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Derivative contracts require the replication of the product by means of a dynamic portfolio
composed of simpler, more liquid securities. For a broad class of options encountered in
financial engineering we propose a solution to the problem of finding a hedging portfolio
using a discrete-time stochastic model predictive control and receding horizon optimization.
By employing existing option pricing engines for estimating future option prices (possibly in
an approximate way, to increase computation speed), in the absence of transaction costs the
resulting stochastic optimization problem is easily solved at each trading date as a
least-squares problem with as many variables as the number of traded assets and as many
constraints as the number of predicted scenarios. As shown through numerical examples, the
approach is particularly useful and numerically viable for exotic options where closed-form
results are not available, as well as relatively long expiration dates where tree-based stochastic
approaches are excessively complex.
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1. Introduction

Modern pricing theory, based on the seminal works of
Black and Scholes (1973) and Merton (1973), approaches
the valuation of a derivative contract as a replication
problem: the price of the financial contract is the cost to
trade a self-financing portfolio of more liquid and simpler
securities so as to match the option payoff in every state
of the world. The allocating strategy is generally dynamic
and chosen to locally eliminate any (modelled) risk from a
portfolio composed of the derivative security and the
replication strategy.

A popular and well-studied class of synthetic financial
securities are European vanilla options: a call ( put) option
gives the holder the right to buy (sell) the underlying asset
at a given expiration date in the future for a predeter-
mined strike price (see, e.g., Hull (2006) for the basics of
financial options). From the point of view of an invest-
ment firm, the problem of writing an option amounts to

jointly determining (i) the price the customer must pay to
obtain the right to exercise the option, and (ii) the
dynamic strategy for managing this money by creating a
portfolio and periodically changing its composition
during the life of the option. The strategy should make
the value of the portfolio equal to the payoff amount to
be paid to the customer at the expiration date, regardless
of the realized price evolution of the assets underlying the
option and composing the portfolio. In other words, the
strategy should hedge the option as much as possible
against the indeterminism associated with those price
evolutions, or, in control engineering terms, the strategy
should reject the effects of the stochastic variables
affecting the evolution of the market through a proper
feedback action.

Several approaches have been proposed for option
pricing and dynamic hedging. The common goal of any
approach is to eliminate (or, at least, reduce as much as
possible) the risk that the value of the portfolio at the
expiration date does not match the payoff, i.e. that the
hedging error is non-zero. Such approaches can be roughly
divided into two main categories: local approaches,*Corresponding author. Email: alberto.bemporad@imtlucca.it
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where the aim is to attempt to eliminate risk instanta-
neously, and global approaches, where the entire life span
of the option is considered and the objective is to minimize
the variance of the hedging error at the expiration date.

The seminal works of Merton (1973) and Black and
Scholes (1973), a real milestone in finance and still a
reference point, and their extensions to models with
stochastic volatility (Heston 1993; Heston and Nandi
2000), belong to the first category. In general, they aim at
perfect hedging by eliminating the risk at each time
instant through a proper rebalancing of assets in the
portfolio, usually continuously in time. Solutions can be
obtained in different ways. Analytical approaches provide
invaluable insight into understanding and operating with
options, although their main operational limitation is that
the pricing formulas and the hedging strategies can only
be obtained under restrictive assumptions on the pricing
model, such as log-normal or GARCH (Generalized
AutoRegressive Conditional Heteroscedasticity) price
models, and specific payoff functions (such as European
call/put options). When closed-form solutions are not
available, numerical methods (Duffie 1996) can be
employed to solve the Kolmogorov backward equation
associated with the model. Simulation is another method
often used by investment firms to price options (Boyle
1977, Hull and White 1987). A (large) set of scenarios is
generated by Monte Carlo simulation for the future prices
of the underlying assets; the final value of the asset price
of each scenario is used to compute the payoff value; the
average of such payoff values, discounted by the interest
rate, provides the option price. In view of such a current
practice for option pricing, we focus our attention only on
the hedging problem.

Approaches that instead look at the entire life of the
option aim at minimizing risk at the expiration date. The
problem can be cast as a stochastic optimal control
problem and relies on the Hamilton–Jacobi–Bellman
partial differential equation. This category includes
multi-stage stochastic programming approaches, where
the probability space of the option price realization is
discretized in an n-ary tree (binary and trinomial are the
most used), and then the pricing and hedging problem is
solved as a stochastic linear programming problem
(Edirisinghe et al. 1993, Klaassen 1998, Kouwenberg
and Vorst 1998, Zhao and Ziemba 2001, Gondzio et al.
2003). Although special structures can be exploited to
solve the associated large-scale linear program (Birge
and Louveaux 1997), the approach is often limited for
numerical reasons. In fact, the number of nodes in the tree
(which is proportional to the number of optimization
variables) is exponential in the number of trading periods,
and heavily depends on the number of branches at each
node. Nonetheless, not only is the approach useful for
relatively infrequent portfolio rebalancing and/or short
expiration dates, but subtle issues such as lack of
arbitrage conditions when discretizing the probability
space (Høyland and Wallace 2001) provide interesting
insights (Klaassen 2002). Stochastic dynamic program-
ming (DP) approaches (Fedotov 1999, Bertsimas et al.
2001) also discretize the probability space and solve the

pricing and hedging problem backwards in time. While
the method is appealing, its main limitation is due to the
numerical explosion when the number of trading periods
is large and several assets are traded.

This paper attacks the hedging problem from the
viewpoint of feedback control systems. Rephrased using
the jargon of systems theory, the hedging problem can be
solved by a feedback control strategy that, based on
measurements such as the current value of the portfolio
and the state of the market (e.g., price and variance of the
underlying assets), determines the actuation signals, i.e.
the trading moves with a given sampling frequency
(ideally, continuously in time). The control law, together
with the stochastic pricing models of the underlying assets
it is based upon, determines the financial properties of the
derivative security. Hence, in control systems terms, the
option hedging problem can be stated as follows: given
the initial condition for the wealth of the portfolio
(¼option price), find a feedback control law (¼hedging
strategy) that brings the error between the final value of
the wealth of the portfolio and the payoff function to
zero, rejecting the effects of the stochastic uncertainty
affecting the portfolio dynamics.

Based on such a control theoretical approach, in this
paper we use stochastic model predictive control (MPC)
concepts (Kolmanovsky et al. 2002, Muñoz de la Peña
et al. 2005, Couchman et al. 2006, Wang and Boyd
2008, Primbs and Sung 2009) to develop a dynamic
hedging strategy. MPC is an optimization-based policy
that solves a finite-horizon open-loop optimal control
problem at each sampling instant. Each optimization
yields a sequence of optimal control moves, but only
the first move is applied to the process: at the next time
step, the computation is repeated over a shifted
time-horizon by taking the most recently available
state information as the new initial condition of the
optimal control problem. For this reason, MPC is also
called receding or rolling horizon control (Bemporad and
Morari 1999, Rawlings 2000, Bemporad et al. 2002,
2004, Bemporad 2006, Mayne and Rawlings 2009).
Stochastic model predictive control (SMPC) can be seen
as a suboptimal way of solving a stochastic multi-stage
dynamic programming problem: rather than solving the
problem for the whole option-life horizon, a smaller
problem is solved repeatedly from the current time-step
t up to a certain number N of time steps in the future
by suitably re-mapping the condition at the expiration
date into a value at time tþN. SMPC has been
proposed for financial applications only very recently,
for example by Herzog et al. (2006) for portfolio
optimization and by Meindl (2006), Meindl and Primbs
(2008) and Primbs (2009) for option pricing and
hedging. In particular, Meindl (2006) and Meindl and
Primbs (2008) use clustering ideas to reduce the
computational complexity and at the same time mitigate
arbitrage opportunities, which are intrinsic to the
optimization over multiple independent scenarios (the
so-called ‘fan’), rather than on scenario trees.

This paper proposes a novel SMPC approach to the
dynamic hedging of a broad class of options. At each
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trading date, given the current state of the market, the
SMPC algorithm computes the optimal asset quantities to
compose the portfolio by minimizing the variance of the
future hedging error, i.e. the difference between the price
of the option at the next trading date and the wealth of
the replicating portfolio at the same date. The minimiza-
tion only requires the solution of a simple least-squares
optimization problem at each trading date. To be able to
handle very general stock price models and exotic payoffs,
for which no analytic hedging policy exists, the variance
of the predicted hedging error is formulated on-line using
a pricing engine that generates a finite number of future
scenarios of option prices, rather than analytically deriv-
ing expected values from pricing models as in Herzog
et al. (2006) and Primbs (2009). To evaluate each option
price, the pricing engine employs either Monte Carlo
simulation (on-line computations) or off-line function
approximation (still based on Monte Carlo simulation) to
approximate the option value as a function of the state of
the market (such as the price of the underlying stock), so
that on-line evaluation is very fast. The approach proved
to perform well not only for plain vanilla European call
options, for which analytical methods also perform well,
but also for an exotic ‘Napoleon cliquet’ option, for both
log-normal Black and Scholes (1973) and Heston (1993)
stock price models.

The approach of this paper is related to the Hedged
Monte Carlo (HMC) approach (Potters et al. 2001,
Pochart and Bouchaud 2004, Petrelli et al. 2008), where
function approximation is used not only for pricing, but
also to determine (off-line) a hedging policy as a function
of the market state, using backward-in-time computations
similarly to DP. The main differences between the SMPC
and HMC approaches are that (i) SMPC can very easily
adapt to changes of the market model, being the optimal
hedging problem constructed on-line rather than pre-
solved off-line for a given market model, (ii) the use of
basis functions in HMC might lead to larger approxima-
tion errors, especially for a large number of components
of the market state (and possibly of other model
parameters that one may want to change on-line), and
(iii) on the other hand, as in DP, HMC only requires the
evaluation on-line of the predetermined optimal hedging
function, while in SMPC a least-square problem needs to
be solved based on the predicted possible future option
prices.

The paper is organized as follows. In section 2 we
introduce the dynamical models that we adopt in the
paper for asset prices, for the synthetic option and its
payoff, and for the wealth of the portfolio. In section 3 we
state the hedging problem as a stochastic feedback control
problem and show that minimum variance objectives are
best candidates. In section 4 we address the posed option
hedging problem as a stochastic model predictive control
problem and present the proposed receding horizon
optimization strategy. Finally, in section 5 we report

numerical examples on European call and ‘Napoleon
cliquet’ options, and draw some conclusions in section 6.

2. Model formulation

2.1. Asset price dynamics

Consider the problem of dynamically hedging a European
optiony O defined over n spot prices xi of underlying
assets, i¼ 1, . . . , n, satisfying the stochastic differential
equations in the real-world probability measure

dxið!Þ ¼ "x
i ðxið!Þ, yið!ÞÞd! þ #

x
i ðxð!Þ, yð!ÞÞdz

x
i , ð1aÞ

dyið!Þ ¼ "y
i ð yið!ÞÞd! þ #

y
i ð yð!ÞÞdz

y
i , ð1bÞ

where zxi ð!Þ and zyi ð!Þ are Wiener processes, namely dzxi
and dzyi are correlated Gaussian variables with zero mean
and variance d!. In equation (1) we assume that xi% 0,
8i¼ 1, . . . , n, 8!% 0. Model (4) is a rather general form
that covers several popular models, including the
log-normal stock price model

dxið!Þ ¼ ð"d! þ # dzxi Þxið!Þ ð2Þ

( yi(!)& 0, zyi ð!Þ & 0), and the model of Heston (1993)

dxið!Þ ¼ ð"x
i d! þ

ffiffiffiffiffiffiffiffiffi
yið!Þ

p
dzxi Þxið!Þ, ð3aÞ

dyið!Þ ¼ $iðki ' yið!ÞÞd! þ !i

ffiffiffiffiffiffiffiffiffi
yið!Þ

p
dzyi , ð3bÞ

where (3b) is the Cox et al. (1985) process for the variance
yi(!), and dzxi has correlation %i with dzyi .

In this paper we are interested in evaluating xi(!) and
yi(!) at certain trading dates !¼ tDT, where t2Z and t% 0
denotes a discrete-time index.z To this end, we discre-
tize (1) into the difference equations

xiðtþ 1Þ ¼ fiðxiðtÞ, yiðtÞ, zxi ðtÞÞ, ð4aÞ

yiðtþ 1Þ ¼ gið yiðtÞ, zyi ðtÞÞ, ð4bÞ

where, with a slight abuse of notation, [(](t) denotes the
value of [(] at time !¼ tDT, z

x(t), zy(t)2Rn are random
Gaussian vectors with zero mean E½zxi ðtÞ* ¼ 0,
E½zyi ðtÞ* ¼ 0, 8i¼ 1, . . . , n, 8t% 0, and covariance matrix
!x(t)¼E[zx(t)zx(t)0], !y¼E[zy(t)zy(t)0], with !x(t), !y(t)
positive semidefinite 8t% 0. In (4), functions fi and gi are
either expressed analytically in an explicit way through
the exact integration of (1), or simply represent a
numerical integration engine providing xi(tþ 1), yi(tþ 1)
as an implicit function of xi(t), yi(t). For example,

xiðtþ 1Þ ¼ eð"'ð1=2Þ#
2ÞDtþ#

ffiffiffiffi
Dt
p

zxi ðtÞxiðtÞ ð5Þ

is the analytical solution of (2). In the sequel we denote by
x(t)¼ [x1(t) . . . xn(t)]

0 2Rn the vector of asset prices,
and by y(t)¼ [y1(t) . . . yn(t)]

0 2Rn the associated vector
of additional state variables of the asset price models.

yThe approach can easily be extended to other options as described by Bertsimas et al. (2001), such as Asian options.
zThe results presented in this paper can immediately be extended to non-uniform trading intervals DT.
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2.2. Option price and payoff function

We assume that the portfolio associated with option O is
updated every DT units of time, and denote by T the
maturity of O expressed in terms of the number of
sampling steps. The payoff p(T ) of O is described by the
function

pðT Þ ¼ PðmðT ÞÞ ð6Þ

of the state m(T ) of the considered asset market at the
expiration date, for example m(T )¼x(T ). We denote by
p(t) the price of the hedged option at a generic interme-
diate time tDT,

pðtÞ ¼ ð1þ rÞt'N ~E½PðmðT ÞÞ j mðtÞ* ð7Þ

(see, for instance, Hull (2006, p. 589)), where
m(t)¼ {x(0), . . . , x(t), y(t)} (or, more generally, m(t)¼
{x(0), . . . , x(t), y(0), . . . , y(t)}) and ~E½ pðT Þ* is the expected
value of the payoff in the risk-neutral measure, given the
asset prices realized up to time t and the current state y(t)
of the asset price model. In (7), r ¼ eraDT ' 1 is the return
of the risk-free investment over DT, and ra is the
annualized continuously compounded interest rate,
which we assume to be constant.

Equation (7) can also be restated recursively as

pðtÞ ¼ ð1þ rÞ'1 ~E½ pðtþ 1Þ j mðtÞ*: ð8Þ

For instance, for a European call option on a single stock
x with strike price K, we have

pðT Þ ¼ maxfxðT Þ ' K, 0g, ð9Þ

m(t)¼ {x(t), y(t)}, and

pðtÞ ¼ e'rðN'tÞ ~E½maxfxðT Þ ' K, 0g j xðtÞ, yðtÞ*:

In particular, for log-normal price models, m(t)¼ x(t).
For ‘Napoleon cliquet’ path-dependent exotic options

pðT Þ ¼ max 0,Cþ min
i2f1,...,Nfixg

xðtiÞ ' xðti'1Þ
xðti'1Þ

" #
, ð10Þ

where ti, i¼ 1, . . . ,Nfix, are the fixing dates, and C is a
fixed value. In this case, m(t)¼ {x(t0), . . . ,x(tk), x(t), y(t)},
where k is the fixing index such that tk+ t5tkþ1.

2.3. Portfolio dynamics

Assume that a portfolio W consisting of assets xi,
i¼ 1, . . . , n, and risk-free investments is dynamically
managed by the option writer. Let ui(t) denote the
number of assets i, i¼ 1, . . . , n, contained in the portfolio
during the time interval [tDT, (tþ 1)DT), t¼ 0, . . . ,T, and
let u0(t) be the amount of wealth allocated to risk-free
investments. The trading moves ui(t), i¼ 0, . . . , n, are
decided at time tDT. The total wealth w(t) ofW in money
units invested at time kDT is

wðtÞ ¼ u0ðtÞ þ
Xn

i¼1
xiðtÞuiðtÞ, ð11Þ

where xi(t) is the spot price of asset i at the trading time
instant (we assume that the value of xi is continuous
across the time instant the asset is traded, and therefore is
the same immediately before and immediately after
trading). After a trading period DT, the portfolio W is
worth

wðtþ 1Þ ¼ ð1þ rÞu0ðtÞ þ
Xn

i¼1
xiðtþ 1ÞuiðtÞ: ð12Þ

By assuming the standard self-financing condition (that is,
the wealth of the portfolio is always totally reinvested),
we obtain the following dynamical equation for the
wealth of W:

wðtþ 1Þ ¼ ð1þ rÞwðtÞ þ
Xn

i¼1
biðtÞuiðtÞ, ð13Þ

where bi(t)Xxi(tþ 1)' (1þ r)xi(t). The initial condition
w(0) is set equal to the price paid by the customer of
option O, wð0Þ ¼ ð1þ rÞ'N ~E½ pðT Þ j xð0Þ, yð0Þ*.

We remark on a few features enjoyed by the stated
model. (i) The assets’ dynamics (1) do not depend on
trading decision ui(t), a reasonable assumption if the
volumes traded in W are negligible with respect to the
volumes exchanged on the entire market. (ii) As a
consequence, also the option price P, and therefore its
expected value ~E ½P*, do not depend on ui(t). (iii)
Dynamics (13) is a first-order linear stochastic
discrete-time system.

Although in this paper we do not consider transaction
costs, taking the viewpoint of a financial institution for
which they can be considered negligible, the approach can
be extended to deal with transaction costs using quadratic
programming.

3. Stochastic control problem

Based on the models developed in section 2, the dynamic
option problem can be reformulated in system theoretical
terms as a stochastic control problem. The wealth w(t)2R

represents the state and output of the regulated process,
the traded asset quantities u(t)2Rn are the manipulated
variables, and the option price p(t) is the target reference
for w(t). In particular, the control objective is to make
w(T ) as close as possible to p(T ), for any possible
realization of the asset prices x(t). This can be labeled as a
reference tracking and disturbance rejection problem.

By defining the tracking error e(t)Xw(t)' p(t), the
objective can be restated as minimizing e(t) for all possible
asset price realizations. This can be achieved by minimiz-
ing the trade-off between the variance and mean of e(T )

JðeðT Þ,&Þ ¼ Var½eðT Þ* þ &E½eðT Þ*2

¼ E½ðeðT Þ ' E½eðT Þ*Þ2* þ &E½eðT Þ*2, ð14Þ

where E[(] (Var[(]) is the expectation (variance) in the real-
world probability measure, and &2 [0,þ1). Clearly,
minimizing the squared mean E[e(T )]2 (&!1) would
be a very risky approach, as E[e(T )] would be small but
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the variance Var[e(T )]¼E[(e(T )'E[e(T )])2] could be
very large. A special case would be to minimize the
expected value of the squared mean E[e2(T )], since

E½eðT Þ2* ¼ E½ðeðT Þ ' E½eðT Þ*Þ2* þ &E½eðT Þ*2,

for &¼ 1. The following proposition shows that, under
non-arbitrage conditions, if the minimum variance
criterion

JðeðT Þ,&Þ ¼ E½ðeðT Þ ' E½eðT Þ*Þ2* ð15Þ

is minimized and the minimum is zero, then E[e(T )] will
also be zero.

Proposition 3.1: Consider an ideal minimum variance
hedging strategy choosing u(t), t¼ 0, . . . ,T' 1, such
that Var[w(T )' p(T )]¼ 0 and let wð0Þ ¼ pð0Þ ¼
ð1þ rÞ'T ~E½ pðT Þ*. Then w(t)' p(t)& 0, 8t¼ 0, . . . ,T, and
in particular the final hedging error w(T )' p(T ) is
identically zero.

Proof: The proposition is proved by induction on the
trading period t backwards in time, showing that
e(t' 1)¼ (1þ r)'1e(t), with e(t)¼w(t)' p(t), is a deter-
ministic variable. Consider at time T' 1 the portfolio

eðT' 1Þ ¼ wðT' 1Þ ' pðT' 1Þ

obtained by gathering the wealth w(T' 1) and short
selling the option for its price p(T' 1). As by assumption
the wealth e(T ) of the new portfolio at time T has zero
variance, the trading move u(T' 1) is riskless during the
time period [(T' 1)DT, TDT]. As such, in the absence of
arbitrage conditions, it must earn the interest rate r

eðT' 1Þ ¼ ð1þ rÞ'1eðT Þ,

which makes e(T' 1) also a deterministic variable.
Assume now that e(k) is deterministic for all k¼ t,
tþ 1, . . . ,T and consider at time t' 1 the new portfolio

eðt' 1Þ ¼ wðt' 1Þ ' pðt' 1Þ

obtained by gathering the wealth w(t' 1) and short selling
the option for its price p(t' 1). Following the same
reasoning, in the absence of arbitrage conditions we
prove that

eðt' 1Þ ¼ ð1þ rÞ'1eðtÞ: ð16Þ

By induction, feðtÞgTt¼0 is a finite sequence of deterministic
variables satisfying the recursive relation (16). In partic-
ular, e(t)¼ (1þ r)t(w(0)' p(0))¼ 0, 8t¼ 0, . . . ,T. h

Proposition 3.1 implies that if the minimum variance
criterion (15) is used and perfect hedging is achieved, then
w(t) should track p(t) perfectly, at each time t. The
opposite is also trivially true: if a hedging strategy exists
such that w(t) tracks p(t) perfectly, then in particular
w(T )' p(T )¼ 0. Hence, from a system theoretical per-
spective, the dynamic option hedging problem is equiv-
alent to designing a control strategy that lets the output
w(t) of the stochastic linear system (13), affected by
stochastic multiplicative noise on the input matrix
b(t)¼ [b1(t) . . . bn(t)], track the reference signal p(t)
generated by the linear reference model (8), as illustrated
in figure 1. A particular control strategy based on receding
horizon control (also referred to as model predictive
control) ideas is presented in the next section.

4. Stochastic model predictive control

At a generic trading time t¼ 0, 1, . . . ,T' 1 let the
portfolio composition u(t) be chosen by solving the
following finite-time stochastic dynamic optimization
problem

min
fuðk,mkÞg

VarmT ½wðT,mTÞ ' pðT,mTÞ*, ð17aÞ

s.t. wðkþ 1,mkþ1Þ

¼ ð1þ rÞwðk,mkÞ þ
Xn

i¼0
biðk,mkþ1Þuiðk,mkÞ,

k ¼ t, . . . ,T' 1, ð17bÞ

wðt,mtÞ ¼ wðtÞ, ð17cÞ

where mk represents a generic realization of the state of
the considered asset market at time k (determined by a
finite stochastic noise sequence {z(tþ 1), . . . , z(tþ k)},
corresponding to the realization of future asset prices
x(tþ 1), . . . , x(tþ k)). Also, expectations (i.e. the variance
of the final hedging error being minimized) are taken in
the real-world measure with respect to mT, conditioned on
the values z(0), . . . , z(t) already realized. In particular, the

Figure 1. The dynamic option hedging problem as a feedback control problem.

Dynamic option hedging 1743



deterministic variable mt¼m(t) represents the current
state of the market.

Typically, in stochastic optimization approaches to
option pricing and hedging, the set Mt of possible
future market states is discrete and arranged on a
binary or ternary tree. Note that, in (17), the number of
optimization vectors u(k,mk)2Rn depends linearly on the
number M of elements of Mt, the number of remaining
trading periods T' t, and the number of assets n. Note
that, for t¼ 0, if the initial portfolio value w(0) is also
treated as an optimization variable, (17) also provides the
optimal option price p(0).

Stochastic programming (SP) is a popular technique for
solving optimization problems under uncertainty (Birge
and Louveaux 1997, Sahinidis 2004). In particular,
scenario enumeration methods have been proposed to
solve SP. The idea is to enumerate a certain number M of
scenarios (or, alternatively, of tree nodes), where each
scenario corresponds to the realization of a certain
sequence of stochastic variables and has a probability 'j
of occurring, j¼ 1, . . . ,M, 'j40, 'j+ 1,

PM
k¼1 'j ¼ 1.

Problem (17) can be solved through multi-stage stochastic
programming when the possible realizations of m(k) can
be aggregated according to the scenario tree Mt. The
drawback of the procedure is that the problem becomes
computationally infeasible when the horizon T is long
(because of long expiration dates and/or frequent trading
every small DT time units), since the number of nodes in
the tree is exponential in T. Moreover, the procedure must
be repeated before each trading instant t over the
remaining horizon [t, T ] to take into account unmodeled
price dynamics and disturbance realizations, and each
time only the first optimal trading move u,i ðtÞ is actually
used.

In very simple cases, problem (17) may be solved
through stochastic dynamic programming techniques
Bertsimas et al. (2001) to obtain off-line an explicit state
feedback policy u,i ðtÞ ¼ KiðwðtÞ, xðtÞ, yðtÞÞ, t¼ 0, . . . ,T' 1.
Assuming that an option pricing engine is available, for
instance based on Monte Carlo simulation and empirical
computation of expectations of the payoff function, in
this paper we assume that wð0Þ ¼ pð0Þ ¼ &ð1þ rÞT ~E½ pðT Þ*
is already determined and propose a stochastic model
predictive strategy for hedging, based on the pricing
engine, that solves (17) approximately and recursively
over shorter time horizons.

4.1. SMPC algorithm for option hedging

Besides discretizing more roughly in the probability space
(¼smaller number M of scenarios), another way of
alleviating the complexity of (17) is to decrease the
optimization horizon from [t, T ] to [t, min{tþN, T}],
N% 1. Such a practice is used typically in receding horizon
control (also called model predictive control, MPC).
Several approaches to stochastic MPC have been pro-
posed in the literature for stochastic linear systems
(Schwarm and Nikolaou 1999, Li et al. 2000, Batina
et al. 2002, van Hessem and Bosgra 2002, Muñoz
de la Peña et al. 2005, Couchman et al. 2006,

Primbs 2007a, b, Oldewurtel et al. 2008), Markov jump
linear systems (Blackmore et al. 2007, Bernardini and
Bemporad 2009), and stochastic hybrid systems
(Bemporad and Di Cairano 2005). An alternative way
based on ‘fans’ rather than ‘trees’ was proposed by
Meindl (2006) and Meindl and Primbs (2008) based on
clustering scenarios to reduce the number of optimization
variables. Although numerically appealing, the main
drawback of such an approach is that optimal results
may reflect artificial arbitrage opportunities induced by
the clustering algorithm, as the causality constraint that
makes control moves u(k) that only depends on mk may
not be satisfied at all k ¼ t, tþ 1, . . . , tþ "N,
"N ¼ minfN,T' tg.
In this paper we propose to remap the stochastic

dynamic optimization problem (17) from the optimization
horizon [t, T ] into ½t, tþ "N*, by assuming that ‘perfect
hedging’ occurs between time tþ "Nþ 1 and T,

min
fuðk,mkÞg

Varmtþ "N
½wðtþ "N,mtþ "NÞ ' pðtþ "N,mtþ "NÞ*, ð18aÞ

s.t. wðkþ 1,mkþ1Þ

¼ ð1þ rÞwðk,mkÞ þ
Xn

i¼0
biðk,mkþ1Þuiðk,mkÞ,

k ¼ t, . . . , tþ "N, ð18bÞ

wðt,mtÞ ¼ wðtÞ: ð18cÞ

As highlighted in figure 2, the idea is to find the optimal
trading moves u(k,mk) up to time k ¼ tþ "N, and assume
that optimal trading moves u(k,mk) exist for
k ¼ tþ "Nþ 1, . . . ,T that provide perfect hedging
wðkÞ ¼ pðkÞ ¼ ð1þ rÞk'T ~E½ pðT Þ*. We emphasize that the
cost function in (18) is computed using the real-world
probability measure; the risk-neutral measure is used only
to express option prices.

For a given complexity (that is, the number M of future
market states), there is obviously a trade-off between the
length of the horizon "N and the ‘arity’ (number of
branches at each node) of the tree describing the setMt of
future market states.

Figure 2. Remapping the stochastic dynamic optimization onto
a shorter horizon under the ‘perfect hedging’ assumption.
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In the special case N ¼ "N ¼ 1, problem (18) becomes
the one-step-ahead minimum variance problem

min
fuðtÞg

Varmtþ1 ½wðtþ 1,mtþ1Þ ' pðtþ 1,mtþ1Þ*, ð19aÞ

s.t. wðtþ 1,mtþ1Þ ¼ ð1þ rÞwðtÞ þ
Xn

i¼0
biðt,mtþ1ÞuiðtÞ:

ð19bÞ

The reason for focusing on the formulation (19) is that
only one vector u(t) is optimized, which drastically limits
the number of optimization variables to the number of
trading assets n. Hence, the numberM of scenarios can be
quite large, as no further branching takes place after time
tþ 1. The drawback of (19) with respect to (17) is that the
option price p(tþ 1,mtþ1) must be evaluated for each
future market state mtþ1, i.e. for all M considered
scenarios. However, by optimizing the sample variance
of w(tþ 1)' p(tþ 1), problem (19) can be rewritten as the
following very simple least squares problem

min
uðtÞ

XM

j¼1
wj ðtþ1Þ'pj ðtþ1Þ' 1

M

XM

i¼1
wiðtþ1Þ'piðtþ1Þ

!!2

,

ð20Þ

where wj ðtþ 1Þ ¼ ð1þ rÞwðtÞ þ
Pn

i¼0 b
j
iðtÞuiðtÞ are the

future wealths of the portfolio for each scenario
j¼ 1, . . . ,M. The values bjiðtÞ ¼ xjiðtþ 1Þ ' xiðtÞ are
obtained through Monte Carlo simulation of the dynam-
ical model (1), each one corresponding to a different
realization of the disturbance [zx(!), zy(!)] in the time
interval [tDT, (tþ 1)DT) given the current market state
m(t). The option pricing engine is used to generate the
corresponding future option prices pj(tþ 1), j¼ 1, . . . ,M.

The proposed SMPC algorithm is summarized by
algorithm 4.1, which is solved at each trading instant
t¼ 0, . . . ,T' 1.

Algorithm 4.1: SMPC algorithm for dynamic option
hedging:

(1) Let t¼ current hedging date, w(t)¼ current wealth
of portfolio, m(t)¼ current market state;

(2) Use Monte Carlo simulation to generate M
scenarios of future market states
m1(tþ 1), . . . ,mM(tþ 1);

(3) Use a pricing engine to generate the corresponding
future option prices p1(tþ 1), . . . , pM(tþ 1);

(4) Solve the least square problem (20) to minimize the
sample variance of w(tþ 1)' p(tþ 1);

(5) Rebalance the portfolio according of the optimal
solution u,(t) of problem (20);

(6) End.

4.1.1. Pricing future option values. An option pricing
engine is needed at step 2 of algorithm 4.1 to compute the
future option prices p1(tþ 1), . . . , pM(tþ 1) over the gen-
erated scenarios, which may be a bottleneck of the

proposed SMPC approach for exotic options. Several
approaches exist to option pricing, such as those based on
Monte Carlo simulation. If each option evaluation
requires the simulation of L scenarios, then one has to
simulate ML paths on-line at each trading period t to
build the optimization problem (20), which may be a
time-consuming task. Although advanced techniques
exist for parallel computation of Monte Carlo simulations
(see, for example, Tian et al. (2008)), alternative off-line
function approximation techniques can be used to obtain
option prices for each future scenario. The idea is to
construct a function that returns the option price as a
function of m(t) (that is, of the current asset parameters
and of other option-related quantities such as {x(tk)} in
‘Napoleon cliquet’ options). In this paper we use a
function approximation inspired by the Monte Carlo
method of Longstaff and Schwartz (2001) for pricing
American derivates, in which the continuation value
(i.e. the option value at a future date) is estimated by a
regression of the discounted payoff on a base of functions
of some state variables. This methodology proved to have
superior performance with respect to other classical
general-purpose function approximation methods.

4.1.2. Alternative cost functions. In the absence of
transaction costs, the main advantage of the formulation
in (20) is that the optimization problem is a simple least
square problem in n variables that can be solved very
quickly. Alternatively, one can modify the cost function in
(20) to obtain a linear programming problem formulation
in several ways:

. Max deviation of wealth w(tþ 1) from option
price p(tþ 1):

min max
j¼1,...,M

jw j ðtþ 1Þ ' p j ðtþ 1Þj: ð21Þ

. Average absolute deviation of wealth w(tþ 1)
from option price p(tþ 1):

min
1

M

XM

j¼1
jw j ðtþ 1Þ ' p j ðtþ 1Þj: ð22Þ

. Max shortfall of wealth w(tþ 1) from option
price p(tþ 1):

min max
j¼1,...,M

maxfp j ðtþ 1Þ ' w j ðtþ 1Þ, 0g: ð23Þ

. Average shortfall of wealth w(tþ 1) from option
price p(tþ 1):

min
1

M

XM

j¼1
maxfp j ðtþ 1Þ ' w j ðtþ 1Þ, 0g: ð24Þ

Moreover, the cost function can be further modified to
penalize large long or short positions by adding penalties
on squares (or absolute values) of xj(t)uj(t) or
xj(tþ 1)uj(t), and indirectly on transaction costs by
adding penalties on squares (or absolute values) of
xj(t)(uj(t)' uj(t' 1)).

Dynamic option hedging 1745



5. Simulation results

In this section we test the SMPC algorithm 4.1 on
different options and asset price models.

All simulation were performed on a MacBook Air with
a 1.86 GHz Intel Core 2 Duo processor and 2 Gb RAM
running MatlabR2009 under MS Windows, using the
following parameters:M¼ 100 is the number of scenarios,
N¼ 1 is the prediction horizon, DT¼ 1 week is the time
interval between consecutive reallocations of the portfo-
lio, T¼ 24 is the maturity in number of weeks of the
option, and ra¼ 4% is the annualized continuously
compounded interest rate so that r¼ e0.04(1/54)'
1¼ 0.00074102 is the return of the risk-free investment
over DT. In every example shown below, we test the
hedging strategy over 50 simulations of randomly gener-
ated market evolutions.

We will consider a single stock x1(t) with initial spot
price x1(0)¼E100. For European call options (9), we will
consider the strike price K¼E100, unless indicated
otherwise. The number of traded assets is n¼ 1 when
only the underlying stock is traded, or n¼ 2 when the
European call option with expiration at time tþT and
strike price x1(t)(1þ r)T't is also traded in the portfolio.
For ‘Napoleon cliquet’ options (10), we consider Nfix¼ 3
fixing dates, with t0¼ 0, t1¼ 8, t2¼ 16, t3¼ 24 weeks, and
coupon C¼ 0.1. When Monte Carlo simulation is used to
price ‘Napoleon cliquet’ options, L¼ 1000 scenarios are
evaluated to compute the expected payoff.

We will consider the log-normal stock price model (2)
withy "¼ ra, dz

x
1 - N ð0, 1Þ and volatility #¼ 0.2, which

will also be referred to as the Black–Scholes (BS) model,
and Heston’s (H) model (3), with initial variance
y1(0)¼ 0.04, and parameters $1¼ 0.04, (1¼ 1, !1¼ 0.3
and %1¼' 0.5. In all simulations we assume that the
value of market volatility is estimated exactly.

5.1. European call option

We first test the SMPC strategy (20) to replicate a
European call option, only trading the risk-free asset and
the underlying stock (n¼ 1). The BS model (2) is used
both in the MPC formulation and to generate actual
market prices in the simulation. An analytical pricing
formula is used to compute future asset values p j(tþ 1),
j¼ 1, . . . ,M. The results are depicted in figure 3(a), where
each point denotes the final wealth value w(T ) at the end
of a simulation. Note that we are considering here an
at-the-money (ATM) option (K¼ x1(0)¼E100). The
average CPU time to execute algorithm 4.1 is 7.52ms.
The actual paths w(t), p(t), t¼ 0, 1, . . . ,T, are shown in
figure 4(a), where paths corresponding to the same
simulation are depicted in the same color. The numerical
values obtained in one of the simulations are reported in
table 1, where u0(t) denotes the amount of risk-free asset
in the portfolio. The last column reports the quantity
x1(t)D(t), where D(t)¼ @p(t)/@x1(t) is computed by numer-
ical differentiation of the Black–Scholes analytical pricing
formula. It is apparent that the MPC approach provides a
trading move very close to the classical ‘delta hedging’
u1(t)¼D(t)x1(t), as must be expected from Black–Scholes
theory for exact hedging. A comparison between MPC
hedging and delta hedging, which takes an average CPU
time of 0.2 ms per time step, in a simulation of the market
under the same stock price realizations is reported in
figure 5. In both cases the hedging errors
e(T )¼w(T )' p(T ) are within .E2.5, and the difference
between hedging errors achieved by SMPC and delta
hedging is within .E0.13.

In order to test the proposed SMPC hedging algorithm
on out-of-the-money (OTM) options, we consider the
same European call with strike price changed to
K¼E115, which roughly corresponds to one standard

Figure 3. Hedging a European call using SMPC based on the BS model: payoff function p(T ) and final wealth w(T ) (E) as a
function of the stock price x1(T ) at expiration (E). (a) ATM option, k¼E100 and (b) OTM option, k¼E115.

yIn this particular case, the probability measure used for the asset price and portfolio dynamics coincides with the risk-neutral one.
However, the reader should note that the approach of this paper relies on the real-world probability measure for the asset price and
portfolio dynamics.
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deviation from ATM in the Black–Scholes world given
the volatility # of the underlying. In this case the ratio
x1(0)/K’ 0.87, which is considered OTM according to the
classification of Rubinstein (1985), and D(0)¼ 0.1982,
which is also considered OTM by Bollen and Whaley
(2004).

Next, we adopt Heston’s model (3) for stock prices
to replicate a European call option with strike price
K¼E100, only trading the risk-free asset and the

(a) (b)

Figure 4. Trajectories of the wealth w(t) (E) and the option price p(t) (E) corresponding to the hedging results of figure 3. The same
colors correspond to the same simulation. (a) ATM option, k¼E100 and (b) OTM option, k¼E115.

Table 1. Hedging of a European call based on the
Black–Scholes model: results of a sample simulation (u0(t) is
the amount of risk-free asset; D(t)¼ @p(t)/@x1(t) is computed by
numerical differentiation of the analytical pricing formula).

Note the similarity between the last two columns.

t x1(t) w(t) p(t) u0(t) x1(t)u1(t) x1(t)D(t)

0.0000 100.000 6.196 6.196 '52.152 58.348 57.926
0.0185 101.367 6.955 6.865 '56.091 63.046 62.628
0.0370 96.897 4.134 4.261 '42.629 46.762 46.307
0.0556 94.582 2.985 3.108 '35.080 38.065 37.607
0.0741 93.057 2.345 2.415 '29.877 32.222 31.771
0.0926 93.371 2.431 2.395 '30.200 32.632 32.165
0.1111 94.295 2.732 2.591 '32.518 35.250 34.760
0.1296 88.192 0.426 0.859 '14.985 15.411 15.053
0.1481 90.411 0.803 1.199 '19.776 20.579 20.147
0.1667 88.586 0.373 0.754 '14.236 14.609 14.234
0.1852 87.683 0.214 0.544 '11.312 11.526 11.186
0.2037 90.998 0.641 1.000 '18.744 19.385 18.910
0.2222 94.742 1.425 1.867 '30.734 32.158 31.555
0.2407 99.890 3.149 3.945 '52.320 55.469 54.841
0.2593 102.720 4.682 5.466 '64.736 69.418 68.857
0.2778 99.723 2.609 3.439 '51.468 54.077 53.379
0.2963 99.591 2.499 3.147 '50.513 53.012 52.268
0.3148 98.178 1.709 2.233 '42.460 44.169 43.336
0.3333 100.471 2.709 3.142 '55.135 57.845 57.034
0.3519 102.804 4.012 4.363 '69.359 73.371 72.719
0.3704 97.457 0.144 1.202 '34.892 35.037 33.884
0.3889 97.789 0.238 1.030 '34.692 34.930 33.564
0.4074 98.881 0.602 1.089 '41.289 41.891 40.275
0.4259 97.699 0.071 0.308 '22.850 22.921 20.300
0.4444 96.002 '0.344 0.000 '0.344 0.000 0.000
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Figure 5. Comparison of the hedging errors e(T )¼w(T )' p(T )
(E) corresponding to the hedging results of figure 3: SMPC vs.
delta hedging of a European call based on the Black–Scholes
model.

Figure 6. Hedging a European call using SMPC based on the
Heston model: payoff function p(T ) and final wealth w(T ) (E)
as a function of the stock price x1(T ) at expiration (E).
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underlying stock (n¼ 1). The analytical pricing formula
(Heston 1993) is used to compute future asset values
pj(tþ 1), j¼ 1, . . . ,M. The results are depicted in figure 6.
The average CPU time to execute algorithm 4.1 is 85.5
ms. A comparison between MPC hedging and delta

hedging, which takes an average CPU time of 1.85 ms per
time step, in a simulation of the market under the same
stock price realizations is reported in figure 7. In both
cases the hedging errors e(T )¼w(T )' p(T ) are within
.E5.5, and the difference between hedging errors
achieved by SMPC and delta hedging is within .E1.42.

5.2. ‘Napoleon cliquet’ option

As described in the previous section, for plain vanilla
options the SMPC approach produces hedging results
comparable to standard (and simpler) delta-hedging
approaches. The advantages of the SMPC strategy
become apparent when replicating path-dependent
exotic options. Consider first a ‘Napoleon cliquet’
option with payoff (10) based on the Black–Scholes
stock price model (2). Figure 8 compares the results
obtained by (a) adopting the SMPC strategy by only
trading the risk-free asset and the underlying stock (n¼ 1)
and Monte Carlo simulation to price future asset values
pj(tþ 1), j¼ 1, . . . ,M, (b) adopting the SMPC strategy
trading also the European call x2(t) associated with the
same stock (n¼ 2), and (c) using delta hedging. The
results are depicted in figure 8. The average CPU time to
execute algorithm 4.1 is (a) 1.40 s, (b) 1.62 s and (c)
2.41ms.

Figure 7. Comparison of the hedging errors e(T )¼w(T )' p(T )
(E) corresponding to the hedging results of figure 6: SMPC vs.
delta hedging of a European call based on the Heston model.

Figure 8. Hedging a ‘Napoleon cliquet’ option using SMPC based on the Black–Scholes model: final wealth w(T ) (E) vs. payoff
p(T ) (E) at expiration. (a) SMPC n¼ 1; (b) SMPC n¼ 2 and (c) Delta hedging.
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We estimate the option price p(t) as a function of the
spot price x1(t) and of the spot prices at past fixing dates
x1(t0), . . . , x1(tk), with tk+ t5tkþ1, using the approxima-
tion method of Longstaff and Schwartz (2001). This takes
about 76.6 s of off-line computation. Hedging results are
almost indistinguishable from those obtained using
on-line Monte Carlo simulation to price future options,
with a drastic reduction of on-line CPU time to 50.5 ms
(n¼ 1) and 59.2 ms (n¼ 2).

When Heston’s model (3) is used, the Longstaff–
Schwartz approximation method takes about 156 s of
off-line CPU time to estimate the option price p(t) as a
function of the spot price x1(t), its variance y1(t), and of
the spot prices at past fixing dates x1(t0), . . . , x1(tk), with
tk+ t5tkþ1. On-line CPU time is 220 ms (n¼ 1) and 277
ms (n¼ 2), and the corresponding hedging results are
depicted in figure 9. For comparison, figure 9(c) reports
the results obtained using delta hedging, which is com-
puted by numerical differentiation and whose on-line
CPU time is 156 ms.

6. Conclusions

After highlighting how the dynamic hedging problem of
financial options can be recast as a stochastic con-
trol problem, in this paper we have proposed a stochastic
model predictive control approach based on a minimum

variance criterion to rebalance periodically the portfolio
underlying the option. We have shown that the tool is
very versatile for dynamic option hedging. In fact, being
based on Monte Carlo simulation, it can handle multiple
assets, very general exotic options and payoff functions,
and rather general stock price models. The computational
demand of the SMPC approach is mostly due to pricing
future option values, a task that can be alleviated by
approximating the pricing function off-line.

The potential use of SMPC by financial institutions is
twofold. It can be used on-line to suggest trading moves
to traders, or off-line to run extensive simulations and
quantify the average hedging error for a given market
model and option type.

The results of this paper have recently been extended to
test the robustness of the approach with respect to market
modeling errors and to decrease the load of option pricing
by sampling scenarios from a given probability distribu-
tion (Bemporad et al. 2010), and to handle proportional
transaction costs and different risk measures in a numer-
ically efficient way (Bemporad et al. 2011).
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