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Abstract. This paper gives an overview of robustness in Model Predictive Control
(MPC). After reviewing the basic concepts of MPC, we survey the uncertainty
descriptions considered in the MPC literature, and the techniques proposed for
robust constraint handling, stability, and performance. The key concept of “closed-
loop prediction” is discussed at length. The paper concludes with some comments
on future research directions.

1 Introduction

Model Predictive Control (MPC), also referred to as Receding Horizon Con-
trol and Moving Horizon Optimal Control, has been widely adopted in in-
dustry as an effective means to deal with multivariable constrained control
problems (Lee and Cooley 1997, Qin and Badgewell 1997). The ideas of
receding horizon control and model predictive control can be traced back to
the 1960s (Garcia et al. 1989), but interest in this field started to surge only
in the 1980s after publication of the first papers on IDCOM (Richalet et
al. 1978) and Dynamic Matrix Control (DMC) (Cutler and Ramaker 1979,
Cutler and Ramaker 1980), and the first comprehensive exposition of Gen-
eralized Predictive Control (GPC) (Clarke et al. 1987a, Clarke et al. 1987b).
Although at first sight the ideas underlying the DMC and GPC are simi-
lar, DMC was conceived for multivariable constrained control, while GPC
is primarily suited for single variable, and possibly adaptive control.

The conceptual structure of MPC is depicted in Fig. 1. The name MPC
stems from the idea of employing an explicit model of the plant to be con-
trolled which is used to predict the future output behavior. This prediction
capability allows solving optimal control problems on line, where tracking
error, namely the difference between the predicted output and the desired
reference, is minimized over a future horizon, possibly subject to constraints
on the manipulated inputs and outputs. When the model is linear, then the
optimization problem is quadratic if the performance index is expressed
through the `2-norm, or linear if expressed through the `1/`∞-norm. The



y(t)u(t)

Plant
Optimizer

Reference

r(t)

OutputInput

Measurements

Fig. 1. Basic structure of Model Predictive Control

result of the optimization is applied according to a receding horizon philos-
ophy: At time t only the first input of the optimal command sequence is
actually applied to the plant. The remaining optimal inputs are discarded,
and a new optimal control problem is solved at time t + 1. This idea is
illustrated in Fig. 2. As new measurements are collected from the plant at
each time t, the receding horizon mechanism provides the controller with
the desired feedback characteristics.

The issues of feasibility of the on-line optimization, stability and perfor-
mance are largely understood for systems described by linear models, as tes-
tified by several books (Bitmead et al. 1990, Soeterboek 1992, Mart́ın Sánchez
and Rodellar 1996, Clarke 1994, Berber 1995, Camacho and Bordons 1995)
and hundreds of papers (Kwon 1994)1. Much progress has been made on
these issues for nonlinear systems (Mayne 1997), but for practical appli-
cations many questions remain, including the reliability and efficiency of
the on-line computation scheme. Recently, application of MPC to hybrid
systems integrating dynamic equations, switching, discrete variables, logic
conditions, heuristic descriptions, and constraint prioritizations have been
addressed by Bemporad and Morari (1999). They expanded the problem for-
mulation to include integer variables, yielding a Mixed-Integer Quadratic or
Linear Program for which efficient solution techniques are becoming avail-
able.

A fundamental question about MPC is its robustness to model uncer-
tainty and noise. When we say that a control system is robust we mean that
stability is maintained and that the performance specifications are met for a
specified range of model variations and a class of noise signals (uncertainty
range). To be meaningful, any statement about “robustness” of a particu-
lar control algorithm must make reference to a specific uncertainty range

1 Morari (1994) reports that a simple database search for “predictive control”
generated 128 references for the years 1991-1993. A similar search for the years
1991-1998 generated 2802 references.



Fig. 2. Receding horizon strategy: only the first one of the computed moves u(t)
is implemented

as well as specific stability and performance criteria. Although a rich the-
ory has been developed for the robust control of linear systems, very little is
known about the robust control of linear systems with constraints. Recently,
this type of problem has been addressed in the context of MPC. This paper
will give an overview of these attempts to endow MPC with some robustness
guarantees. The discussion is limited to linear time invariant (LTI) systems
with constraints. While the use of MPC has also been proposed for LTI
systems without constraints, MPC does not have any practical advantage
in this case. Many other methods are available which are at least equally
suitable.

2 MPC Formulation

In the research literature MPC is formulated almost always in the state
space. Let the model Σ of the plant to be controlled be described by the
linear discrete-time difference equations

Σ :

{
x(t+ 1) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t)
(1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp denote the state, control input, and
output respectively. Let x(t + k, x(t), Σ) or, in short, x(t + k|t) denote the
prediction obtained by iterating model (1) k times from the current state
x(t).



A receding horizon implementation is typically based on the solution of
the following open-loop optimization problem:

min
U , {u(t+ k|t)}t+Nm−1

k=t

J(U, x(t), Np, Nm) = xT (Np)P0x(Np)

+

Np−1∑
k=0

x′(t+ k|t)Qx(t+ k|t) +

Nm−1∑
k=0

u′(t+ k|t)Ru(t+ k|t)

(2a)

subject to
F1u(t+ k|t) ≤ G1

E2x(t+ k|t)+ F2u(t+ k|t) ≤ G2
(2b)

and
“stability constraints” (2c)

where, as shown in Fig. 2, Np denotes the length of the prediction hori-
zon or output horizon, and Nm denotes the length of the control horizon
or input horizon (Nm ≤ Np). When Np = ∞, we refer to this as the in-
finite horizon problem, and similarly, when Np is finite, as a finite horizon
problem. For the problem to be meaningful we assume that the polyhedron
{(x, u) : F1u ≤ G1, E2x + F2u ≤ G2} contains the origin (x = 0, u = 0).
The constraints (2c) are inserted in the optimization problem in order to
guarantee closed-loop stability, and will be discussed in the sequel.

The basic MPC law is described by the following algorithm:

Algorithm 1:

1. Get the new state x(t)
2. Solve the optimization problem (2)
3. Apply only u(t) = u(t+ 0|t)
4. t← t+ 1. Go to 1.

2.1 Some Important Issues

Feasibility Feasibility of the optimization problem (2) at each time t must
be ensured. Typically one assumes feasibility at time t = 0 and chooses the
cost function (2a) and the stability constraints (2c) such that feasibility is
preserved at the following time steps. This can be done, for instance, by
ensuring that the shifted optimal sequence {u(t+ 1|t), . . . , u(t+Np|t), 0} is
feasible at time t + 1. Also, typically the constraints in (2b) which involve



state components are treated as soft constraints, for instance by adding the
slack variable ε

E2x+ F2u ≤ G2 + ε

[
1
...
1

]
, (3)

while pure input constraints F1u ≤ G1 are maintained as hard. Relaxing the
state constraints removes the feasibility problem at least for stable systems.
Keeping the state constraints tight does not make sense from a practical
point of view because of the presence of noise, disturbances, and numerical
errors. As the inputs are generated by the optimization procedure, the input
constraints can always be regarded as hard.

Stability In the MPC formulation (2) we have not specified the stability
constraints (2c). Below we review some of the popular techniques used in
the literature to “enforce” stability. They can be divided into two main
classes. The first uses the value V (t) = J(U∗, x(t), Np, Nm) attained for the

minimizer U∗ , {u∗(t + 1|t), . . . , u∗(t + Nm|t)} of (2) at each time t as
a Lyapunov function. The second explicitly requires that the state x(t) is
shrinking in some norm.

• End (Terminal) Constraint (Kwon and Pearson 1977, Kwon and Pearson
1978). The stability constraint (2c) is

x(t+Np|t) = 0 (4)

This renders the sequence U1 , {u∗(t + 1|t), . . . , u∗(t + Nm|t), 0} fea-
sible at time t+ 1, and therefore V (t+ 1) ≤ J(U1, x(t+ 1), Np, Nm) ≤
J(U∗, x(t), Np, Nm) = V (t) is a Lyapunov function of the system (Keerthi
and Gilbert 1988, Bemporad et al. 1994).
The main drawback of using terminal constraints is that the control
effort required to steer the state to the origin can be large, especially
for short Np, and therefore feasibility is more critical because of (2b).
The domain of attraction of the closed-loop (MPC+plant) is limited to
the set of initial states x0 that can be steered to 0 in Np steps while
satisfying (2b), which can be considerably smaller then the set of initial
states steerable to the origin in an arbitrary number of steps. Also, per-
formance can be negatively affected because of the artificial terminal
constraint. A variation of the terminal constraint idea has been pro-
posed where only the unstable modes are forced to zero at the end of
the horizon (Rawlings and Muske 1993). This mitigates some of the
mentioned problems.
• Infinite Output Prediction Horizon (Keerthi and Gilbert 1988, Rawlings

and Muske 1993, Zheng and Morari 1995). For asymptotically stable
systems, no stability constraint is required if Np = +∞. The proof is
again based on a similar Lyapunov argument.



• Terminal Weighting Matrix (Kwon et al. 1983, Kwon and Byun 1989).
By choosing the terminal weighting matrix P0 in (2a) as the solution of
a Riccati inequality, stability can be guaranteed without the addition of
stability constraints.
• Invariant terminal set (Scokaert and Rawlings 1996). The idea is to

relax the terminal constraint (4) into the set-membership constraint

x(t+Np|t) ∈ Ω (5)

and set u(t + k|t) = FLQx(t + k|t), ∀k ≥ Nm, where FLQ is the LQ
feedback gain. The set Ω is invariant under LQ regulation and such that
the constraints are fulfilled inside Ω. Again, stability can be proved via
Lyapunov arguments.
• Contraction Constraint (Polak and Yang 1993a, Zheng 1995). Rather

then relying on the optimal cost V (t) as a Lyapunov function, the idea
is to require explicitly that the state x(t) is decreasing in some norm

‖x(t+ 1|t)‖ ≤ α‖x(t)‖, α < 1 (6)

Following this idea, Bemporad (1998a) proposed a technique where sta-
bility is guaranteed by synthesizing a quadratic Lyapunov function for
the system, and by requiring that the terminal state lies within a level
set of the Lyapunov function, similar to (5).

Computation The complexity of the solver for the optimization prob-
lem (2) depends on the choice of the performance index and the stabil-
ity constraint (2c). When Np = +∞, or the stability constraint has the
form (4), or the form (5) and Ω is a polytope, the optimization problem (2)
is a Quadratic Program (QP). Alternatively, one obtains a Linear Program
(LP) by formulating the performance index (2a) in ‖ · ‖1 or ‖ · ‖∞ (Campo
and Morari 1989). The constraint (6) is convex, and is quadratic or linear de-
pending if ‖·‖2 or ‖·‖1/‖·‖∞ is chosen. When ‖·‖2 is used, second-order cone
programming algorithms (Lobo et al. 1997) can be adopted conveniently.

3 Robust MPC — Problem Definition

The basic MPC algorithm described in the previous section assumes that
the plant Σ0 to be controlled and the model Σ used for prediction and
optimization are the same, and no unmeasured disturbance is acting on the
system. In order to talk about robustness issues, we have to relax these
hypotheses and assume that (i) the true plant Σ0 ∈ S, where S is a given
family of LTI systems, and/or (ii) an unmeasured noise w(k) enters the
system, namely

Σ :

{
x(t+ 1) = Ax(t) +Bu(t) +Hw(t), x(0) = x0,

y(t) = Cx(t) +Kw(t)
(7)



where w(t) ∈ W and W is a given set (usually a polytope).
We will refer to robust stability, robust constraint fulfillment, and robust

performance of the MPC law if the respective property is guaranteed for all
possible Σ0 ∈ S, w(t) ∈ W .

As part of the modelling effort it is necessary to arrive at an appropriate
description of the uncertainty, i.e. the sets S andW . This is difficult because
there is very little experience and no systematic procedures are available.
On one hand, the uncertainty description should be “tight”, i.e. it should
not include “extra” plants which do not exist in the real situation. On the
other hand, there is a trade-off between realism and the resulting compu-
tational complexity of the analysis and controller synthesis. In other words,
the uncertainty description should lead to a simple (non-conservative) anal-
ysis procedure to determine if a particular system with controller is stable
and meets the performance requirements in the presence of the specified
uncertainty. Alternatively, a computationally tractable synthesis procedure
should exist to design a controller which is robustly stable and satisfies the
robust performance specifications.

At present all the proposed uncertainty descriptions and associated anal-
ysis/synthesis procedures do little more than provide different handle to the
engineer to detect and avoid sensitivity problems. They do not address the
trade-off alluded to above, in a systematic manner.

For example, for simplicity some procedures consider only the uncer-
tainty introduced by the set of unmeasured bounded inputs. There is the
implicit assumptions that the other model uncertainty is in some way cov-
ered in this manner. There has been no rigorous analysis, however, to de-
termine the exact relationship between the input setW and the covered set
S — if such a relationship does indeed exist.

In the remaining part of the paper we will describe the different uncer-
tainty descriptions which have been used in robust MPC, comment on the
robustness analysis of standard (no uncertainty description) MPC, and give
an overview of the problems associated with the synthesis of robust MPC
control laws.

4 Uncertainty Descriptions

Different uncertainty sets S, W have been proposed in the literature in
the context of MPC, and are mostly based on time-domain representations.
Frequency-domain descriptions of uncertainty are not suitable for the formu-
lation of robust MPC because MPC is primarily a time-domain technique.

4.1 Impulse/Step-Response

Uncertainties on the impulse-response or step-response coefficients provide
a practical description in many applications, as they can be easily deter-



Fig. 3. Step-response interval ranges (right) arising from an impulse-response
description (left)

mined from experimental tests, and allow a reasonably simple way to com-
pute robust predictions. Uncertainty is described as range intervals over
the coefficients of the impulse- and/or step-response. In the simplest SISO
(single-input single-output) case, this corresponds to set

Σ : y(t) =

N∑
k=0

h(t)u(t− k) (8)

and

S = {Σ : h−t ≤ h(t) ≤ h+
t }, t = 0, . . . , N (9)

where [h−t , h
+
t ] are given intervals. For N <∞, S is a set of FIR models.

A similar type of description can be used for step-response models

y(t) =

N∑
k=0

s(t)[u(t− k)− u(t− k − 1)], s(t) ∈ [s−t , s
+
t ] (10)

Impulse- and step-response descriptions are only equivalent when there
is no uncertainty. If there is uncertainty they behave rather differently
(Bemporad and Mosca 1998). In order to arrive at a tight uncertainty de-
scription both may have to be used simultaneously and further constraints
may have to be imposed on the coefficient variations as we will explain.

Consider Fig. 3, which depicts perturbations expressed only in terms
of the impulse response. The resulting step-response uncertainty is very
large as t → ∞. This may not be a good description of the real situation.
Conversely, as depicted in Fig. 4, uncertainty expressed only in terms of
the step response could lead to nonzero impulse-response samples at large
values of t, for instance because the DC-gain from u to y is uncertain. Hence
any a priori information about asymptotic stability properties would not be
exploited.

Also, the proposed bounds would allow the step response to be highly
oscillatory, though the process may be known to be overdamped. Similar
comments apply to the impulse response. Thus this description may in-
troduce high frequency model uncertainty artificially and may lead to a



Fig. 4. Impulse-response interval ranges (left) arising from a step-response de-
scription (right)

Fig. 5. Structured feedback uncertainty

conservative design. This deficiency can be alleviated by imposing a cor-
relation between neighboring uncertain coefficients as proposed by Zheng
(1995).

Another subtle point is that the uncertain FIR model (8) is usually
unsuitable if the coefficients must be assumed to be time varying in the
analysis or synthesis. In this case, the model would predict output variations
even when the input is constant, which is usually undesirable. Writing the
model in the form

Σ : y(t) = y(t− 1) +

N∑
k=0

h(t)[u(t− k)− u(t− k − 1)] (11)

removes this problem.
In conclusion, simply allowing the step- or impulse-response coefficients

to vary within intervals is rarely a useful description of model uncertainty
unless additional precautions are taken. Nevertheless, compared to other
descriptions, it leads to computationally simpler algorithms when adopted
in robust MPC design, as will be discussed in Sect. 9

4.2 Structured Feedback Uncertainty

A common paradigm for robust control consists of a linear time-invariant
system with uncertainties in the feedback loop, as depicted in Fig. 5 (Kothare
et al. 1996). The operator ∆ is block-diagonal, ∆ = diag{∆1, . . . , ∆r},
where each block ∆i represents either a memoryless time-varying matrix



with ‖∆i(t)‖2 = σ(∆i(t)) ≤ 1, ∀i = 1, . . . , r, t ≥ 0; or a convolution op-
erator (e.g. a stable LTI system) with the operator norm induced by the
truncated `2-norm less than 1, namely

∑t
j=0 p

′(j)p(j) ≤
∑t
j=0 q

′(j)q(j),
∀t ≥ 0. When ∆i are stable LTI systems, this corresponds to the frequency
domain specification on the z-transform ∆̂i(z) ‖∆̂(z)‖H∞ < 1.

4.3 Multi-Plant

We refer to a multi-plant description when model uncertainty is parameter-
ized by a finite list of possible plants (Badgwell 1997)

Σ ∈ {Σ1, . . . , Σn} (12)

When we allow the real system to vary within the convex hull defined by
the list of possible plants we obtain the so called polytopic uncertainty.

4.4 Polytopic Uncertainty

The set of models S is described as

x(t+ 1) = A(t)x(t) +B(t)u(t)
y(t) = Cx(t)

[A(t) B(t)] ∈ Ω

and Ω = Co{[A1 B1], . . . , [AM BM ]}, the convex hull of the “extreme”
models [Ai Bi] is a polytope. As remarked by Kothare et al. (1996), poly-
topic uncertainty is a conservative approach to model a nonlinear system
x(t+ 1) = f(x(k), u(k), k) when the Jacobian [∂f

∂x
∂f
∂u

] is known to lie in the
polytope Ω.

4.5 Bounded Input Disturbances

The uncertainty is limited to the unknown disturbance w ∈ W in (7), the
plant Σ0 is assumed to be known (S = {Σ0}). Also, one assumes that
bounds on the disturbance are known, i.e. W is a given set. Although the
assumption of knowing model Σ0 might seem restrictive, the description of
uncertainty by additive terms w(t) that are known to be bounded in some
norm is a reasonable choice, as shown in the recent literature on robust
control and identification (Milanese and Vicino 1993, Mäkilä et al. 1995).

5 Robustness Analysis

We distinguish robustness analysis, i.e. analysis of the robustness proper-
ties of standard MPC designed for a nominal model without taking into



account uncertainty, and synthesis of MPC algorithms which are robust by
construction.

The robustness analysis of MPC control loops is more difficult than the
synthesis, where the controller is designed in such a way that it is robustly
stabilizing. This is not unlike the situation in the nominal case where the
stability analysis of a closed loop MIMO system with multiple constraints
is essentially impossible. On the other hand, the MPC technology leads
naturally to a controller such that the closed loop system is guaranteed to
be stable. There is a need for analysis tools, however, because standard MPC
algorithms typically require less on-line computations, which is desirable for
implementation.

Indeed, there are very few analysis methods discussed in the literature.
By using a contraction mapping theorem, Zafiriou (1990) derives a set of
sufficient conditions for nominal and robust stability of MPC. Because the
conditions are difficult to check he also states some necessary conditions for
these sufficient conditions.

Genceli and Nikolaou (1993) give sufficient conditions for robust closed-
loop stability and investigate robust performance of dynamic matrix control
(DMC) systems with hard input/soft output constraints. The authors con-
sider an `1-norm performance index, a terminal state condition as a stability
constraint, an impulse-response model with bounds on the variations of the
coefficients. They derive a robustness test in terms of simple inequalities to
be satisfied. This simplicity is largely lost in the extension to the MIMO
case.

Primbs and Nevist́ıc (1998) provide an off-line robustness analysis test
of constrained finite receding horizon control which requires the solution of
a set of linear matrix inequalities (LMIs). The test is based on the so called
S-procedure and provides a (conservative) sufficient condition for V (t) to
be decreasing for all Σ ∈ S, ∀w(t) ∈ W . Both polytopic and structured
uncertainty descriptions are considered. The authors also extend the idea
to develop a robust synthesis method. It requires the solution of bilinear
matrix inequalities (BMIs) and is computationally demanding.

More recently, Primbs (1999) presented a new formulation of the analysis
technique which is less conservative. The idea is to express the (optimal)
input u(t) obtained by the MPC law through the Lagrangian multipliers
λ associated with the optimization problem (2a), and then to write the
S-procedure in the [x, u, λ]-space.

6 Robust MPC Synthesis

In light of the discussion in Section 2.1, one has the following alternatives
when synthesizing robust MPC laws:

1. Optimize performance of the nominal model or robust performance ?
2. Enforce state constraints on the nominal model or robustly ?



3. Adopt an open-loop or a closed-loop prediction scheme ?
4. How to guarantee robust stability ?

In the remaining part of the section we will discuss these questions.

6.1 Nominal vs. Robust Performance

The performance index (2a) depends on one particular model Σ and dis-
turbance realization w(t). In an uncertainty framework, two strategies are
possible: (i) define a nominal model Σ̂ and nominal disturbance ŵ(t) = 0,
and optimize nominal performance; or (ii) solve the min-max problem to
optimize robust performance

min
U

max
Σ ∈ S

{w(k + t)}
Np−1

k=0
⊆ W

J(U, x(t), Σ, w(·)) (13)

Min-max robust MPC was first proposed by Campo and Morari (1987),
and further developed by Allwright and Papavasiliou (1992) and Zheng
and Morari (1993) for SISO FIR plants. Kothare et al. (1996) optimize
robust performance for polytopic/multi-model and structured feedback un-
certainty, Scokaert and Mayne (1998) for input disturbances only, and Lee
and Yu (1997) for linear time-varying and time-invariant state-space models
depending on a vector of parameters θ ∈ Θ, where Θ is either an ellipsoid
or a polyhedron. However it has two possible drawbacks. The first one is
computational: Solving the problem (13) is computationally much more de-
manding than solving (2a) for a nominal model Σ̂, w(t) = 0. However, under
slightly restrict assumptions on the uncertainty, quite efficient algorithms
are possible (Zheng 1995). The second one is that the control action may
be excessively conservative.

6.2 Input and State Constraints

In the presence of uncertainty, the constraints on the states variables (2b)
can be enforced for all plant Σ ∈ S (robust constraint fulfillment) or for a
nominal system Σ̂ only. One also has to distinguish between hard and soft
state constraints, although the latter are preferable for the reasons discussed
in Section 2.1. As command inputs are directly generated by the optimizer,
input constraints do not present any additional difficulty relative to the
nominal MPC case.

For uncertainty described in terms of w(t) ∈ W only, when the setW is a
polyhedron, state constraints can be tackled through the theory of maximal
output admissible sets MOAS developed by (Gilbert and Tan 1991), Gilbert
et al. (1995). The theory provides tools to enforce hard constraints on states
despite the presence of input disturbances, by computing the minimum out-
put prediction horizon Np which guarantees robust constraint fulfillment.



Mayne and Schroeder (1997) and (Scokaert and Mayne 1998) use tools
from MOAS theory to synthesize robust minimum-time control on line. The
technique is based on the computation of the level sets of the value function,
and deals with hard input/state constraints.

Bemporad and Garulli (1997) also consider the effect of the worst in-
put disturbance over the prediction horizon, and enforce constraint ful-
fillment for all possible disturbance realizations (output prediction hori-
zons are again computed through algorithms inspired by MOAS theory).
In addition, the authors consider the case when full state information is
not available. They use the so-called set-membership (SM) state estimation
(Schweppe 1968, Bertsekas and Rhodes 1971), through recursive algorithms
based on parallelotopic approximation of the state uncertainty set (Vicino
and Zappa 1996, Chisci et al. 1996).

When impulse-response descriptions are adopted, output constraints can
be easily related to the uncertainty intervals of the impulse-response coef-
ficients. For embedding input and state constraint into LMIs, the reader is
referred to Kothare et al. (1996).

Robust fulfillment of state constraints can result in a very conservative
behavior. Such an undesirable effect can be mitigated by using closed-loop
prediction (see Sect. 8). Alternatively, when violations of the constraints are
allowed, it can be more convenient to impose constraint satisfaction on the
nominal plant Σ̂ only.

Although unconstrained MPC for uncertain systems has been investi-
gated, we do not review this literature here, because many superior linear
robust control techniques are available.

7 Robust Stability

The minimum closed-loop requirement is robust stability, i.e., stability in
the presence of uncertainty. In MPC the various design procedures achieve
robust stability in two different ways: indirectly by specifying the perfor-
mance objective and uncertainty description in such a way that the optimal
control computations lead to robust stability; or directly by enforcing a type
of robust contraction constraint which guarantees that the state will shrink
for all plants in the uncertainty set.

7.1 Min-max performance optimization

While the generalization (13) of nominal MPC to the robust case appears
natural, it is not without pitfalls. The min-max formulation as proposed
by Campo and Morari (1987) alone does not guarantee robust stability as
was demonstrated by Zheng (1995) through a counterexample. To ensure
robust stability the uncertainty must be assumed to be time varying. This
added conservativeness may be prohibitive for demanding applications.



7.2 Robust contraction constraint

For stable plants, Zheng (1995) introduces the stability constraint

‖x(t+ 1|t)‖P ≤ λ‖x(t)‖P , λ < 1. (14)

which forces the state to contract. When P � 0 is chosen as the solution of
the Lyapunov equation A′PA − P = −Q, Q � 0, then this constraint can
always be met for some u (u(t + k) = 0 satisfies this constraint and any
constraint on u). Zheng (1995) achieves robust stability by requiring the
state to contract for all plants in S. For the uncertain case constraint (14)
is generalized by maximizing ‖x(t+ 1|t)‖P over Σ ∈ S.

For the multi-plant description, Badgwell (1997) proposes a robust MPC
algorithm for stable, constrained, linear plants that is a direct generalization
of the nominally stabilizing regulator presented by Rawlings and Muske
(1993). By using Lyapunov arguments, robust stability can be proved when
the following stability constraint is imposed for each plant in the set.

J(U, x(t), Σi) ≤ J(U∗1, x(t), Σi) (15)

This can be seen as a special case of the contraction constraint, where
J(U, x(t), Σi) is the cost associated with the prediction model Σi for a
fixed pair (Np, Nm), and U1 , {u∗(t|t− 1), . . . , u∗(t− 1 +Nm|t− 1), 0} is
the shifted optimal sequence computed at time t−1. Note that the stability
constraints (15) are quadratic.

7.3 Robustly Invariant Terminal Sets

Invariant ellipsoidal terminal sets have been proposed recently in the nom-
inal context as relaxations of the terminal equality constraint mentioned in
Section 2.1 (see for instance (Bemporad 1998a) and references therein). Such
techniques can be extended to robust MPC formulations, for instance by
using the LMI techniques developed by Kothare et al. (1996). Invariant ter-
minal ellipsoid inevitably lead to Quadratically Constrained Quadratic Pro-
grams (QCQP), which can be solved through interior-point methods (Lobo
et al. 1997). Alternatively, one can determine polyhedral robustly terminal
invariant sets (Blanchini 1999), which would lead to linear constraints, and
therefore quadratic programming (QP), which is computationally cheaper
than QCQP, at least for small/medium size problems.

8 Closed-Loop Prediction

Let us consider the design of a predictive controller which guarantees that
hard state constraints are met in the presence of input disturbances w(t). In
order to achieve this task for every possible disturbance realization w(t) ∈
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Fig. 6. Benefits of closed-loop prediction: Admissible ranges for the output y(t+
k|t) for different feedback LQ gains F (input weight ρ = 0, 1,+∞)

W , the control action must be chosen safe enough to cope with the effect
of the worst disturbance realization (Gilbert and Kolmanovsky 1995). This
effect is typically evaluated by predicting the open-loop evolution of the sys-
tem driven by such a worst-case disturbance. This can be very conservative
because in actual operation the disturbance effect is mitigated by feedback.

Lee and Yu (1997) show that this problem can be addressed rigorously
via Bellman’s principle of optimality but that this is impractical for all
but the simplest cases. As a remedy they introduce the concept of closed-
loop prediction. For closed-loop prediction a feedback term Fkx(t + k|t) is
included in the expression for u(t+ k|t),

u(t+ k|t) = Fkx(t+ k|t) + v(k), (16)

and the MPC controller optimizes with respect to both Fk and v(k).

The benefit of this feedback formulation is discussed by Bemporad (1998b)
and is briefly reviewed here. In open-loop prediction the disturbance effect
is passively suffered, while closed-loop prediction attempts to reduce the ef-
fect of disturbances. In open-loop schemes the uncertainty produced by the
disturbances grows over the prediction horizon.

As an example, consider a hard output constraint ymin ≤ y(t) ≤ ymax.
The output evolution due to (16) from initial state x(t) for Fk ≡ F is

y(t+ k|t) = C(A +BF )kx(t) +
t−1∑
k=0

C(A+BF )kv(k) +

+

t−1∑
k=0

C(A+BF )kHw(t− 1− k) +Kw(t) (17)

It is clear that F offers some degrees of freedom to counteract the effect of
w(t) by modifying the multiplicative term (A+BF )k. For instance, if F ren-
ders (A+BF ) nilpotent, y(t+k|t) is only affected by the last n disturbance



inputs w(k− n+ 1), . . . , w(k), and consequently no uncertainty accumula-
tion occurs. On the other hand, if F is set to 0 (open-loop prediction) and
A has eigenvalues close to the unit circle, the disturbance action leads to
very conservative constraints, and consequently to poor performance. Fig. 6
shows this effect for different gains F , selected by solving LQ problems with
unit output weight and input weights ρ = 0, ρ = 1, and ρ = +∞. The last
one corresponds to open-loop prediction (F = 0).

For a wide range of uncertainty models Kothare et al. (1996) design, at
each time step, a state-feedback control law that minimizes a ‘worst-case’
infinite horizon objective function, subject to input and output constraints.
The authors transform the problem of minimizing an upper bound on the
worst-case objective function to a convex optimization involving linear ma-
trix inequalities (LMIs). A robustly stable MPC algorithm results. On one
hand the closed-loop formulation reduces the conservativeness. On the other
hand, the algorithm requires the uncertainty to be time-varying which may
be conservative for some applications.

9 Computation

In the previous sections we discussed the formulation of various robust MPC
algorithms, which differed with respect to the uncertainty descriptions, the
performance criteria, and the type of stability constraints. In practice the
choice is often dictated by computational considerations.

Uncertainty descriptions involving impulse/step-response coefficients or
bounded input disturbances are easier to deal with, as the optimization
problem can often be recast as an LP.

Kothare et al. (1996) solve optimal control problems with state-space un-
certainty descriptions through LMIs. For the technique proposed by Hans-
son and Boyd (1998), where a worst case quadratic performance criterion
is minimized over a finite set of models subject to input/state constraints,
the authors report that problems with more than 1000 variables and 5000
constraints can be solved in a few minutes on a workstation by using interior-
point methods.

For impulse and step response uncertainty, Bemporad and Mosca (1998)
propose a computationally efficient approach based on the reference gover-
nor (Gilbert et al. 1995, Bemporad et al. 1997). The main idea is to separate
the stabilization problem from the robust constraint fulfillment problem.
The first is left to a conventional linear robust controller. Constraints are
enforced by manipulating the desired set-points at a higher level (basically
the reference trajectory is smoothed out when abrupt set-point changes
would lead to constraint violations). The advantages of this scheme are
that typically only one scalar degree of freedom suffices, as reported by Be-
mporad and Mosca (1998), where the on-line optimization is reduced to a
small number of LPs.



10 Conclusions and Research Directions

While this review is not complete it reflects the state of the art. It is appar-
ent that none of the methods presented is suitable for use in industry except
maybe in very special situations. The techniques are hardly an alternative
to ad hoc MPC tuning based on exhaustive simulations for ranges of oper-
ating conditions. Choosing the right robust MPC technique for a particular
application is an art and much experience is necessary to make it work —
even on a simulation case study. Much research remains to be done, but the
problems are difficult. Some topics for investigation are suggested next.

Contraction constraints have been shown to be successful tools to get
stability guarantees, but typically performance suffers. By forcing the state
to decrease in a somewhat arbitrary manner, the evolution is driven away
from optimality as measured by the performance index. The contraction con-
straints which are in effect Lyapunov functions are only sufficient for stabil-
ity. In principle, less restrictive criteria could be found. Integral Quadratic
Constraints (Megretski and Rantzer 1997) could be embedded in robust
MPC in order to deviate as little as possible from optimal performance but
still guarantee robust stability.

Robustly invariant terminal sets can be adopted as an alternative to
contraction constraints. As mentioned in Sect. 7, ellipsoids and polyhedra
can be determined off-line, by utilizing tools from robustly invariant set
theories (Blanchini 1999).

The benefits of closed-loop prediction were addressed in Sect. 8. However
very little research has been done toward the development of computation-
ally efficient MPC algorithms.

Finally, the algorithms should be linked to appropriate identification
procedures for obtaining the models and the associated uncertainty descrip-
tions.
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