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(57) Method for creating digital circuits of an MPC
controller (2), which implements an approximation tech-
nique for Model Predictive Control (MPC), in which a
quadratic programming (QP) or linear programming (LP)
optimization problem is formulated by starting from a
model defined over a set of states of a state (x), wherein

the said set of states is partitioned into simplices identified
by vertices (vi), and wherein said method comprises the
steps of a) compute a solution (w*) of the optimization
problem and define a control law (u(x)); b) check the sta-
bility under the control law (u(x)); c) synthesize a digital
circuit by starting from the control law (u(x)) and the ver-
tices (vi).
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Description

[0001] In its most general aspect, the present invention relates to a method for creating digital circuits of a feedback
control system that implements an approximation technique for Model Predictive Control (MPC). In addition to that,
circuit architectures of the aforesaid control system are also described.
[0002] MPC is an increasingly popular technique in industry for feedback control of a multivariable process subject to
constraints on manipulated and controlled variables. A generic physical process like the one shown in FIG. 1, which can
be modeled by either a continuous-time or a discrete-time linear system of equations (i.e. by a linear state-space
dynamical model, see Formula 1), can be regulated to the origin (rk =0; the general case of tracking nonzero reference
signals will be treated later) by a feedback controller implementing a MPC technique. 

[0003] Indeed, MPC gives an effective solution to the problem of regulating the system to the origin while fulfilling
constraints on input, output and state variables. Here, at each sampling time, starting at the current state, an open-loop
optimal control problem is solved over a finite horizon. At the next time step, the computation is repeated starting from
the new state and over a shifted horizon, leading to a moving horizon policy. The solution relies on a linear dynamic
model, respects all input and output constraints, and optimizes a quadratic performance index. Over the last decades,
a solid theoretical foundation for MPC has emerged so that in real life, large-scale Multi-Input and Multi-Output (MIMO)
applications controllers with non-conservative stability guarantees can be designed routinely and easily. The main draw-
back ofthe MPC is the relatively high on-line computational effort, which limits its applicability to relatively slow and/or
small problems.
[0004] Nevertheless, it is possible to move all the computations necessary for the implementation of MPC off-line,
while preserving all its other characteristics. In fact, the optimal control law can be expressed as a PWA (vector) function
of the state variables, obtained solving a multi-parametric quadratic programming (mpQP) problem. Consider a MPC
algorithm based on the linear discrete-time prediction model given in Formula 1 of the open-loop process and on the
solution of the finite-time optimal control problem 

where N is the prediction horizon, Nu (< N) is the control horizon,  the vector of variables to be optimized,

Q=Q’≥0 (i.e., Q is symmetric and semidefinite positive), R=R’>0 and P=P’≥0 are weight matrices of appropriate dimen-
sions defining the performance index, ε is a slack variable relaxing the constraints, and p > 0 is a (large) weight penalizing
constraint violations. Eu, Gu, Vu and Ex, Fx, Gx, Vx are matrices of appropriate dimensions defining constraints on input

variables, and on output and state variables, respectively. Vector Vx > 0 defines the degree of softening ofthe mixed

input/state constraints. Similarly, input constraints can be softened by imposing Vu > 0. K is a terminal gain defining the

remaining control moves after the expiration of the control horizon Nu; for instance K = 0, or K is the linear quadratic

regulator gain associated with matrices Q and R, and P is the corresponding Riccati matrix. By substituting

 the MPC problem in Formula 2 can be cast as the following multiparametric quadratic programming
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problem (mpQP)

where  is a vector collecting the optimal control value for the current time step  and at the

following predicted time steps  and x = x(t+kts) = xk is the current state vector. At each time step, only

 is applied whereas the remaining functions are discarded. It can be shown that the vector  is a piecewise-
affine (PWA) function of x defined over a subset ofthe state space (see Formula 4). 

[0005] The values of the gain Fi and the offset gi depend on the region, defined by the polyhedron {x: Hix ≤ k¡} containing

the state x. Therefore, the evaluation of the vector  requires finding the region that contains the current state x, a
problem known as "point location problem." This problem can be solved by digital circuits employing organized data
structures (e.g. binary search trees). The main drawback is that the number p of regions that define the state partition
grows largely with the number of constraints in Formula 2 and the extension Nu of the control horizon. Moreover, the

size of the memory inside the circuit increases with the number of coefficients required to define properly each region
and the affine expressions.
[0006] Determining a proper control function u(x) that is feasible, stabilizing, and easy to implement at the same time
is a key aspect for MPC implementation. To face this problem, Bemporad et al. in the paper titled "Ultra-Fast Stabilizing
Model Predictive Control via Canonical Piecewise Affine Approximations" published on IEEE Transactions on Automatic
Control, pp. 2883-2897, Dec. 2011 (doi: 10.1109/TAC.2011.2141410) describe an alternative control law based on a
suboptimal solution to the MPC problem.

[0007] Instead ofusing the PWA function  obtained by solving the mpQP problem, they use piecewise-affine

simplicial (PWAS) functions to approximate the optimal control law. To this end, they formulate an optimization problem
(either quadratic or linear) imposing a set  of conditions that guarantee the feasibility of the solution with respect to the
MPC constraints. The suboptimal solution can be implemented on circuits that are faster in terms of throughput and
have a simpler structure with respect to the circuits implementing the PWA optimal solution to the MPC problem.
[0008] PWAS functions are a particular class of PWA functions defined over a regularly shaped partition of the set of
possible states x. This partition is composed by simplices (a simplex is a segment in a one-dimensional space, a triangle
in a two-dimensional space, a tetrahedron in a tree-dimensional space, and so on). The set of states is partitioned into
simplices as follows. Every dimensional component xi = [xj,MIN, xj,MAX], j = 1,...,n (meaning that the set of states is

hyperrectangular) of the state is divided into pj subintervals of uniform length. Consequently, the set of states is divided

into hyper-rectangles, and contains  vertices vi. Each hyper-rectangle is further partitioned into n! simplices

with non-overlapping interiors.
[0009] The regularity of the partition allows expressing the value of a continuous PWAS function as a linear combination
of basis functions (see Formula 5). 

[0010] Once the partition and the set of basis functions ϕi(x) have been fixed, the PWAS function u(x) is completely
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defined by the set of coefficients wi.
[0011] PWAS functions can be easily implemented on digital circuits. Indeed, it is possible to calculate the value of a
PWAS function at a point x by interpolating the values of the PWAS function at the vertices ofthe simplex containing x.
[0012] The method proposed by Bemporad et al. aims at obtaining a PWAS function u(x) which minimizes the distance

(in a properly defined metric space) from the optimal solution  of the MPC problem, while fulfilling the MPC con-

straints. This function is defined by a set of coefficients wi. A cost function used to compute the coefficients wi of the

PWAS function u(x) is shown in Formula 6. 

[0013] This cost function utilizes the norm L2, in order to compute the distance between the  optimal solution 

and the approximated one u(x). The latter is obtained through the minimization of the cost function, with respect to the
coefficients wi and to the Nσ slack variables σi.

[0014] Some constraints derived from those appearing in the problem shown in Formula 3 are inserted in the minimi-
zation ofthe cost function shown in Formula 6, in order to fulfill the MPC constraints on input u, output y and state x. 

where G, W, D, Z and S are matrices of appropriate dimensions and  is a PWAS function used to relax

output and state constraints. Notice that values of variables σi > 0 are minimized by Formula 6 to be selected as low as

possible.
[0015] This approximation method does not guarantee a priori the stability of the closed-loop system shown in FIG.
1. Thus, an a posteriori stability analysis is required. This analysis can be carried out by constructing a PWA Lyapunov
function whose existence demonstrates the stability of the closed-loop system of FIG. 1. Therefore, the design of a
stabilizing MPC problem may require more than a single iteration.
[0016] The block diagram in FIG. 2 shows the key steps to obtain the PWAS approximated solution of the MPC problem
through the method described by Bemporad et al. This method comprises a step S1 for solving a mpQP problem starting
from the mathematical model shown in Formula 1, and a step S2 for solving a Quadratic Programming (QP) optimization
problem (minimization of the cost function in Formula 6 subject to the constraints in Formula 7), in order to get, respectively,

the optimal solution  and the approximated solution u(x). After that, if the approximated solution u(x) is able to

stabilize the closed-loop system, the solution is accepted, and is used for generating the digital circuits of the MPC
controller. Otherwise, steps S1/S2 may be repeated by varying the parameters (e.g. number of subintervals pj, type of

basis functions, etc.) and/or the MPC constraints (on input u, output y, and state x), in order to find a different approximated
solution u(x) that is stabilizing.
[0017] The execution of the above-described method requires a relevant amount of resources, since it is necessary

to compute both the optimal solution  and the approximated solution u(x). This makes particularly difficult to find

an approximated solution u(x) able  to stabilize the model of the physical process, because it is necessary to change
the parameters and the MPC constraints of two distinct programming problems.
[0018] Moreover, solving the mpQP problem may hit the memory and CPU requirements of a design platform, because
ofthe combinatorial explosion ofthe number of regions.
[0019] The present invention aims to solve these and other problems by providing a method for creating digital circuits
implementing a feedback control system based on an approximated solution of an MPC problem, without solving any
mpQP problem at all. In addition to that, the present invention aims to solve these and other problems by providing circuit
architectures for the implementation of the control system.
[0020] The main idea of the present invention is the generation of an approximated solution u(x) by solving only a
single programming problem. Further advantageous features of the present invention are the subject ofthe attached
claims. The features of the invention are specifically set forth in the claims annexed to this description; such characteristics
will be clearer from the following description of a preferred and non-exclusive embodiment shown in annexed drawings,
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wherein:

FIG. 1 shows a block diagram of a closed-loop system controlled by a feedback control system that implements a
Model Predictive Control (MPC) technique.
FIG. 2 shows a flow diagram representing the method described in the prior art document authored by Bemporad
et al., titled "Ultra-Fast Stabilizing Model Predictive Control via Canonical Piecewise Affine Approximations," and
published on IEEE Transaction on Automatic Control, pp. 2883-2897, Dec. 2011 (doi: 10.1109/TAC.2011.2141410);
FIG. 3 shows a flow diagram representing a method for creating digital circuits of a feedback control system according
to the invention;
FIG. 4 shows a block scheme representing a generic (serial) circuit architecture implementing a PWAS function and
described in the prior art document authored by M.
Storace, T. Poggi, "Digital architectures for the circuit implementation of PWL multi-variate functions: two FPGA
implementations," International Journal of Circuit Theory and Applications, vol. 39, pp. 1-15,2011, doi: 10.1002/cta.
610;
FIG. 5 shows a block scheme representing a (parallel) variant of the circuit architecture shown in FIG. 4, described
in the prior art document authored by M. Storace, T. Poggi, "Digital architectures for the circuit implementation of
PWL multi-variate functions: two FPGA implementations," International Journal of Circuit Theory and Applications,
vol. 39, pp. 1-15, 2011, doi: 10.1002/cta.610;
FIG. 6 shows a block scheme representing a modified generic serial circuit architecture based on the one shown
in FIG. 4, more suitable for the implementation of the MPC controller shown in F1G. 1;
FIG. 7 shows a block scheme representing a modified generic parallel circuit architecture based on the one shown
in FIG. 5, more suitable for the implementation of the MPC controller shown in FIG. 1;
FIGs. 8a-c show three alternative input acquisition blocks for the generic circuit architectures displayed in FIGs. 6
and 7;
FIG. 9 shows a circuit block to be used in the circuit architectures displayed in FIGs. 4,5,6,7, which allows to handle
non-uniform simplicial partitions, according to the prior art document authored by T. Poggi, F. Comaschi, M. Storace,
"Digital circuit realization of piecewise affine functions with non-uniform resolution: theory and FPGA implementation,"
IEEE Transactions on Circuits and Systems-II: Transaction Briefs, vol. 57, n. 2, pp. 131-135, Feb. 2010, doi:
10.1109/TCSII2010.2040316;
FIG. 10 shows an improved version ofthe circuit block displayed in FIG. 9.

[0021] In FIG. 1, a closed-loop system 1 is shown. This system 1 comprises an MPC controller 2 implementing an
MPC technique (and including input and output signal conditioning blocks and an output digital-to-analog converter), a
physical process 3 producing an output y(t) coincident with the system state x(t) (i.e., with C = I), and a set of sensors
and samplers 4 sampling the state x(t) with a sampling time ts and generating a sampled system state xk = x(t+kts).
[0022] The MPC controller takes a set of signals as input, wherein the set of signals comprises a sampled system
state xk and a reference signal constant rk. If rk=0, the feedback block regulates the state of the physical process to the
origin and rk can be omitted from the formulation. Otherwise, in Formula 2 one must extend the prediction model (A,B)
by augmenting the state vector to Xk=[xk,rk,uk-1] and treat Δuk=uk-uk-1 as the new input signal. In this way, the tracking
performance to be minimized can be expressed by penalizing ek-xk-rk=[I-I0]Xk, and by setting Q=[I-I0]’Qy[I-I0], where
Qy is a weight matrix on ek, terminal weight P=0, and assigning to matrix R the role of weighting input increments. The
role ofthe MPC controller 2 is to generate a control output comprising a control signal u(t), which is constant during each
time interval [kts,(k+1)ts), and is applied to the physical process 3 as input. In order to control the physical process 3 by
maintaining the error signal within an error interval, the MPC controller executes a control method for controlling the
physical process 3 comprising the following steps:

a. read the state xk = x(t+kts)
b. compute the control value uk by using a control law u(x);
c. apply the control signal uk = u(t+kts) = u(xk) to the physical process 3;
d. at time t+(k+1)ts return to step (a).

[0023] In this way, the system 1 can show a stable behavior.
[0024] As shown in FIG. 3, the control law u(x) is computed by solving a single Quadratic Programming (QP) or Linear

Programming (LP) problem without computing the optimal solution  (also called multiparametric quadratic pro-

gramming solution). In order to avoid the intermediate computation of the optimal solution  the cost function
shown in Formula 6 has been sampled at vertices vi, where i ranges from 1 to Nv. In this way, solving a mpQP problem
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is no longer required, only a QP problem must be solved, as described below. As for the prior art document, also a LP
formulation can be obtained, but it will not be explicitly presented here (we focus on the QP formulation).
[0025] A PWAS function U(x)∈PWAS, U:Rn → RN

u
+1, can be expressed in the following way 

where ϕ(x)is is a properly chosen PWAS basis and w=[(w0)’,...,(wN
u)’,(wσ)’] is the vector of unknown parameters. Formula

8 extends Formula 5 to vector-valued PWAS functions.
[0026] In order to define uniquely an optimal control sequence U*(x)∈PWAS, U*(x)=Φ)(x)w*, and set a PWAS control
law u(x)=(w*,0)’ϕ(x), the cost function is sampled at the vertices vi, i=1,...,Nv, of the simplicial partition and PWAS coef-
ficients w* are calculated by solving the following QP problem

where inequality constraints impose the feasibility of the solution (with respect to the original constraints of the MPC
problem on inputs and outputs) and the equality constraint forces the control action vanish at the origin. The stability of
the closed-loop system is not imposed by any constraint, thus it must be checked a posteriori.

[0027] By eliminating the term  that does not affect the solution w*, and by substituting Formula 8 into 9, one
obtains 

[0028] Finally, by setting Hi=Φ’(vi)HΦy(vi),  and Gi =GΦ(vi) the coefficients w* can be found by solving the

following QP 

[0029] The above-stated problem can be advantageously solved without computing the optimal solution  of



EP 2 672 340 A1

7

5

10

15

20

25

30

35

40

45

50

55

the MPC problem. Therefore, it is possible to save off-line computational resources by using this advantageous problem
formulation. In this way, reaching a solution for this problem may require less design time than before.
[0030] Concerning feasibility, notice that the original constraints in Formula 3 are imposed only at the vertices of the
simplicial partition in Formula 11. This guarantees feasibility at all states x, as for each simplex S of the partition the
condition GU(vi) ≤ W + Dvi imposed at all the vertices vi of S and the linearity of U(x) on S implies that GU(x)≤W+Dx,
∀x∈S. To ensure closed-loop stability under the control law u(x)=(w*,0)’ϕ(x), an a posteriori stability check of the solution
must be carried out, for example by constructing a PWA Lyapunov function as in the aforementioned method of Bemporad
et al.. The construction of a Lyapunov function can be done by following well-known methods, which do not fall within
the scope ofthis application.
[0031] If the stability check is positive, the solution u(x) is kept, otherwise a new solution is computed by varying the
parameters and/or the MPC constraints.
[0032] When a stabilizing approximate PWAS control law u(x) is found, it is possible to create one or more digital
circuits that implement it, i.e. that implement an approximate MPC. Summarizing, the method for creating digital circuits
according to the invention comprises the following steps:

a. define a simplicial partition for the set of states;
b. compute the control law u(x)=(w*,0)’ϕ(x) by solving the QP problem in Formula 11, based on a model of the
physical process 3, a linear or quadratic performance index, and linear constraints on input, state, and output
variables;
c. check the stability ofthe closed-loop system under the control law u(x);
d. synthesize a digital circuit that implements u(x), based on the values u(v¡) at the vertices vi.

[0033] To synthesize the digital circuits of a feedback control system, generic circuit architectures are used. These
architectures can be easily implemented on FPGA, DSP, or the like by simply using the basis function ϕ(x) and the
parameters w*,0 as input data for the synthesis process.
[0034] In the following, we describe two prior art circuit architectures, proposed in the paper M. Storace, T. Poggi,
"Digital architectures for the circuit implementation of PWL multi-variate functions: two FPGA implementations," Inter-
national Journal of Circuit Theory and Applications, vol. 39, pp. 1-15, 2011, doi: 10.1002/cta.610.
[0035] In FIG. 4, a generic serial circuit architecture 21 is shown. The generic serial circuit architecture 21 computes
the value of a PWAS (scalar) function fPWL(z) by taking coordinates of a point z as input, where fPWL and z are scaled
versions (not shown in the  attached figures) of the control law u and of the state x, respectively.
[0036] In order to compute the value of the PWAS function fPWL(z) in a very efficient way, this architecture circuit 21
exploits the regularity of the partitions. The domain of the PWAS function fPWL(z) must be reseated so that each dimension
is partitioned into segments with unitary length, i.e. the coordinates of the vertices of the simplicial partition have integer
values. In this way, the PWAS function fPWL(z) can be evaluated in three steps:

a. locate the hypercube containing the point z by using the integer part of the coordinates ofthe point z;
b. locate which of the n! simplices contained in the selected hypercube contains the point z by using the decimal
part of the coordinates of the point z;
c. compute the value of fPWL(z) by linear interpolation of the value of fPWL at the vertices ofthe selected simplex.

[0037] If one needs to compute a vector PWAS function, the circuit can be replicated as many times as the number
of components of the function.
[0038] The generic serial circuit architecture 21 comprises a Serial Input-Parallel Output (SIPO) register 22, a sorter
23, a swap register 24, an address generator 25, a memory 26, a m-generator 27, and a Multiply Accumulate Unit (MAC) 28.
[0039] Both the SIPO register 22 and the sorter 23 take the data z as input; the data z is coded with p bits representing
the integer part of the coordinate and q bits representing the decimal part.
[0040] The SIPO register 22 converts the serial input to parallel output, and loads it in the swap register 24. The sorter
23 implements a rank-extractor algorithm as described by Pedroni, in the paper titled "Compact Hamming-comparator-
based rank order filter for digital VLSI and FPGA implementations" published in Proceedings of the 2004 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS 2004) on pages 585-588, doi: 10.1109/ISCAS.2004.1329339. This
algorithm is used in the sorter 23 to sort the n strings of q least significant bits of the input data zi, i = 1,...,n. In this way,
sorter 23 produces sorted strings δi (i =1,...,n) (δ1 > δ2>... > δn) as outputs, which are provided in parallel fashion, through
the swap register 24, to the m-generator 27 and the address generator 25. The m-generator 27 is a combinatorial network
that, starting from the sorted strings δi, computes n+1 terms mj for the current input and provides them to the MAC 28.
The mj coefficients, represented with q-bit precision, are calculated as shown in Formula 12. 

^ ^ ^ ^

^
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[0041] The address generator 25 is a combinatorial network that, starting from the integer and decimal parts ofthe
point z and from the sorted strings δi, generates the address of one of the n+1 coefficients wj representing the values
of the PWAS function FPWL(z) in the vertices of the simplex containing z. These addresses are provided to the memory
26 that contains all values ofthe PWAS function in the vertices ofthe simplicial partition.
[0042] The memory 26, properly addressed, provides the n+1 coefficients wj to the MAC 28. Each coefficient wj is
coded with a number b of bits.
[0043] The MAC 28 computes the value ofthe PWAS function fPWL(z) by evaluating Formula 13. 

[0044] After the computation ofthe value ofthe PWAS function fPWL(z), the q less significant bits of fPWL(z) are discarded,
in order to scale the coefficients mj from the interval [0,2q-1 to [0,1].
[0045] The SIPO register 22 and the sorter 23 require s clock periods for loading their output in the swap register 24,
and the address generator 25 requires t clock cycles for performing its combinatorial operation. Finally, the m-generator
27 requires r clock cycles for doing its computations. It is possible to notice that t and r depend only on the working
frequency of the circuit. Therefore, the total number of clock cycles required to process a single input is p + q + s + max
{t,r} + (n+3), that is linear with respect to the number of inputs and to the number of bits used to code the input.
[0046] Due to the presence of the swap register 24, the processing can be pipelined, thus allowing an input sampling
period ofs + max{p + q + max{t,r}, (n+3)} clock cycles.
[0047] A first variant of the above-described generic circuit architecture 21 is shown in FIG. 5. For brevity’s sake, the
following description highlights only the parts that differ from the main embodiment, for the same reason, the identical
numerical references with one or more quotes are used to indicate functionally equivalent elements.
[0048] A generic parallel circuit architecture 21’, which is functionally equivalent to the generic serial circuit architecture
21, comprises an input register 29. This register is used to synchronize the input (the point z) with the other components.
Indeed, the generic parallel circuit architecture 21’ also comprises a sorter 23’, an address generator 25’, a memory 26’,
a m-generator 27’, and multipliers-adder 28’ replacing the MAC 28. The multipliers-adder 28’ comprises n+1 multipliers
28’a and an adder 28’b.
[0049] Since the generic parallel circuit architecture 21’ is able to perform parallel data processing, the coefficients wj
and mj have to be provided to the multipliers 28’a at the same time. For this reason, the address generator 25’ produces
in parallel n+1 different addresses, the m-generator 27’ n+1 different coefficients mj, and the memory 26’ provides n+1
different coefficients wj.
[0050] The present invention aims to improve and generalise these circuit architectures. In addition to that, the present
invention aims to modify these circuit architectures to make them usable for control applications. Control systems, indeed,
must execute the following steps:

a. read system state xk at time t+kts;
b. scale xk to zk;
c. compute the control action fPWL(zk);
d. scale fPWL(zk) to uk and send it in output at time t+kts+δ, being δ << ts the circuit latency;
e. wait until time t+(k+1)ts before reading next state xk+1.

[0051] To accomplish to this temporal sequence of steps a number of changes have been applied to the prior art circuit
architectures. These changes are described below.

^



EP 2 672 340 A1

9

5

10

15

20

25

30

35

40

45

50

55

[0052] A serial circuit architecture 31, which is shown in FIG.6, has been created by us in order to improve the circuit
architecture 21. In the serial circuit architecture 31, the swap register 24 of the architecture 21 has been removed, thus
eliminating the pipeline. With the pipeline, indeed, the state xk+1 would have been read before applying the control move
for state xk. In addition to that, the serial circuit architecture 31 comprises a timer 37 in order to allow that the states are
sampled with the correct sampling time ts. In the circuit architecture 21, the circuit samples the state as soon as it finishes
the previous computation, without respecting the specifications (sampling time) imposed in the controller design.
[0053] The serial circuit architecture 31 is more flexible than circuit 21, since it comprises an  input register 32, which
can be configured, as shown in FIGs. 8a-8c, to read the state in three different ways: (i) serial bit-wise, i.e. one bit of all
state components is read at each rising edge of the system clock, (ii) serial component-wise, i.e. a whole component is
read at each rising edge of the clock or (iii) in parallel, i.e. all components are read together. This allows to interface the
circuit with different A/D converters without any effort.
[0054] A further upgrade of the multiple-input single output (MISO) serial circuit architecture 31 consists in the possibility
of computing multiple outputs, thus obtaining a MIMO circuit architecture. In this case different PWAS functions fPWL(z)
are associated to the same simplicial partition, so the computation of all PWAS functions fPWL(z) can be fastened by
solving just once the point location problem, since all PWAS functions fPWL(z) are partitioned in the same way. In practice
the computation of PWAS vector functions is made possible by inserting several memory banks in the block memory
26,26’, one bank for each PWAS function fPWL(z), with the value of the different functions in the vertices of the simplicial
partition. In the serial architecture 31 the various functions are computed in sequence, while in the parallel architecture
31’ (shown in FIG. 7) they are computed at the same instant. Without this improvement (i.e., in the circuit architectures
21 and 21’), the computation of vector functions has to be performed by replicating the same architectures several times,
without taking advantage ofthe fact that the simplicial partition is common to all functions.
[0055] FIG. 7 shows a parallel circuit architecture 31’, which is a variant of the upon-mentioned serial circuit architecture
31. The approach adopted to design the parallel circuit architecture 31’ has similarities with the one used for the parallel
circuit architecture 21’. The parallel circuit architecture 31’ is functionally equivalent to the serial circuit architecture 31.
[0056] Since the parallel circuit architecture 31’ is able to perform parallel data processing, the coefficients wj and mj
have to be provided to the multipliers 28’a at the same time. For this reason, the address generator 25’ produces in
parallel n+1 different addresses, the m-generator 27’ n+1 different coefficients mj, and the memory 26’ provides n+1
different coefficients wj.
[0057] A further improvement is concerned with non uniform simplicial partitions. In [T. Poggi, F. Comaschi, M. Storace,
"Digital circuit realization of piecewise affine functions with non-uniform resolution: theory and FPGA implementation,"
IEEE Transactions on Circuits and Systems-II: Transaction Briefs, vol. 57, n. 2, pp. 131-135, Feb. 2010, doi: 10.1109/TC-
SII.2010.2040316] only non-uniform partitions are handled, where the distance between near vertices is a power oftwo.
This limits the range of applications in which the architecture can be used. The cited reference discloses a circuit block
41 shown in FIG. 9; this circuit block 41 is able to convert the state xi into the input data z, for circuits 21, 21’, 31 and 31’.
[0058] The circuit block 41 comprises n comparators 42, an adder 43, a memory 44, a subtractor 45, a shift register
46, and an output register 47.
[0059] The circuit block 41 receives the i-th component xi of the state x as input, and the comparators 42 compare the
i-th component x, of the state x with the i-th component of all vertices (xi

kj,j = 1,...,n) of the non-uniform simplicial partition.
Each comparison gives as result one bit (sk, k = 1,..., n) and all these bits are summed up by the adder 43 to obtain an
address value having r bits, which is taken by the memory 44 as input. In this way, the memory 44 produces an output
comprising a shifting value qi

ki and the i-th component of the vertex xi
ki identifying the hyper-rectangle containing the

state x. The said vertex xi
ki is the one, between the 2n vertices characterizing a hyper-rectangle, with smaller coordinates.

The i-th component of the vertex xi
ki is then subtracted with subtractor 45 from the i-th component xi of the state x. In

order to perform the scaling, the output ofthe subtractor 45 is then shifted by the shifter 46 of a number of positions equal
to the shifting value qi

ki. Finally, the address value and the output ofthe shifter 46 are concatenated with block 47 to
obtain the scaled state zi, which is produced by the circuit block 41 as output.
[0060] The scaling ofthe input state x is performed component-wise, indeed block 41 is replicated n times in the circuit.
[0061] In FIG. 10, a circuit block 41’, which is functionally equivalent to the circuit block 41, is shown. This circuit block
41’, which has been created by us, is able to handle any kind of non-uniform partition of the PWAS function fPWL(z). To
do this, the circuit block 41’ comprises a multiplier 46’ replacing the shift register 46, wherein said multiplier 46’ performs
transformation from non-uniform to uniform domain.
[0062] Summarizing, the circuit block 41’ converts the state (xi) of the physical process (3) into the input data (zi) for
the circuit architectures (31,31’) by implementing a mapping function, wherein the domain of the state (xi) is non-uniformly
partitioned, and the domain ofthe PWAS function fPWL(z) is uniformly partitioned.
[0063] It is understood that variants of the method for creating digital circuits of a feedback control system that imple-
ments an approximation technique for an MPC controller and/or  of the circuit architectures of the said control system
still fall within the scope of the following claims.
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Claims

1. Method for creating digital circuits comprised in an MPC controller (2), which implements an approximation technique
for Model Predictive Control (MPC), in which a quadratic programming (QP) or linear programming (LP) optimization
problem is formulated based on a linear state-space dynamical model of a physical process (3) having a state x,
and provides a control law (u(x)) defined over a partition that contains simplices having vertices (vi), where i ranges
from 1 to Nv, and wherein the vertices (vi) are comprised in a given set of states of the physical process (3) char-
acterised by comprising the following steps:

a. compute a solution (w*) of the optimization problem and define the control law (u(x));
b. check the stability of a closed-loop system under the control law u(x), wherein the closed-loop system com-
prises the MPC controller (2) and the physical process (3);
c. synthesize a digital circuit by starting from the control law (u(x)) and the vertices (vi).

2. Method according to claim 1, wherein the step (a) is performed without computing a multiparametric quadratic

programming (mpQP) solution  of an MPC. problem.

3. Method according to claim 2, wherein the control law (u(x)) is defined as the product between a vector of basis
functions (ϕ(x)) and a vector of parameters constituting the solution (w*).

4. Method according to one of claims 1 to 3, wherein the model is defined by starting from a physical process (3).

5. Method according to one of claims 1 to 4, wherein every dimensional component (xj) of the state (x), where j = 1,...,

n, is divided into pj subintervals of uniform length, so that the set of states is divided into hyper-rectangles, and

contains the Nv vertices (vi), where 

6. Method according to claim 5, wherein each hyper-rectangle is partitioned into n! simplices with non-overlapping
interiors.

7. Method according to one of claims 1 to 6, wherein the step (b) comprises a sub-step in which, starting from the
control law (u(x)), the construction of a Lyapunov function is attempted.

8. Method according to one of claims 1 to 7, wherein the digital circuits synthesized at step (c) are implemented on
FPGA, DSP, or the like.

9. Circuit architecture (31,31’) for computing a value of at least one PWAS function (fPWL(z)), comprising an address
generator (25,25’), a memory (26,26’), and a m-generator (27,27’), wherein said address generator (25,25’) takes
coordinates of a point (z) as input, and the point (z) having n dimensions is obtained by reseating a state (x) of a
model, and wherein the circuit (31,31’) is able to perform the following steps:

a. locate an hypercube containing the point (z) by using integer parts of the coordinates ofthe point (z) as input
of the address generator (25,25’);
b. locate which of n! simplices contained in the selected hyper cube contains the point (z) by using decimal
parts of the coordinates of the point (z) as input of the m-generator (27,27’) and ofthe address generator (25,25’);
c. compute the value of the PWAS function (fPWL(z)) in point (z) by linear interpolation of the value of said
function (fPWL(z)) in the vertices of the selected simplex;
characterised in that
both the address generator (25,25’) and the memory (26,26’) are synthesized starting from a control law (u(x))
and vertices (vi), which are computed by a method according to one of the claims 1 to 9.

10. Circuit architecture (31,31’) according to claim 9, wherein the value of the PWAS function fPWL(z) is the sum ofthe
products between coefficients wj, which are stored in the memory (26,26’), and coefficients mj, which are generated
by the m-generator (27,27’), wherein both sets of coefficients depend on the point (z), where j ranges from I to n.

11. Circuit architecture (31,31’) according to claim 10, wherein the memory (26,26’) comprises a number of memory
banks equal to the number of PWAS functions (fPWL(z)) to compute, wherein each memory bank contains the
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coefficients wj of each PWAS function (fPWL(z)), and wherein all PWAS functions (fPWL(z)) are partitioned in the
same way, so that the steps (a) and (b) are common to all the PWAS functions (fPWL(z)),

12. Circuit architecture (31) according to claim 10 or 11, wherein the address generator (25) generates an address of
one of the coefficients wj contained in the memory (26), so that the memory (26) provides the coefficient contained
at said address as output, thereby providing a serial circuit architecture.

13. Circuit architecture (31’) according to claim 10 or 11, wherein the address generator (25’) generates addresses of
all the coefficients wj contained in the memory (26’), so that the memory (26’) provides all the coefficients (wj) as
output, thereby providing a parallel circuit architecture.

14. MPC controller (2) implementing an MPC technique for controlling a physical process (3), wherein said MPC controller
(2) takes inputs, and produces outputs, wherein the inputs comprise a sampled system state (xk) and the outputs
comprise a control signal (uk), characterised in that the control signal (uk) is generated through at least one PWAS
function (fPWL(z)), which is implemented by replicating one or more times a circuit architecture (31,31) according to
any ofthe claims 9 to 13.

15. MPC controller (2) according to claim 14, comprising a circuit block (41’), which converts a state (xi) of the physical
process (3) into an input data (zi) for the circuit architectures (31,31’) by implementing a mapping function, wherein
the domain of the state (xi) is non-uniformly partitioned, and the domain ofthe PWAS function (fPWL(z)) is uniformly
partitioned.
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