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Summary. Real-Time Control (RTC) of sewer network systems plays an important role
in meeting increasingly restrictive environmental regulations to reduce release of untreated
wastewater to the environment. This chapter presents the application of Hybrid Model Pre-
dictive Control (HMPC) on sewer systems. It is known from the literature that HMPC has a
computational complexity growing exponentially with the size of the system to be controlled.
However, the average solution time of modern mixed integer program (MIP) solvers is often
much better than the predicted worst case solution time. The problem is to know when the
worst case computational complexity appears. In addition to presenting the application, a sec-
ondary aim of the chapter is to discuss the limits of applicability due to real-time constraints
on computation time when HMPC is applied on systems of large scale such as sewer systems.
By using a case study of a portion of the Barcelona sewer system, it is demonstrated how the
computational complexity of HMPC appears for certain state and disturbance combinations.

1 Background

1.1 Introduction

Real-Time Control of sewer network systems plays an important role in meeting increasingly
restrictive environmental regulations to reduce release of untreated wastewater or Combined
Sewage Overflow (CSO) to the environment. Reduction of CSO often requires major invest-
ments in infrastructure within city limits and thus any improvement in efficient use of existing
infrastructure, for example by improved control, is of interest. The advantage of sewer network
control has been demonstrated by a number of researchers the last decades, see [22, 34, 41, 42].

Extensive research has been carried out on real-time control of urban drainage systems.
Comprehensive reviews that include a discussion of some existing implementations are given
by [43] and cited references therein, while practical issues are discussed by [44], among others.
The common idea is the use of optimization techniques to improve the system performance.
Common control objectives are to try to avoid street flooding, prevent CSO discharges to the
environment, minimize the pollution, uniform utilization of the sewer system storage capacity
and, in most of cases, minimize the operating costs [21, 45, 46, 52]. The multivariable and
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large scale nature of sewer networks has lead to the use of some variants of Model Predictive
Control (MPC), as control strategies.

In order to apply MPC on a sewer system, a model able to predict its future states over a
prediction horizon taking into account a rain forecast is needed. Sewer networks are systems
with complex dynamics since water flows through sewers in open channel. Their dynamics
are described by Saint-Vennant’s partial differential equations that can be used to perform
simulation studies but are highly complex to solve in real-time.

Several control oriented modeling techniques have been presented in the literature that
deal with sewer systems, see [19, 34]. In [17, 39], a conceptual linear model based on assum-
ing that a set of sewers in a catchment can be considered as a virtual tank or reservoir, has
been used. The main reason to use a linear model is to preserve the convexity of the MPC
optimization problem. A similar approach can be found in an early reference on MPC applied
on sewer systems [22].

There exist however several inherent phenomena (overflows in sewers and tanks) and ele-
ments (weirs) in the system that result in distinct behavior depending on the state (flow/volume)
of the network. These behaviors can not be neglected nor can they be modeled by a pure linear
model. Instead, they require to be modeled using non-linear functions depending on logical
conditions [34]. This leads to the use of modeling methodologies that allow the inclusion of
both continuous and discrete dynamics. The continuous dynamic part is typically associated
with physical first principles while the discrete dynamic part comes from logic conditions
that establish commutations of operational mode depending on internal system variables. This
mixture of logical conditions and continuous dynamics gives rise to a hybrid system.

1.2 Hybrid Systems and Mixed Logical Dynamical Systems

The hybrid systems considered in this chapter are Mixed Logical Dynamical (MLD) systems,
introduced in [7]. MLD systems have recently been shown to be equivalent to other representa-
tions of hybrid systems such as Linear Complementarity (LC) systems, Min-Max-Plus Scaling
(MMPS) systems and Piecewise Affine (PWA) systems, among others, under mild conditions,
see [25]. By considering hybrid dynamical systems in discrete-time a number of mathematical
problems (like Zeno behavior, see [26], [2]) are avoided and allows to derive models for which
tractable analysis and optimal/predictive control techniques exist.

MLD systems are described by linear dynamic equations subject to linear mixed-integer
inequalities, i.e., inequalities involving both continuous and binary (or logical, or 0-1) vari-
ables. These include physical/discrete states, continuous/integer inputs, and continuous/binary
auxiliary variables. The general MLD form is [7]:

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) (1a)

y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k) (1b)

E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5 (1c)

The meaning of the variables is the following:

• x are the continuous and binary states:

x =

�
xc

x�

�
, xc ∈ R

nc , x� ∈ {0, 1}n� (2)
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• y are the continuous and binary outputs:

y =

�
yc

y�

�
, yc ∈ R

pc , y� ∈ {0, 1}p� (3)

• u are the continuous and binary inputs:

u =

�
uc

u�

�
, uc ∈ R

mc , u� ∈ {0, 1}m� (4)

• Auxiliary binary variables: δ ∈ {0, 1}r�

• Auxiliary continuous variables: z ∈ Rrc .

Notice that by removing (1c) and by setting δ and z to zero, (1a) and (1b) reduce to an
unconstrained linear discrete time system. The variables δ and z are introduced when translat-
ing logic propositions into linear inequalities. All constraints are summarized in the inequality
(1c).

The transformation of certain hybrid system descriptions into the MLD form requires the
application of a set of given rules. To avoid the tedious procedure of deriving the MLD form
by hand, a compiler was developed in [51] to automatically generate the matrices A, Bi, C,
Di and Ei in (1) through the specification language HYSDEL (HYbrid System DEscription
Language).

1.3 MPC and Hybrid Systems

Different methods for the analysis and design of hybrid control systems have been proposed
in the literature during the last few years [7], [31], [13]. One of the most studied techniques
involves optimal control and related variants such as hybrid MPC (HMPC). The formulation
of the optimization problem in hybrid MPC follows the approach in standard linear MPC
design; see [32]. The desired performance variables are expressed as affine functions of the
control variables, initial states and known disturbances. However, due to the Boolean auxiliary
variables present, the resulting optimization problem is a mixed integer quadratic or linear
program (MIQP or MILP, respectively). The control law obtained in this way is also referred
to as mixed integer predictive control.

In general, the HMPC structure is defined by the following optimal control problem. As-
sume that the hybrid system output should track a reference signal yr and xr, ur , zr are
desired references for the states, inputs and auxiliary variables, respectively. For a fixed pre-
diction horizon Hp, the sequences

xk = {x(1|k), x(2|k), . . . , x(Hp|k)}
∆k = {δ(0|k), δ(1|k), . . . , δ(Hp − 1|k)}
zk = {z(0|k), z(1|k), . . . , z(Hp − 1|k)}

(5)

are generated applying the input sequence uk = {u(0), u(1), . . . , u(Hp − 1)} to system (1)
from initial state x(0|k) � x(k), where x(k) is the measurement of the current state.

Hence, using the previous concepts, the HMPC optimal control problem is defined as:
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min
uk,∆k,zk

J (uk,∆k, zk, x(k)) � ‖Qxf (x(Hp|k) − xf )‖p

+

Hp−1�
i=1

‖Qx (x(i|k) − xr)‖p +

Hp−1�
i=0

‖Qu (u(i) − ur)‖p

+

Hp−1�
i=0

‖Qz (z(i|k) − zr)‖p +

Hp−1�
i=0

‖Qy (y(i|k) − yr)‖p (6a)

s. t.

��������
�������

x(0|k) = x(k),
xf = xr(Hp|k),

x(i+ 1|k) = Ax(i|k) +B1u(i) +B2δ(i|k) +B3z(i|k),
y(i|k) = Cx(i|k) +D1u(i) +D2δ(i|k) +D3z(i|k),

E2δ(i|k) + E3z(i|k) ≤ E1u(i) +E4x(i|k) +E5,
for i = 0, 1, · · · , Hp − 1

(6b)

where J(·) is the cost function and xf corresponds to the final desired value for the state
variable overHp. p is related to the selected cost norm (i.e., 1-norm, Euclidean or infinity).

Assuming that the HMPC problem (6) is feasible for x(k), there exists an optimal solution
given by the sequence

u∗
k = {u∗0), u∗(1), · · · , u∗Hp − 1)}

Then, the receding horizon control philosophy sets [32], [15]

uMPC(x(k)) � u∗(0) (7)

and disregards the computed inputs u∗(1) to u∗(Hp − 1). The whole process is repeated at
the following time step. Equation (7) is known in the MPC literature as the MPC control law.
The equality constraint related to the final state within the HMPC problem (6) can be relaxed
so that x(Hp|k) is only required to belong to a terminal constraint set XT , [28].

Thus, the HMPC problem (6) is defined by a cost function J in (6a), which is given by
the problem control objectives, and by a set of constraints in (6b).

2 Hybrid Modeling and Control of Sewage Systems

2.1 Mathematical Modeling Principles

The water flow in sewer pipes is open-channel. Open-channel flow is the flow of a certain
fluid in a channel in which the fluid shares a free surface with an empty space above. The
Saint-Venant equations3, based on physical principles of mass conservation and energy, allow
the accurate description of the open-channel flow in sewer pipes [36]. These equations are
expressed as:

∂q(x, t)

∂x
+
∂A(x, t)

∂t
= 0 (8)

∂q(x, t)

∂t
+
∂

∂x

�
q(x, t)2

A(x, t)

�
+ gA(x, t)

∂L(x, t)

∂x
− gA(x, t) (I0 − If ) = 0 (9)

3 Adhémar Jean Claude Barré de Saint-Venant (1797 - 1886) was a mechanician who de-
veloped the one-dimensional unsteady open channel flow equations for shallow water or
Saint-Venant equations that are a fundamental set of equations in modern hydraulic engi-
neering.
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Fig. 1. Sewer network modeling by means of virtual tanks

where q(x, t) is the flow (m3/ s), A(x, t) is the cross-sectional area of the pipe (m2), t is the
time variable (s), x is the spatial variable measured in the direction of the sewage flow (m),
g is the gravity (m/ s2), I0 is the sewer pipe slope (dimensionless), If is the friction slope
(dimensionless) and L(x, t) is the water level inside the sewer pipe (m). This pair of partial-
differential equations constitutes a non-linear hyperbolic system. For an arbitrary geometry of
the sewer pipe these equations lack an analytical solution. Notice that these equations describe
the system behavior in high detail. However, such a level of detail is not useful for real-time
control implementation due to the complexity of obtaining the solution of (8)-(9) and the
associated high computational cost.

Alternatively, several modeling techniques have been presented in the literature that deal
with real-time sewer system control, see [33], [21], [19], [34], among many others. The mod-
eling approach used in this chapter is close to the approach presented in [22]. Here, the sewer
system is divided into catchments which are treated as virtual tanks (see Fig. 1). At any given
time, the stored volumes represent the amount of water inside the sewer pipes associated with
the tank and are calculated on the basis of the rainfall of the catchment area of the tank and
flow exchanges between other interconnected virtual tanks. The volume is calculated through
the mass balance of the stored volume, the inflows and the outflow of the tank and the input
rain intensity. The mentioned mass balance can be written as the difference equation

vi(k + 1) = vi(k) +∆tϕiSiPi(k) +∆t
�
qin

i (k) − qout
i (k)

�
(10)

where ϕi is the ground absorption coefficient of the i-th tank catchment, S is the surface area
of the i-th tank catchment, ∆t is the time interval between measurements and P is the rain
intensity corresponding to the i-th tank catchment in ∆t time units. qin

i (k) and qout
i (k) are the

sum of inflows and outflows, respectively. Real retention tanks are modeled in the same way
but without the precipitation term.

The tanks (either, real or virtual) are connected with flow paths or links which corresponds
to the main sewage pipes between the tanks. Figure 2 gives an idea of the interrelation between
different components of a very simple sewer network using the proposed modeling method-
ology. The tank outflows are generally assumed to be a function of the tank volume. For the
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Fig. 2. Components for a basic scheme of a sewer network

current application a linear relation has been assumed, that is,

qout
i (k) = βivi(k) (11)

where βi (given in s−1) is defined as the volume/flow conversion coefficient as suggested in
[48].

The manipulated variables of the system, denoted as qui , are related to the outflows from
the tanks. In the case of a real tank, a retention gate is present to control the outflow. Virtual
tank outflows can not be closed but can be redirected with redirection gates (RG). The redi-
rection gates divert the flow from a nominal flow path which the flow follows if the redirection
gate is closed. This nominal flow is denoted as Qi in the equation below, which expresses
mass conservation at the redirection gate:

qout
i (k) = Qi(k) +

�
j

qj
ui

(k) (12)

where j is an index over all manipulated flows coming from the redirection gate. The flow
path whichQi represents is assumed to have a certain capacity and when this capacity reaches
its limits, an overflow situation occurs. This flow limit will be denoted Qi. When Qi reaches
its capacity, two cases are considered: first, the water starts to flow on the streets, causing
an overflow situation and secondly, it exits the sewer network and is considered lost to the
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environment. In the first case, the overflow water either follows the nominal flow path and ends
up in the same tank as Qi or it is diverted to an other virtual tank. Flow to the environment
physically represents the situation when the sewage water ends up in a river or, in the case of
the Barcelona situation, in the Mediterranean sea.

When using this modeling approach where the inherent nonlinearities of the sewer net-
work are simplified by assuming that only flow rates are manipulated, physical restrictions
need to be included as constraints on system variables. For example, the manipulated variables
qj

ui
that determine the redirection of an outflow from a tank should never be larger than the

nominal outflow from the tank given by (11). This is expressed with the following inequality�
j

qj
ui

(k) ≤ qout
i (k) (13)

Usually the range of actuation is also limited so that the manipulated variable has to fulfill
qj

ui
≤ qj

ui
(k) ≤ qj

ui
, where q

ui
denotes the lower limit of manipulated flow and qui

denotes

its upper limit. When qj

ui
equals zero, this constraint is convex. But, if the lower bound is

larger than zero, a constraint representing mass conservation has to be included in the range
limitation leading to the following non-convex inequality:

min(qj

ui
, qout

i (k) −
�
t �=j

qt
ui

(k)) ≤ qj
ui

(k) ≤ qj
ui

(14)

The sum in the expression is calculated for all outflows related to tank i except j.
A further complication is that if the control signal is an inflow to a real tank that has hard

constraints on its capacity, then the situation can occur that this lower limit is also limited by
this maximum capacity and the outflow from the real tank. The limit on the range of real tanks
is expressed as

0 ≤ vi(k) ≤ vi (15)

where vi denotes the maximum volume capacity given in m3. As this constraint is physical, it
is impossible to send more water to a real tank than it can hold.

The virtual tanks do not have a physical limit on their capacity. When they rise above
a decided level an overflow situation occurs. This represents the case when the level in the
sewers has reached a limit so that an overflow situation can occur in the streets. Notice that in
practice, the difference between tank and link overflows is often small.

Model Calibration from Real Data

Real data from sensor measurements were used to estimate the parameters of the virtual tanks.
Level is measured in sewer pipes using ultrasonic limnimeters. Notice that the sewer level is
measured instead of the flow through the sewer. As these level sensors have no contact with the
water flow, problems due to incorrect measurements caused by sensor faults are avoided. From
these level measurements, the flow entering and exiting each virtual tank can be estimated
assuming steady-uniform flow using the Manning formula4 [36]:

q = vSw (16)

4 The Manning formula is an empirical formula for open channel flow, or flow driven by
gravity. It was developed by the French engineer Robert Manning and proposed on 1891 in
the Transactions of the Institution of Civil Engineers (Ireland).
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Fig. 3. Rain measurement principle using a tipping-bucket rain-gauge

where Sw is the wetted surface that depends on the cross-sectional sewer area A and water
level L within the sewer. The dependence ofA and L on x and t are omitted for compactness.
Moreover, v is the water velocity computed according to the parameters relation

v =
Kn

n
R

2/3
h I

1/2
0 (17)

whereKn is a constant whose value depends of the measurement units used in the equation, n
is the Manning coefficient of roughness which depends of flow resistance offered by the sewer
pipe material, Rh is the hydraulic radius defined as the relation of the cross sectional area of
flow and the wetted perimeter Pw as Rh = A/Pw, and I0 is the sewer slope. For a given
geometry of the sewer cross-section, wetted perimeter and hydraulic radius can be expressed
in terms of the sewer level L. For instance, given a rectangular cross-section of width b, the
wetted surface Sw is bL, the wetted perimeter Pw is b+ 2L and the hydraulic radius is given
by Rh = bL

b+2L
.

Rain intensity is measured using a tipping bucket rain-gauge (see Fig. 3). This gauge
technology uses two small buckets mounted on a fulcrum (balanced like a see-saw). The tiny
buckets are manufactured with tight tolerances to ensure that they hold an exact amount of
precipitation. The tipping bucket assembly is located above the rain sewer, which funnels the
precipitation to the buckets. As rainfall fills the tiny bucket, it becomes overbalanced and tips
down, emptying itself as the other bucket pivots into place for the next reading. The action
of each tipping event triggers a small switch that activates the electronic circuitry to transmit
the count to the indoor console, recording the event as 1.2 mm/h of rainfall. The number of
tipping events in 5 minutes (sampling time) is accumulated and multiplied by 1.2 mm/h in
order to obtain the rain intensity P in m/s at each sampling time, after the appropriate units
conversion.

Given rain intensities as well as limnimeter data, data series with Pi and input/output
flows can be determined. By combining (10) and (11), the following input/ouput equation in
function of the flow in sewers and rain intensity in catchments can be obtained:

qout
i (k + 1) = aqout

i (k) + b1Pi(k) + b2q
in
i (k) (18)
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where a = (1 − βi∆t), b1 = βi∆tϕiSi and b2 = βi∆t. Figure 4 represents this equation
and the interaction of all described parameters and measurements.

Linear Tank

Si

Rain

Level
Sensor

Level
Sensor

Rain-gauge

qin
i

qout
i

Fig. 4. Scheme of an individual virtual tank and its parameters and measurements

Equation (18) is linear in the parameters. This allows the parameters to be estimated using
classical parameter estimation methods based on least-squares algorithms [30]. Hence, the
parameter associated with the ground absorption coefficient is estimated as

ϕi =
b1
b2Si

(19)

and the volume/flow conversion coefficient is estimated as

βi =
b2
∆t

(20)

for the i-th catchment.
Ground absorption and volume/flow conversion coefficients can be estimated on-line at

each sampling time using (18) and the recursive least-squares (RLS) algorithm [30]. Once
estimated, these parameters are supplied to the MPC controller in order to take into account
their time variation and neglected non-linearities.

2.2 Hybrid Modeling of Sewer Systems

The presence of intense precipitation can cause some sewers to reach their limits of capacity.
When this happens, excess sewage that normally would have been collected in the sewer can
flow to to other parts of the sewer system. In this way, as mentioned in Sect. 1, flow paths
appear that are not always present and depend on the system state and inputs.

This behavior and other particular hybrid phenomena of sewer systems that depend on
system state can be conveniently modeled using the discrete time hybrid dynamical models
introduced in Sect. 1. In what follows it will be shown how some common elements of sewer
systems can be represented with these models. Specifically, the elements that will be consid-
ered are virtual tanks, flow links and redirection gates. Other common sewer system elements
such as pumping stations can be easily modeled within the hybrid modeling methodology but
will be omitted as they do not occur in the case study presented later. Hybrid dynamic behavior
in sensors such as rain gauges and limnimeters is also omitted.
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Fig. 5. Scheme of a virtual tank

Virtual tanks (VT)

When the maximum volume v in virtual tanks is reached, the excess volume above this maxi-
mum amount is redirected to another tank within the network. This creates a new outflow from
the tank denoted with qd in Fig. 5. This phenomenon can be expressed mathematically as:

qd(k) =

�
(v(k)−v)

∆t
if v(k) ≥ v

0 otherwise
(21a)

qout(k) =

�
βv if v(k) ≥ v
βv(k) otherwise

(21b)

where v(k) corresponds to the tank volume (system state), v is its maximum volume capacity,
∆t is the sampling time and β is a proportional factor between the volume and the outflow,
see [38]. The flow qd is referred to as virtual tank overflow. The difference equation for the
virtual tank is

v(k + 1) = v(k) + qin(k) − qout(k) − qd(k) (22)

Redirection gates (RG)

These type of elements within a sewer network are used to redirect flow at a certain point in
the network. An inflow qin is redirected to outflows qa and qb as shown in Fig. 6. Two types
of redirection elements are considered. In the first type referred to as passive (also know as
weirs), the flow follows the path qa until a limit qa is reached. If qin is larger than qa then the
difference flows through qb. In the other type, flow qa can be manipulated within its physical
limits. The expressions for the first type of redirection gates are:

qa(k) =

�
qin(k) if qin ≤ qa

qa otherwise
(23a)

qb(k) = qin(k) − qa(k) (23b)
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qin

qa

qb

Fig. 6. Scheme of redirection gate element

while in the second type, since the flow qa is manipulated, the flow only has to fulfill the
following restrictions:

0 ≤ qa(k) ≤ qin (24a)

qa(k) ≤ qa (24b)

qa(k) = qin(k) − qb(k) (24c)

Flow links (FL)

The outflow from virtual tanks is assumed to be unlimited to guarantee a feasible solution.
The same thing applies to the outflow qb from the retention gate element. But most often
flow links between elements in the sewer network have limited flow capacity. The flow link
element serves to model this limited capacity. When the limit of flow capacity is exceeded, the
resulting overflow is possibly redirected to another element in the system or is considered lost
to the environment. The overflow is denoted qc in Fig. 7. The equations for the flow link are:

qb(k) =

�
qb if qin > qb

qin(k) otherwise
(25a)

qc(k) =

�
qin(k) − qb if qin > qb

0 otherwise
(25b)

where qb is the maximum flow through qb and qin is the inflow to the flow link.

The hybrid sewer system model

The total sewer system model is constructed by connecting the system inflows (rain) and out-
flows (sewer treatment plants or outflows to the environment) with the inflows and outflows
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qin

qb

qc

Fig. 7. Scheme for flow links

of the elements as well as connecting the elements themselves. The manipulated variables of
the system, denoted as qu, are the manipulated variables of each component as described be-
fore. The logical conditions presented to describe the dynamics of the sewer system elements
can be translated into linear integer inequalities as described in [7]. The whole sewer network
expressed in MLD form can be written as:

v(k + 1) = Av(k) +B1qu(k) +B2δ(k) +B3z(k) +B4d(k) (26a)

y(k) = Cv(k) +D1qu(k) +D2δ(k) +D3z(k) +D4d(k) (26b)

E2δ(k) + E3z(k) ≤ E1qu(k) + E4v(k) +E5 +E6d(k) (26c)

where v ∈ R
nc
+ corresponds to the vector of tank volumes (states), qu ∈ R

mic
+ is the vector of

manipulated sewer flows (inputs), d ∈ Rmd
+ is the vector of rain measurements (disturbance),

logic vector δ ∈ {0, 1}r� collects the boolean overflow conditions and vector z ∈ R
rc
+ is

associated with variables that appear depending on system states and inputs. Variables δ and
z are auxiliary variables associated with the MLD form. Equation (26c) collects the set of
element constraints as well as translations from logic propositions. Notice that this model is a
more general MLD than was presented in [7] due to the addition of the measured disturbances.

If it is assumed that the disturbances are described with a disturbance model d(k + 1) =
Add(k), the MLD (26) form could be rewritten as:

v(k + 1) =

�
A B4

0 Ad

� �
v(k)
d(k)

�
+
�
B1 B2 B3

� �� qu(k)
δ(k)
z(k)

�
� (27a)

y(k) =
�
C Cd

� � v(k)
d(k)

�
+
�
D1 D2 D3

� �� qu(k)
δ(k)
z(k)

�
� (27b)

�
E2 E3

� � δ(k)
z(k)

�
≤
�
E4 E6

� � v(k)
d(k)

�
+
�
E1 E5

� � qu(k)
1

�
(27c)

The type of model to be used for disturbance d(k) in sewer system control is, in general,
an open research topic. Different types of rain prediction models can be used (statistical, AR



On Hybrid MPC of Sewer Networks 99

models, etc) [49] or the rain precipitation can be measured and predicted more directly (radars,
meteorological satellites, etc) [53]. Combinations of the two approaches have also been pre-
sented. According to [16], when an optimal control law is used in the RTC of sewer networks
with a short prediction horizon, assuming that the rain is constant over the prediction horizon
results in a moderate performance loss compared to knowing exactly the rain over the horizon.
This confirmed similar results reported in [22]. For constant rain over the prediction horizon,
matrix Ad is set as the identity matrix of suitable dimensions.

2.3 The Hybrid Control Strategy

As discussed in previous section, the proposed hybrid modeling methodology is very rich
and allows the straightforward treatment of hybrid phenomena such as overflow and flooding.
Morever, HMPC has been applied successfully to a variety of control problems the last years
using several approaches, see [14], [47], [50], [29], [5], among others. This section presents
a description of the HMPC formulation applied on sewer networks. The different aspects dis-
cussed here are presented considering the particular case study but can be easily extrapolated
to other sewage systems topologies. The concepts and definitions of Sect. 1.3 are applied in
this section in a straightforward manner but taking into account the particular notation used
for sewer networks.

Control objectives

The sewer system control problem has multiple objectives with varying priority, see [34].
There exist many types of objectives according to the system design. In general, the most
common objectives are related to the manipulation of the sewage in order to avoid undesired
sewage overflow on the streets of the city. Other kind of objectives are for instance related to
the control energy, i.e., the energy cost of the regulation of the gate movements. According
to the literature of sewer networks, the main objectives for the case study of this chapter are
listed below in order of decreasing priority:

• Objective 1: minimize flooding in streets (virtual tank overflow).
• Objective 2: minimize flooding in links between virtual tanks.
• Objective 3: maximize sewage treatment.
• Objective 4: minimize control action.

A secondary purpose of the third objective is to reduce the volume in the tanks to anticipate
future rainstorms. This objective also indirectly reduces pollution to the environment. This
is because if the treatment plants are used optimally along with the storage capacity of the
network, pollution lost to the environment should be at a minimum. It should be noted that
in practice the difference between the first two objectives is small. According to the hybrid
model for sewer networks proposed in Sect. 2.2, all overflows and flows to treatment plants
are defined by auxiliary variables z. However, as some of the performance objectives are sums
of system variables, it is convenient to define system outputs where these sums are calculated.

The cost function

Each control objective corresponds to one term in the cost function. Hence, the expression of
that function depends on its constitutive variables (auxiliary or output type). In general form,
the structure for the cost function in (6a) has the form
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J(uk, v(k)) �
Hp−1�
i=0

‖Qz(z(k+i|k) − zr)‖p +

Hp−1�
i=0

‖Qy(y(k+i|k) − yr)‖p (28)

where Qz and Qy correspond to weight matrices of suitable dimensions and zr, yr are refer-
ence trajectories related to auxiliary and output variables, respectively. For the objectives 1-2,
the references are zero flow. For the third objective, the references are the maximum capacity
of the associated sewage treatment plants. Priorities are set by selecting matrices Qz and Qy.
The norm p can be selected as p = 1, 2 or p = ∞. Notice that due to the fact that all perfor-
mance variables are positive, the case when p = 1 is actually a simple sum of the performance
variables.

2.4 Case Study Description

The Barcelona sewer network

The city of Barcelona has a combined sewage system of approximately 1697 Km length with a
storage capacity of 3038622 m3. It is a unitary system, that is, it combines waste and rainwater
into the same sewers. It is worth to notice that Barcelona has a population, which is approx-
imately around 1593000 inhabitants on a surface of 98 Km2, resulting in a very high density
of population. Additionally, the yearly rainfall is not very high (600 mm/year), but it includes
heavy storms (arriving to 90 mm/h) typical of the Mediterranean climate that can cause a lot
of flooding problems and CSO to the receiving waters.

Clavegueram de Barcelona, S.A. (CLABSA) is the company in charge of the sewer sys-
tem management in Barcelona. There is a remote control system in operation since 1994
which includes, sensors, regulators, remote stations, communications and a Control Center
in CLABSA. Nowadays, for control purposes, the urban drainage system contains 21 pump-
ing stations, 36 gates, 10 valves and 8 detention tanks which are regulated in order to prevent
flooding and CSO. The remote control system is equipped with 56 remote stations including
23 rain-gauges and 136 water-level sensors which provide real-time information about rain-
fall and water levels into the sewer system (see Fig. 8). All this information is centralized at
the CLABSA Control Center through a supervisory control and data acquisition (SCADA)
system. The regulated elements (pumps, gates and detention tanks) are currently controlled
locally, i.e., they are handled from the remote control center according to the measurements
of sensors connected only to the local station.

Barcelona test catchment

In this chapter, a representative portion of the Barcelona sewer system is studied. Figure 9
shows the catchment over a real map of Barcelona. A calibrated and validated model of the
system following the methodology explained in Sect. 2.1 is available as well as rain gauge
data for an interval of several years.

The catchment has a surface of 22.6 Km2 and includes typical elements of the larger net-
work. Due to its size, there is a spacial difference in the rain intensity between rain gauges. The
system is presented in Fig. 11 using the virtual reservoir methodology presented in Sect. 2.1.
The catchment area considered has 1 retention gate associated with 1 real tank, 3 redirection
gates, 11 sub-catchments defining the same number of virtual tanks, several limnimeters and
a pair of links connected to the same number of treatment plants. Also there are 5 rain-gauges
in the catchment but some virtual tanks share the same rain sensor. The difference between
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Fig. 8. CLABSA Control Center

Fig. 9. Test Catchment located over the Barcelona map (Courtesy of CLABSA)
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the rain inflows for virtual tanks that share a sensor lies in the surface area A and the ground
absorbtion coefficient ϕ. This results in a different amount of rain entering to the virtual tank
even though the rain intensity is the same. The real tank corresponds to the Escola Industrial
reservoir, which is located under a soccer field of the Industrial School of Barcelona (see Fig.
10). It has a rectangle geometry of 94 × 54 m with a medium depth of 7 m and a maximum
water capacity of 35000 m3 [18].

Fig. 10. Retention tank located at Escola Industrial de Barcelona

The related system model has 12 state variables corresponding to the volumes in the 12
tanks (1 real, 11 virtual), 4 control inputs and 5 measured disturbances corresponding to the
measurements of rain intensity over the virtual tanks. Two water treatments plants can be
used to treat the sewer water before it is released to the environment. It is supposed that all
states (virtual tank volumes) are estimated by using the limnimeters shown with capital letter
L in Fig. 11. The flows to the environment as pollution, (q10M, q7M, q8M and q11M to the
Mediterranean sea and q12s to an other catchment) and the flows to the treatment plants (Q7L

and Q11B) are shown in the figure as well. Also appearing in the figure are the rain intensities
P13, P14, P16, P19 and P20. The 4 controlled flows, denoted as qui , i = 1 . . . 4, have a
maximum flow capacity of 9.1, 25.0, 7.0 and 29.3 m3/ s, respectively.

Figures 12(a) and 12(b) present the comparison between real level (from real data) and
predicted level (using the model described in Sect. 2.1) corresponding to the output flows of
virtual tank T1 and T2, respectively. It can be noticed that the fit obtained with the proposed
modeling approach is satisfactory.

Tables 1 and 2 summarize the description of the case study variables as well as the value of
the parameters obtained by calibrating the system model following the procedures described
in Sect. 2.1. In Table 1 (and also in Fig. 11), Ti denotes the i-th virtual tank and T3 denotes
the real tank. Moreover, vi denotes the maximum capacity of the i-th tank (virtual or real). El-
ements R1 to R5 denote passive redirection gates. The maximum capacities of the redirection
gate flows as well as flow links are given in Table 2.
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Fig. 11. Scheme of the Barcelona sewer network catchment

3 Simulation and Results

3.1 Rain Episodes

The rain episodes included in the case study are based on real rain gauge data obtained within
the city of Barcelona on the given dates (day-month-year) as seen in Table 4. These episodes
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Fig. 12. Results of model calibration using the approach given in Sect. 2.1

were selected to represent the meteorological behavior of Barcelona. In Fig. 13, the reading of
the rain gauges for one of the rain episodes is shown. The rain storm presented in this figure
caused severe flooding in the city area under study.
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Table 1. Parameter values related to the sub-catchments within the case study

Tank S (m2) ϕi βi (s−1) vi (m3)

T1 323576 1.03 7.1×10−4 16901
T2 164869 10.4 5.8×10−4 43000
T3 5076 – 2.0×10−4 35000
T4 754131 0.48 1.0×10−3 26659
T5 489892 1.93 1.2×10−4 27854
T6 925437 0.51 5.4×10−4 26659
T7 1570753 1.30 3.5×10−4 79229
T8 2943140 0.16 5.4×10−4 87407
T9 1823194 0.49 1.3×10−4 91988
T10 385274 5.40 4.1×10−4 175220
T12 1913067 1.00 5.0×10−4 91442
T12 11345595 1.00 5.0×10−4 293248

Table 2. Description and maximum flow values of the main sewers in the case study

Sewer q (m3/s) Sewer q (m3/s)

q14 9.14 q128 63.40
q24 3.40 q57 14.96
q96 10.00 q68 7.70
qc210 32.80 q12s 60.00
q945 13.36 q811 30.00
q910 24.00 q7L 7.30
q946 24.60 q11B 9.00

3.2 Results

The purpose of this section is to show the performance of hybrid MPC for realistic episodes of
rain storms. The assumptions made for the implementation will be presented and their validity
discussed before the results are given.

The transformation of the hybrid system equations into the MLD form requires the ap-
plication of the set of given rules [7]. The higher level language and associated compiler
HYSDEL (see [51]) is used here to avoid the tedious procedure of deriving the MLD form by
hand. Given the MLD model, the controllers were designed and the scenarios simulated using
the Hybrid Toolbox for MATLAB� (see [4]). Moreover, ILOG CPLEX 9.1 has been used for
solving the MIP problems.

Simulation of scenarios

The performance of the control scheme is compared with the simulation of the sewer sys-
tem without control when the manipulated links have been used as passive elements, i.e., the
amount of flows qu1(k), qu2(k) and qu4(k) only depend on the inflow to the corresponding
gate and they are not manipulated (see Sect. 2.2) while qu3(k) is the natural outflow of the
real tank.
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Fig. 13. Example of rain episode occurred in Barcelona on 14 September, 1999. Each curve
represents a rain gauge Pi.

Two different MLD models are used to simulate the scenarios, one for the hybrid MPC
controller, MLDC which has been described in Sect. 2 and one tailored for the open loop
simulation, MLDOL. The difference lies in the fact that when the system is simulated in open
loop, logical conditions have to be added so that the physical constraints of the system are
respected. The model MLDOL is therefore augmented so that the control signals from the
controller are adjusted to respect the physical restrictions of the whole network. MLDOL

contains more auxiliary variables for this reason.
The MLDC model implemented has 22 logical variables and 44 auxiliary variables. The

prediction horizon Hp was set to 6 which is equivalent to 30 minutes (with the sampling time
∆t = 300s, 5 min). The length of the simulation scenarios is 100 samples. The computation
times presented in Sect. 4 were obtained on a INTEL� PENTIUM� M 1.73 GHz machine.

The control tuning is done taking into account the prioritization of the control objectives.
In a preliminary study, different norms, cost function structures and cost function weights wi

have been used. In order to give a hierarchical priority to the control objectives, the relation of
wi between objectives is an order of magnitude.

Table 5 relates the auxiliary variables z with the control objectives discussed in Sect. 2.3.
A suitable norm for the first objective is the ∞-norm. This minimizes the worst case street
flooding at each sample. On the other hand, for the second objective, the 1-norm is more
suitable. As the variables are all positive, the following outputs are defined to implement the
1-norm indirectly with the ∞-norm based cost function
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Table 3. Relation between z variables and control objectives

Objective z vector z variable Description

z2 overflow in T1

z6 overflow in T2

z10 overflow in T4

z12 overflow in T9

z20 overflow in T5

1 zstrv z22 overflow in T6

z24 overflow in T7

z26 overflow in T12

z32 overflow in T8

z36 overflow in T10

z40 overflow in T11

2 zstrq

z4 overflow in q14
z8 overflow in q24
z14 overflow in q96
z18 overflow in q945
z30 overflow in q12s

z34 overflow in qc210

z29 flow to environment (q12s)
z35 flow to sea (q10M)

3 zsea z38 flow to sea (q8M)
z42 flow to sea (q11M)
z44 flow to sea (q7M)

4
— z43 flow to Llobregat WWTP
— z41 flow to Besòs WWTP

y1 =
�

i

zsea(i),

y2 = z41 and y3 = z43

Performance Improvement

Taking into account that the system performance in open loop for the considered rain has a
flooding volume of 108 × 103, a pollution volume of 225.9 × 103 and a volume of treated
water of 278.3 × 103 (all in m3), the improvement obtained is between 4.5% and 22.1% for
the first objective and the other objectives keep almost in the same values for most of the cases,
fulfilling the desired objective prioritization.

Table 4 summarizes the results for ten of the more representative rain episodes in
Barcelona between 1998 and 2002. The results were obtained considering p = 2, a cost func-
tion containing only output variables and with the weight of the most important of its terms
set as wstrv = 10−2. The system performance in general is improved when the hybrid control
strategy is applied (see percentages for some values).
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Table 4. Obtained results of closed loop performance using 10 representative rain episodes

Rain
Episodes

Open Loop Closed Loop
Flooding Pollution Treated W. Flooding Pollution Treated W.

×103 (m3) ×103 (m3) ×103 (m3) ×103 (m3) ×103 (m3) ×103 (m3)

14-09-1999 108 225.8 278.4 92.9 (14%) 223.5 280.7
09-10-2002 116.1 409.8 533.8 97.1 (16%) 398.8 544.9
03-09-1999 1 42.3 234.3 0 (100%) 44.3 232.3
31-07-2002 160.3 378 324.4 139.7 (13%) 374.6 327.8
17-10-1999 0 65.1 288.4 0 58.1 (11%) 295.3
28-09-2000 1 104.5 285.3 1 98 (6%) 291.9
25-09-1998 0 4.8 399.3 0 4.8 398.8
22-09-2001 0 25.5 192.3 0 25 192.4
01-08-2002 0 1.2 285.8 0 1.2 285.8
20-04-2001 0 35.4 239.5 0 32.3 (9%) 242.5

4 Discrepancies and Misfits

4.1 Computational complexity

The results obtained in the simulation study of the previous section show that important per-
formance improvements can be accomplished when HMPC is applied to sewer networks.
Furthermore, the hybrid modeling methodology is very rich and allows the straightforward
treatment of hybrid phenomena such as overflow and flooding.

However, the underlying optimization problem of HMPC is combinatorial and NP-hard
[40]. The worst-case computation time is exponential in the number of logical variables. Fig-
ure 14 shows how this problem appears in the case of the HMPC applied on the Barcelona
sewer network case study. In the top graph, rain intensity measured by the five rain gauges
available in this part of the network is presented for the critical portion (second rain peak) of
the rain episode occurred on October 17, 1999. This episode was relatively intensive with a
return rate of 0.7 years within the city of Barcelona. In the second graph, the computation time
to solve the MIP associated with the HMPC is shown as a function of time for the same sce-
nario. Recalling that the desired sampling time for this system is 300 seconds, it can be seen
that the MIP solver is unable to find the optimum within the desired sampling time. Further-
more, it is seen that computation time varies greatly. Before sample 16 the calculation time is
very small.

If optimality is not archived within a desired sampling time, feasibility is at least required.
Often feasibility is sufficient for proof of stability of MPC scheme, see [35]. The ILOG CPLEX

solver used in the current application can be configured to put special emphasis on finding a
feasible solution before an optimal one [1]. It is also possible to limit the time the solver has to
solve the problem at hand. In the second graph of Fig. 14, the time required to find a feasible
solution is shown. It was found by iteratively increasing the maximum solution time allowed
for the solver until a feasible solution was found. The feature of CPLEX to put emphasis
on finding feasible solution was activated. Again, it can be seen that the time required to
find a feasible solution varies considerably. Furthermore, it should be stated that the feasible
solutions found were often of such poor quality that running the system in open loop often
yielded better performance.
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Fig. 14. MIP problem characteristics for the rain episode occurred on October 17, 1999

In the current application, the MIQP problem solved in each sample has the following
generical form:

min
ρ

ρT H ρ+ fT ρ (29)

s.t Aρ ≤ b+ Cx0 (30)

where vector x0 collects the system initial conditions and predicted disturbances (rain), which
is the only thing that changes from sample to sample. The ability of the MIP solver to reduce
computation time from the worst-case depends on its ability to exclude from consideration as
many nodes as possible when branching and bounding. This is done either by proving them to
be infeasible or that their solution is suboptimal to other solutions. The increase in computation
time is thus linked to an increase in the amount of feasible nodes. In the bottom graph of Fig.
14, the number of nodes the CPLEX solver explored during branching is shown. It is seen
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that there was a huge increase in number of explored nodes between samples. There is thus a
dramatic change in the complexity of the optimization problem for certain values of x0.

Physical insight into the network dynamic behavior can explain the increase in complexity
at time 11. At that time, due to the rain, many of the virtual tanks are very close to their
overflow limit. This in turn means that more trajectories for distinct switching sequences ∆k

are feasible. Similar behavior was encountered in other rain episodes and when other cost
functions were used.

The same problem regarding computation time occurs in non-linear MPC, see [32]. When
the optimization problem is no longer convex, a fundamental question is how long will the
optimization take and whether the quality of the solution would be sufficient to justify the
application of the MPC control approach.

It should be noted that it is common engineering practice to model the hybrid dynamics of
sewer systems with max or min functions and apply nonlinear MPC schemes [34]. However,
the problem of finding a feasible solution is not avoided and the Non-linear Programming
Algorithms applied reach only a local optima which implies a suboptimal solution. Generally
heuristical methods are used to find an initial feasible solution.

4.2 Strategies to deal with the complexity in HMPC

Control strategies have been proposed where the HMPC problem is relaxed to make it com-
putationally tractable. In [12] a decentralized control approach to HMPC was presented. The
class of systems considered were those made up of dynamically uncoupled subsystems but
where global control objectives were formulated with a global cost function.

A number of authors have also presented methods where the intent is to reduce complexity
off-line. In [11] an explicit solution to the constrained finite-time optimal control problem was
presented for discrete-time linear hybrid systems. Mode enumeration (ME) [3, 23, 24] is an
off-line technique to compute and enumerate explicitly the feasible modes of piecewise affine
PWA models. By pruning redundant modes where the dynamics are the same as in other
modes, complexity of the hybrid model can be reduced. Such methods are usually limited to
systems of relatively small size.

The main source of complexity in the MIP problem is its combinatorial nature. In [27], a
HMPC strategy was presented where additional restrictions were added to the MIP problem to
reduce the number of possible combinations of the Boolean variables. Infeasibility is avoided
by restricting the number of combinations around a nominal feasible trajectory.

4.3 Phase transitions in MIP problems

Performance of MIP solvers has improved greatly the last years [9]. The size limit of prob-
lems considered to be practically solvable has increased steadily. Part of the reason lies in the
many order of magnitudes improvement of desktop computing power over the years. But there
has also been tremendous improvement in solution algorithms for LP’s and QP’s, which are a
cornerstone of MIP solvers [8]. Furthermore, modern solvers have incorporated many perfor-
mance improving features that have existed in the literature such as cutting plane capabilities.
Generally the solvers apply a barrage of techniques on each problem. A recent improvement
in solving the optimal control problem of HMPC by using symbolic techniques to solve con-
straint satisfactions problems (CSP), was presented in [6].

The MIP problem is still NP-complete and equivalent to the archetypal NP-complete K-
satisfiability problem [37] (or the ZERO ONE INTEGER PROGRAMMING problem (ZIOP),
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see [10]). It has recently been shown that K-satisfiability problems exhibit phase transitions in
terms of computational difficulty and solution character when these aspects are considered as a
function of parameters such as the ratio of number of constraints to number of variables. Away
from the phase transition region the problems become easier to solve, see [37] and references
therein. This is of interest as it can give information about how the problem can be modified to
distance it from the phase transition region where it is most difficult to solve. Phase transition
behavior has been reported in for example multi-vehicle task assignment problems, see [20].

4.4 Conclusions

Results presented in this chapter has shown that HMPC is a suitable control strategy for sewer
networks. The hybrid modeling framework presented can take into account several inherent
phenomena and elements that result in distinct behavior depending on the state of the network.

However, the exponential increase in computational complexity due to the NP-hard nature
of the underlying HMPC optimization problems is a issue that should be addressed in order
to face time constrains imposed by real-time implementation. For the case study presented, it
has been shown that the computational complexity of the MIP problem related to the HMPC
scheme can vary considerably depending on the measured state and disturbances.

Some techniques to address the computational complexity have been mentioned. More-
over, the existence of phase transitions in similar combinatorial problems should be explored
to gain information on how modify the optimization problem to move it to regions of less
computational complexity.
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