequality in system (4)
corresponds to the pair of linear inequalities

{

ϕ ′
kθ ≤ yk +δ

ϕ ′
kθ ≥ yk−δ ,

(5)

Problem 2 turns out to be an extension of the com-
binatorial problem of finding a Partition of an infea-
sible system of linear inequalities into a MINimum
number of Feasible Subsystems (MIN PFS problem),
with the additional constraint that two paired linear
inequalities (5) must be included in the same subsys-
tem (i.e. they must be simultaneously satisfied by the
same parameter vector θ ). The MIN PFS problem is
NP-hard. On the other hand, in order to initialize the
identification procedure, one is interested in finding
approximate solutions of Problem 2 rapidly. To this
aim, the greedy approach proposed in (Amaldi and
Mattavelli, 2002), which efficiently provides good ap-
proximate solutions, is used in this paper. This ap-
proach divides the overall partition problem into a
sequence of subproblems, each subproblem consist-
ing in finding one parameter vector θ that satisfies
the maximum number of complementary inequalities.
Starting from system (4), maximum feasible subsys-
tems are iteratively extracted (and the corresponding
inequalities removed), until the remaining subsystem
is feasible. The problem of finding one θ that satisfies
as many pairs of complementary inequalities (4) as
possible, extends the combinatorial problem of finding
a MAXimum Feasible Subsystem of an infeasible sys-
tem of linear inequalities (MAX FS problem). Based
on the consideration that also MAX FS is NP-hard, the
approach proposed in (Amaldi and Mattavelli, 2002)
tackles the above extension of MAX FS using a ran-
domized and thermal variant of the classical Agmon-

PSfrag replacements

θ ( j)

θ ( j+1) = θ ( j)−λ jϕk

ϕ ′
kθ = yk −δ ϕ ′

kθ = yk +δ
θ1

θ2

Fig. 1. Geometric interpretation in the parameter space
of a single iteration of the relaxation method for
the extended MAX FS (case θ ∈ R

2)

Motzkin-Schoenberg relaxation method for solving
systems of linear inequalities. The proposed method
consists in a simple iterative procedure that generates
a sequence of estimates. Starting with an arbitrary
initial guess θ (1) ∈ R

n+1 (e.g., randomly selected,
or computed by least squares), at each iteration one
complementary inequality is selected from the system
at hand according to a prescribed rule (e.g., cyclicly,
or uniformly at random without replacement), while
all the others are relaxed. Assume that at iteration j
the complementary inequality

∣

∣yk −ϕ ′
kθ

∣

∣ ≤ δ is con-
sidered. Then the current estimate θ ( j) is updated as
follows:

if ϕ ′
kθ ( j) > yk +δ
then θ ( j+1) = θ ( j)−λ jϕk

else if ϕ ′
kθ ( j) < yk −δ

then θ ( j+1) = θ ( j) +λ jϕk

else θ ( j+1) = θ ( j)

with λ j > 0. Geometrically, the complementary in-
equality

∣

∣yk −ϕ ′
kθ

∣

∣ ≤ δ defines a hyperstrip in the
parameter space (see Figure 1). If the current estimate
θ ( j) belongs to the hyperstrip, then it is unchanged.
Otherwise, θ ( j+1) is obtained by making a step along
the line drawn from θ ( j) in the direction orthogonal to
the hyperstrip. The size of the step λ j decreases expo-
nentially with the violation of the considered comple-
mentary inequality, which is computed as follows:

vk
j =















ϕ ′
kθ ( j)− yk−δ if ϕ ′

kθ ( j) > yk +δ

yk −ϕ ′
kθ ( j)−δ if ϕ ′

kθ ( j) < yk−δ

0 otherwise .

The basic idea is indeed to favor updates of the cur-
rent estimate θ ( j), which aim at correcting unsat-
isfied inequalities with a relatively small violation.
Decreasing attention to unsatisfied inequalities with
large violations (whose correction is likely to corrupt
other inequalities that the current estimate satisfies)
is obtained by introducing a decreasing temperature
parameter T , which the violations are compared to.



The algorithm is stopped after a predefined maximum
number of cycles C through all the inequalities at
hand. The solution returned is the estimate that, dur-
ing the process, has satisfied the largest number of
complementary inequalities. Nevertheless, this is not
guaranteed to be optimal, due to the randomness of
the method. For the choice of the maximum number
of cycles C and the initial temperature parameter T0,
as well as for more details concerning the implementa-
tion of the algorithm, the reader is defered to (Amaldi
and Mattavelli, 2002).

3.1 Comments about the initialization

Denote by ŝ the number of feasible subsystems of
system (4) provided by the application of the greedy
algorithm for the extended MIN PFS described in Sec-
tion 3. Due to the suboptimality of the greedy strategy
for MIN PFS, and the randomness of the method used
to tackle the MAX FS, the estimate of the number
of affine submodels needed to fit the data and the
classification of the datapoints thus obtained, suffer
two drawbacks. First, this strategy is not guaranteed
to yield minimum partitions, i.e. the number of sub-
models ŝ could be larger than the minimum number
s. Indeed, due to the randomness of the method used
to tackle the MAX FS, two subsets of complementary
inequalities that could be satisfied by one and the same
parameter vector, may be extracted at two different
steps. Second, since some datapoints might be consis-
tent with more than one submodel, the cardinality and
the composition of the clusters could depend on the
order in which the feasible subsystems are extracted.
In order to cope with these drawbacks, a procedure for
the refinement of the estimates will be proposed in the
next section. As it will be shown, such a procedure
improves both the data classification and the quality
of fit by properly reassigning the datapoints, and se-
lecting pointwise estimates of the parameter vectors
that characterize each submodel. Notice that one could
decide to stop the algorithm when the cardinalities of
the extracted clusters become too small. This might be
useful in order to penalize submodels that account for
just a few datapoints (most likely outliers).

4. REFINEMENT OF THE ESTIMATES

The initialization of the identification procedure, de-

scribed in Section 3, provides the clusters D
(0)
i , which

consist of all the datapoints (yk,xk) corresponding to
the i-th extracted feasible subsystem of system (4), i =
1, . . . , ŝ. Moreover, each feasible subsystem defines the
set of feasible parameter vectors for the corresponding
affine submodel. As discussed in Section 3.1, a proce-
dure for the refinement of the estimates is necessary in
order to improve both data classification and quality
of fit, as well as to possibly reduce the number of sub-
models. The proposed basic procedure consists of two
steps to be iterated. In the first step, using the current

estimated parameter vectors, datapoints are grouped
together in the same cluster only if they can be fitted
by the same affine submodel. In the second step, new
pointwise parameter estimates are computed for each
submodel. The projection estimate is used, defined as:

Φp(D) = argmin
θ

max
(yk,xk)∈D

∣

∣yk−ϕ ′
kθ

∣

∣ , (6)

where D is a cluster of datapoints (yk,xk). Notice
that the computation of the projection estimate can
be formulated as a suitable linear programming (LP)
problem. The basic refinement procedure can be for-
malized as follows.

(0) Initialization
Set t = 1 and select a termination threshold γ ≥ 0

For i = 1, . . . , ŝ, set θ̂ (1)
i = Φp(D

(0)
i )

(1) Datapoint reassignment
For each datapoint (yk,xk), k = 1, . . . ,N:

• If
∣

∣yk−ϕ ′
kθ̂ (t)

i

∣

∣≤ δ for only one i = 1, . . . , ŝ,

then assign (yk,xk) to D
(t)
i

• If
∣

∣yk −ϕ ′
kθ̂ (t)

i

∣

∣ > δ for all i = 1, . . . , ŝ, then
mark (yk,xk) as infeasible

• Otherwise, mark (yk,xk) as undecidable
(2) Parameter update

For i = 1, . . . , ŝ, compute θ̂ (t+1)
i = Φp(D

(t)
i )

(3) Termination

If
∥

∥θ̂ (t+1)
i − θ̂ (t)

i

∥

∥/
∥

∥θ̂ (t)
i

∥

∥≤ γ for all i = 1, . . . , ŝ,
then exit; Otherwise, set t = t +1 and go to step 1

In order to avoid that the procedure does not termi-
nate, a maximum number tmax of refinements can be
predefined. The underlying idea is that, as the new

parameter estimates θ̂ (t+1)
i are computed based on the

clusters D
(t)
i , some infeasible, as well as undecidable,

datapoint may become feasible, i.e. it may be assigned

to one cluster D
(t+1)
i , thus improving the quality of

the classification. Notice that the use of the projection
estimate in step 2 guarantees that no feasible datapoint
at refinement t becomes infeasible at refinement t +1,
since

max
(yk,xk)∈D

(t)
i

∣

∣yk −ϕ ′
kθ̂ (t+1)

i

∣

∣≤ max
(yk,xk)∈D

(t)
i

∣

∣yk −ϕ ′
kθ̂ (t)

i

∣

∣ ,

and the right-hand side of the above inequality is
less than or equal to δ . Motivations for the distinc-
tion among infeasible, undecidable, and feasible data-
points are twofold. Infeasible datapoints are not con-
sistent with any submodel, and may be outliers (espe-
cially if the corresponding violation is large). Hence,
it is reasonable to expect that neglecting them in the
parameter update helps to improve the quality of fit.
The undecidable datapoints are instead consistent with
more than one submodel. Neglecting them helps to
reduce the number of misclassifications. As it will be
clarified in the next section, this will favorite a better
estimation of the PWA partition.
When the greedy algorithm provides an overestima-
tion of the number of submodels needed to fit the data
(see the discussion in Section 3.1), further steps are



required in order to possibly reduce the complexity
of the model. To this aim, the similarity of the pa-
rameter vectors and the cardinality of the clusters can
be exploited. Indeed, if two subsets of complemen-
tary inequalities can be satisfied by one and the same
parameter vector, it is likely that the corresponding
parameter estimates are very similar, so that they can
be merged into one subset. Notice that, in this case, a
large number of undecidable datapoints should show
up. On the other hand, if during the refinement of the
estimates the cardinality of one cluster becomes too
small with respect to N, the corresponding submodel
can be discarded, since it accounts only for few dat-
apoints (most likely outliers). Additional steps to the
basic refinement procedure are thus the following (α
and β are fixed nonnegative thresholds).

• Similarity of the parameter vectors
If αi∗, j∗ , min

1≤i< j≤ŝ
µ(θ̂ (t)

i , θ̂ (t)
j ) ≤ α , then merge

the submodels i∗ and j∗, and set ŝ = ŝ−1
• Cardinality of the clusters

If βi∗ = min
1≤i≤ŝ

card(D
(t)
i )/N ≤ β , then discard the

i∗-th submodel, set ŝ = ŝ− 1, and reassign only
the undecidable datapoints as in step 1

The similarity of the parameter vectors is tested before

step 1. Here µ(θ̂ (t)
i , θ̂ (t)

j ) is a suitable measure of the

distance between θ̂ (t)
i and θ̂ (t)

j , e.g.,

µ(θ̂ (t)
i , θ̂ (t)

j ) ,
∥

∥θ̂ (t)
i − θ̂ (t)

j

∥

∥/min
{∥

∥θ̂ (t)
i

∥

∥,
∥

∥θ̂ (t)
j

∥

∥

}

.

Two submodels i∗ and j∗ can be merged by computing

the new parameter vector as Φp(D
(t−1)
i∗

⋃

D
(t−1)
j∗ ). The

cardinality of the clusters is instead tested after step 1.
The thresholds α and β should be suitably chosen
in order to possibly reduce the number of submodels
still preserving a good fit of the data. Indeed, it is
clear that, if such thresholds are too large, the number
of submodels might decrease under s. In this case,
the number of infeasible datapoints considerably in-
creases, since some significant dynamics is no more
in the model. One could use this information in order
to adjust α and β , and then repeat the refinement.
Current research is aimed at deriving rules for the
automatic selection and update of α and β , in order
to completely automatize the procedure.

5. ESTIMATION OF THE REGIONS

The final step of the identification procedure con-
sists in estimating the partition of the regressor set.
This step can be performed by considering pairwise
the clusters Fi =

{

xk|(yk,xk) ∈ Di
}

(where Di, i =
1, . . . , ŝ, is the final classification of the feasible dat-
apoints provided by the refinement procedure), and
by computing a separating hyperplane for each of
such pairs. If two clusters Fi and F j are not linearly
separable, it is reasonable to look for a generalized
separating hyperplane of the two, i.e. a hyperplane

−4 −2 0 2 4 6 8

−5

0
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y
k−1
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1

Fig. 2. Final classification of the regression vectors,
and partition of the PWA map

that maximizes the number of well-separated points.
This amounts to find a solution (a,b), with a∈R

n and
b ∈ R, of the MAX FS problem of system

{

x′ka+b≤−1 ∀xk ∈Fi

x′ka+b≥ 1 ∀xk ∈F j .

Support Vector Machines (Vapnik, 1998) with a lin-
ear kernel are a suitable tool to accomplish this task.
Notice that, when the number of misclassified points
is large, it likely means that at least one of the two
clusters corresponds either to a nonconvex region
(which then needs to be split into convex polyhe-
dra), or to nonconnected regions where the submodel
is the same (recall that the classification procedure
groups together all the datapoints fitted by the same
affine submodel). Efficient techniques for detecting
and splitting the clusters corresponding to such sit-
uations, are currently under investigation. Each re-
gion X̂i, i = 1, . . . , ŝ, is finally defined by all the
hyperplanes separating Fi from F j, with j 6= i. Al-
though computationally appealing, this method has
the major drawback of not guaranteeing that the es-
timated regions form a complete partition of the re-
gressor set. In order to avoid “holes”in the partition,
all clusters can be simultaneously involved in a com-
putationally more demanding multicategory classifi-
cation problem, for whose solution both linear and
quadratic programming based methods have been pro-
posed (Bredensteiner and Bennett, 1999). Once the
partition of the regressor set has been estimated, the
undecidable datapoints can be finally classified, and
final parameter estimates for each submodel can be
computed using (6).

6. NUMERICAL EXAMPLE

The PWA identification algorithm has been applied to
fit the data generated by the nonlinear system

yk =
√

|yk−1|−uk−1 + ek . (7)

The input signal uk was drawn from a uniform distri-
bution on [−5,5], and the noise signal ek was drawn
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Fig. 3. Plot of the prediction error

from a zero-mean normal distribution with variance
σ2 = 0.025. N = 1000 and Nv = 500 datapoints were
used for estimation and validation, respectively. The
noise-to-signal ratio (computed as the ratio between
the standard deviations of the noise and the output)
was about 5%. The algorithm was run with δ equal
to 0.2 (approximately, 1.26σ ), and provided s = 4
submodels. The final classification of the regression
vectors xk = [yk−1 uk−1]

′ used for estimation, and the
partition of the PWA map are shown in Figure 2. The
model was validated by computing the prediction error
εk, i.e. the difference between the measured and the
predicted output, whose plot is depicted in Figure 3. It
is noticeable that only 3 times out of 500 it falls out-
side the interval [−3σ ,3σ ]. The Mean Square Error

MSE =
1

Nv

Nv

∑
k=1

ε2
k

was equal to 0.030, which is very close to the vari-
ance of the noise. Recall that the prediction error is
influenced by both the noise and the model error. The
overall computation of the PWA model took about
9 seconds on a 1GHz Pentium III running Matlab 6.1.

7. CONCLUSIONS

This paper has addressed the problem of identifying a
PWA model of a discrete-time nonlinear system from
input-output data. The proposed two-stage procedure
first classifies the data into clusters and estimates the
parameters of the affine submodels, and then estimates
the coefficients of the hyperplanes defining the parti-
tion of the PWA map. The key approach is the selec-
tion of a bound on the prediction error. This makes it
possible to formulate the initial classification problem
as an extension of the MIN PFS problem for infeasible
systems of linear inequalities. The major capability
of this formulation is that it also provides an esti-
mate of the minimum number of submodels needed
to fit the data. Other approaches could be used to
initialize the identification procedure, e.g., the k-plane
clustering algorithm proposed in (Bradley and Man-
gasarian, 2000). A procedure for improving both data

classification and parameter estimation was also pro-
posed. It alternates between datapoint reassignment
and parameter update. Moreover, the number of sub-
models is allowed to vary from iteration to iteration.
The partition of the PWA map is finally estimated via
multicategory classification techniques. Future studies
will concern the convergence properties of the refine-
ment procedure and the evaluation of the quality of the
identified PWA models.
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