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Abstract: In Model Predictive Control (MPC) closed-loop performance heavily depends on
the quality of the underlying prediction model, where such a model must be accurate and yet
simple. A key feature in modern MPC applications is the potential for online model adaptation
to cope with time-varying changes, part-to-part variations, and complex features of the system
dynamics not caught by models derived from first principles. In this paper, we propose to use a
physics-informed, or gray-box, model that extends the physics-based model with a data-driven
component, namely a Recurrent Neural Network (RNN). Relying on physics-informed models
allows for a rather limited size of the RNN, thereby enhancing online applicability compared
to pure black-box models. This work presents a method based on Moving Horizon Estimation
(MHE) for simultaneous state estimation and learning of the RNN sub-model, a potentially
challenging issue due to limited information available in noisy input-output data and lack of
knowledge of the internal state of the RNN. We provide a case study on a quadruple tank
benchmark showing how the method can cope with part-to-part variations.

Keywords: Learning-based MPC, Nonlinear MPC, Moving Horizon Estimation,
Physics-informed learning, Adaptive MPC, Recurrent Neural Network, Gated Recurrent Unit

1. INTRODUCTION

A fundamental requirement for model-based control and
estimation techniques, such as MPC and Extended Kalman
Filtering (EKF), is a dynamical model that is accurate
and yet as simple as possible for reduced online compu-
tations. Modeling the dynamics of real-world processes
in industrial systems using solely physical principles is
challenging and time-consuming due to the complex under-
lying physical phenomena. Model mismatches occurring in
industrial applications can be categorized into three types:
(i) modeling simplifications, (ii) part-to-part variations,
and (iii) time-varying changes of the system dynamics
due to the environment or wear and tear of components.
Recently, learning-based control has become a favored
solution method due to the success of machine learning
and increasing computational resources, see (Hewing et al.,
2020; Hou and Wang, 2013; Brunke et al., 2022). Learning-
based control incorporates principles from machine learn-
ing in the control strategy, and the use of machine learning
ideas in control-oriented modeling is far from new (Draeger
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et al., 1995; Pan and Wang, 2008; Masti and Bemporad,
2021). Offline learning can be used to address issues (i)
and (ii), and ideas have been proposed to cope with issue
(iii), see (Bemporad, 2023; Maiworm et al., 2021; Nguyen-
Tuong and Peters, 2011) for what is often called lifelong
learning. For example, lifelong learning in robotics has
been a topic of research for decades (Thrun and Mitchell,
1995) and is still active today (Taylor et al., 2021). One
promising research direction is physics-informed learning,
e.g., gray-box modeling where available physical knowl-
edge is embedded in the model or training process (Kar-
niadakis et al., 2021).

The main contribution of this paper is to extend the Mov-
ing Horizon Estimation (MHE) based framework proposed
in (Løwenstein et al., 2023) from learning static model
mismatches to learning dynamical subsystems, therefore
accounting for the role of the past history of the subsystem
on its current and future (predicted) evolution. A well-
suited choice of model structure is the RNN. Contrary
to standard Feedforward Neural Networks (FNNs), RNNs
incorporate memory through their hidden states, mak-
ing them superior for long-term prediction. The MHE-
based method fits very well with RNNs because the hid-
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den states can readily be incorporated as states to be
estimated. Further, constraints can be imposed to em-
bed additional physical knowledge, which is not possi-
ble by using classical estimation methods such as EKF,
while still being real-time feasible (Kühl et al., 2011).
Lastly, MHE provides a meaningful way of preserving ex-
isting knowledge through the so-called arrival cost, which
makes it particularly suitable for model adaptation. Specif-
ically for system identification Long-Short Term Mem-
ory (LSTM) networks, Gated Recurrent Units (GRUs),
and Echo State Networks (ESNs) have shown particularly
good performance (Hochreiter and Schmidhuber, 1997;
Cho et al., 2014; Jaeger, 2001). Recent developments range
from the investigation of theoretical properties (Bonassi
et al., 2022, 2021) to real-world applications (Lanzetti
et al., 2019). Interestingly, (Bonassi et al., 2021) pro-
vides conditions for guaranteeing Input-to-State-Stability
(ISS) and Incremental-Input-to-State-Stability (δ-ISS) for
these types of RNNs. The stability conditions can be
formulated as inequality constraints and from a theoretical
viewpoint fit very well with optimization-based estima-
tion techniques such as the proposed MHE framework for
learning and adapting RNNs. However, one finding of the
work presented here is that the implementation of such
constraints significantly increases the complexity of the
optimization problem to be solved online, due to the non-
linear and non-smooth nature of the stability conditions.
Therefore imposing such constraints may not be suitable
for fast real-time applications. The impact of neglecting
the stability conditions during learning is discussed further
in the numerical example reported in Section 4.

The paper is organized as follows. Section 2 develops
the model structure and introduces the learning problem.
Section 3 presents the MHE-based framework and training
algorithm. Simulation results are shown in Section 4 and
conclusions are drawn in Section 5.

2. BACKGROUND AND PROBLEM FORMULATION

We consider a dynamical system governed by the discrete-
time dynamics

xk+1 = f (xk, uk, pk, zk) + vx,k (1a)

where k ∈ Z is the discrete time variable, xk ∈ Rnx is
the state vector, uk ∈ Rnu the control input, pk ∈ Rnp

is an output of an unknown dynamical subsystem defined
below in (1d), and vx,k is a state-noise term that we assume
normally distributed with zero-mean and covariance Qx.
Vector zk ∈ Rnz collects measured exogenous signals
which impact the system’s behavior, e.g., temperature or
pressure. The output equation of the system is defined as

yk = g (xk, uk, pk, zk) + vy,k (1b)

where yk ∈ Rny is the output vector and vy,k the mea-
surement noise, that we assume normally distributed with
zero-mean and covariance Ry. We represent the unknown
part of the model as a dynamical subsystem governed by
its own dynamics

sk+1 = r (sk, qk, k) + vs,k (1c)

where sk ∈ Rns is the hidden internal state and vs,k
is a state disturbance term that we assume normally
distributed with zero-mean and covariance Qs. Vector qk ∈

Fig. 1. Structure of the dynamical system. It consist of
a known part and a unknown dynamical subsystem.
The aim is to learn a model of the unknown system
and adapt it as the system evolves.

Rnq defines the inputs to the subsystem and qk may collect
xk, uk, and zk fully or partially depending on the structure
of the overall system. Further, we define the output of the
subsystem as

pk = h (sk, qk, k) (1d)

which describes the interaction between the subsystem
(1c)-(1d) and the overall dynamical system (1a)-(1b). The
structure of the dynamical system is depicted in Fig. 1.

In this paper, we model the unknown subsystem in (1c)-
(1d) using the RNN model

ŝk+1 = r̂RNN (ŝk, q̂k; Φk) (2a)

with the associated output equation

p̂k = ĥRNN (ŝk, q̂k; Φk) (2b)

where Φk ∈ RnΦ is the vector of parameters defining
the RNN at time k, assumed to be time-varying in ac-
cordance with the possibly time-varying nature of the
system at hand. Without loss of generality, any of the
aforementioned RNN structures can be adopted in (2). In
this work we focus on GRUs due their beneficial trade-
off between model-capabilities and complexity, which is
favorable for online applications (Chung et al., 2014).
We remark that, besides modeling physical subsystems,

ĥRNN and r̂RNN could represent complex disturbances or
model mismatches between the true dynamics and their
model which cannot be captured by static approximations.
Equation (2) defines the model to be identified and the
fundamental challenge is to learn and adapt the RNN
parameter vector Φk in (2) such that it is consistent with
the true subsystem in (1c)-(1d). Since pk, xk, and sk are
not available, but only the signals uk, zk, and the noise
corrupted measurements yk, we cannot directly learn the
model in (2), but must rely on a prediction model of (1)
defined as

x̂k+1 = f (x̂k, uk, zk, p̂k) (3a)
ŷk = g (x̂k, uk, zk, p̂k) (3b)

ŝk+1 = r̂RNN (ŝk, q̂k; Φk) (3c)

p̂k = ĥRNN (ŝk, q̂k; Φk) . (3d)

The goal of this paper is to solve the learning problem of
matching the gray-box model (3) to the true system in (1),
formally stated as
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min
x̂0,ŝ0,{Φj}

k∑
j=0

ℓy (yj , ŷj) (4a)

s.t. x̂j+1 = f(x̂j , uj , zj , p̂j) (4b)

ŷj = g (x̂j , uj , zj , p̂j) (4c)

ŝj+1 = r̂RNN (ŝj , qj ; Φj) (4d)

p̂j = ĥRNN (ŝj , qj ; Φj) (4e)

xj,min ≤ x̂j ≤ xj,max (4f)

q(ŝj , x̂j , uj , zj , p̂j ,Φj) ≤ 0 (4g)

where the loss ℓy (yj , ŷj) penalizes the dissimilarity be-
tween the output measurement yj and its estimate ŷj ,
ℓy : Rny × Rny → R. Equation (4f) introduces possible
constraints on states derived from physics, whereas (4g)
models general constraints combining states, inputs, and
parameters (e.g, structural knowledge or other physical
properties of the system such as conservation of energy).
Solving (4) aims at maximizing the goodness of fit be-
tween (3) and (1) as measured by ℓy based on input-output
data. Solving (4) at each time step corresponds to solving
the full information problem (Rawlings et al., 2017). It is
a well-known fact that as k grows, solving (4) becomes
intractable; however, a meaningful way of reducing the
complexity while preserving all the past information cu-
mulated from time 0 to k is MHE. In the next section we
show how MHE can be adopted to learn RNN sub-models.

3. MOVING HORIZON ESTIMATION FOR
LEARNING RECURRENT NEURAL NETWORKS

We consider the following adaptation of the MHE scheme
presented in (Løwenstein et al., 2023) to the combined
state-estimation and network parameter learning problem
posed in (4):

min
x̂k−L,ŝk−L,wk−L,...,wk−1,Φ

r(Φ) +

k∑
j=k−L

(
∥Vy,j(yj − ŷj)∥22

)

+

k−1∑
j=k−L

(
∥Wx,jwj∥22

)
+

∥∥∥∥∥∥Pk−L

x̂k−L − x̄k−L

ŝk−L − s̄k−L

Φ− Φ̄k−L

∥∥∥∥∥∥
2

2

(5a)

s.t. x̂j+1 = f(x̂j , uj , zj , p̂j) + wj (5b)

ŷj = g (x̂j , uj , zj , p̂j) (5c)

ŝj+1 = r̂RNN (ŝj , x̂j , uj , zj ; Φ) (5d)

p̂j = ĥRNN (ŝj , x̂j , uj , zj ; Φ) (5e)

xj,min ≤ x̂j ≤ xj,max (5f)

q(ŝj , x̂j , uj , zj , p̂j ,Φ) ≤ 0 (5g)

where r(Φ) is a term introduced to regularize the learn-
ing problem, e.g., to prevent overfitting by introducing
ℓ1 or ℓ2-regularization, and L is the size of the estima-
tion window. The weight matrices V T

y,jVy,j , W
T
x,jWx,j and

PT
k−LPk−L in the cost function (5a) can be interpreted

as inverses of covariance matrices (Kühl et al., 2011). In
particular, Vj could be seen as the inverse Cholesky factor

R
− 1

2
y,j of a given covariance matrix Ry,j , and similarly Wx,j

the inverse Cholesky factor Q
− 1

2
x,j related to (1a). The term

in (5a) related to Pk−L is the so-called arrival cost and has
the role of carrying on the knowledge obtained by previous
measurements that are not considered in the current esti-
mation window, summarized in vectors x̄k−L, s̄k−L, Φ̄k−L,

and Pk−L itself. In particular, matrix PT
k−LPk−L quantifies

the trust in current estimates x̄k−L, s̄k−L and Φ̄k−L.
A good approximation of the full-information estimation
can be achieved by a suitable selection of the arrival
cost (Rawlings et al., 2017). We use the efficient method
proposed in (Kühl et al., 2011) (Section 2.1, Equation 7).
An artificial noise variable with covariance QΦ related to
the RNN parameters must be introduced in the arrival cost
update despite the model assumption of constant RNN
parameters over the estimation window to allow adapta-
tion. The covariance QΦ can be considered as a tuning
parameter as it impacts the values of x̄k−L, s̄k−L, Φ̄k−L

and Pk−L in (5a). Contrary to hyper-parameter tuning in
classical training algorithms (Kingma and Ba, 2017), the
impact of QΦ on the learning process can be intuitively
understood due to the similarity with the tuning of EKF.
This stems from the fact that setting the horizon L = 1
in (5) and exploiting the arrival cost update from (Kühl
et al., 2011) yields an MHE which is equivalent to the
square-root formulation of the EKF in (Bellantoni and
Dodge, 1967).

The main difference between the MHE scheme presented
in (Løwenstein et al., 2023) and (5) is the inclusion of
the hidden states sj of the RNN sub-model as additional
states to be estimated by the MHE, and the addition of
the state disturbance variables wj and their corresponding
weighting matrices Wx,j . The addition of wj in (5b) allows
one to learn a model where (1a) is not perfectly known or
subject to state noise. Formulating the learning problem
in terms of an MHE scheme allows us to keep the state
variables as free optimization variables and solve the prob-
lem in the so-called non-condensed version (a.k.a. “direct
multiple shooting”), where the equality constraints of (5b)
and (5d) are enforced by the solver, rather than the con-
densed problem (a.k.a. “single shooting”), where the states
are explicitly accounted for in the cost and constraint
functions, and thus possibly improve the numerical per-
formance (Hicks and Ray, 1971). Further, the constraint
in (5g) allows to embed additional physical knowledge in
the training process, guiding the RNN parameters towards
a solution that is feasible from a physical perspective.

MHE is inherently developed for online state and param-
eter estimation and can therefore directly be applied in
an online setting to continuously adapt Φ as the system
in (1) evolves over time. However, training a model prior
to deployment is preferable if offline training data are
available. Based on the MHE problem in (5) we propose
a modified version of the training algorithm provided
in (Løwenstein et al., 2023) (Section 3, Algorithm 1) tai-
lored for learning RNNs and capable of processing multiple
trajectories of training data. Given a training data set

D = {{(u0, y0), . . . , (uN , yN )}}Ntraj

j=0 where Ntraj denotes
the number of system trajectories available for offline
training, we randomly split the data into a training data
set Dtrain = {{(u0, y0), . . . , (uN , yN )}}NT

j=1, a validation

data set Dval = {{(u0, y0), . . . , (uN , yN )}}NV
j=1, and a test-

ing data set Dtest = {{(u0, y0), . . . , (uN , yN )}}Ntest
j=1 , where

NT , NV , and Ntest denote the number of system trajecto-
ries used for training, validation, and testing respectively.
NT , NV and Ntest are selected such that NT + NV +
Ntest = Ntraj . Consider again the learning problem in (4)
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for k = N − 1 for all system trajectories in the training
data set Dtrain and a constant parameter vector Φ (i.e.,
assuming that (1) does not change during data collection)

min
x̂0,...,NT

,ŝ0,...,NT
,{Φ}

NT∑
i=0

N−1∑
j=0

ℓy (yj , ŷj) (6a)

s.t. x̂j+1 = f(x̂j , uj , zj , p̂j) (6b)

ŷj = g (x̂j , uj , zj , p̂j) (6c)

ŝj+1 = r̂RNN (ŝj , x̂j , ūj , zj ; Φ) (6d)

p̂j = ĥRNN (ŝj , x̂j , uj , zj ; Φ) (6e)

xj,min ≤ x̂j ≤ xj,max (6f)

q(ŝj , x̂j , uj , zj , p̂j ,Φ) ≤ 0 (6g)

Due to the dynamical constraints in (6b), each system
trajectory must be processed in one shot if the problem is
solved using different nonlinear programming solvers (No-
cedal and Wright, 2006) and despite the gradient of the
cost function being available via computational efficient
methods, i.e., backpropagation through time (Werbos,
1990), this could lead to the vanishing or exploding gradi-
ent problem (Hochreiter, 1998).

To mitigate the aforementioned problems we propose
to solve the training problem in (6) by processing the
training set DT for a number Ne of epochs by randomly
selecting Nb mini-batches of length Lb which are processed
sequentially using the MHE in (5). Notice that the batch
length Lb must be selected such that Lb ≫ L. More
specifically, for Nb mini-batches in each epoch, a random
system trajectory is selected from DT such that iTj ∼
U [1, NT ], where iTj denotes the index of the randomly
selected training trajectory, and the MHE (5) is used to
process the data sequentially starting from k0 ∼ U [0, N −
Lb] to k0 + Lb where k0 is a randomly selected starting
point of the current mini-batch. To construct an initial
guess of xk0 and sk0 , an MHE with fixed RNN parameters
(i.e., the learned parameters from the previous epoch)
is used to process a fixed number of data points from
k0 − Linit to k0 for some random initialization of x and s
and thus reducing potential impact of bad initialization on
the learning procedure by replacing the so-called washout
period typically used when training RNNs (Jaeger, 2001).
After each epoch, the part of the arrival cost related to the
state estimates is reset while the knowledge obtained on
the neural network parameters is kept for the next training
epoch. Before starting a new epoch the covariance matrix
related to the parameters of the RNN is possibly scaled
as QΦ ← αQΦ with 0 < α < 1 to promote rapid learning
in the initial epochs while enhancing fine-tuning in later
epochs. This stems from the fact that the estimates can
only be determined within the limits given by Qx and
QΦ (Kühl et al., 2011). Further, to monitor the progress of
the training, the RNN parameters obtained in each epoch
is used to evaluate the gray-box model on the validation
set DV . The validation is carried out by means of open-
loop simulation from k0,val to N where xk0,val

and sk0,val

is constructed using an MHE with fixed RNN parameters.
To better avoid biases towards the last batches of each
epoch, we average the RNN parameters over the last
epoch before carrying out the validation. We define the
performance measure as the Mean Squared Error (MSE)

of the measurable outputs and define the early termination
criterion by ϵ > 0

MSEval =
1

Nval

1

(N − k0,val)

Nval∑
i=1

N∑
j=k0,val

ℓy(yi,j , ŷi,j) ≤ ϵ

(7)
where the loss ℓy is the squared error of the output
prediction. After the offline training algorithm terminates,
the model is evaluated on the unseen data set Dtest

using the approach described for the validation sets. The
proposed offline training method and the online adaptation
are summarized in Algorithm 1, where M denotes the
number of measurements processed in the online phase.
To further reduce the complexity in the online phase one
could adapt only a subset of the RNN parameters e.g., the
bias terms or the parameters in the output layer. However,
for the sake of completeness we adapt all RNN parameters
in the example provided.

4. NUMERICAL EXAMPLE

To evaluate the proposed algorithm we investigate the
performance on the well-known quadruple tank benchmark
problem (Alvarado et al., 2011). The system consists of
four tanks with water levels h1, h2, h3 and h4. The control
variables are the flow rates of two pumps qa and qb. The
flow to each tank is controlled using triple valves such that
q1 = γaqa, q2 = γbqb, q3 = (1− γb)qb, and q4 = (1− γa)qa.
The continuous time dynamics are governed by

ḣ1 = −a1
S

√
2gh1 +

a2
S

√
2gh3 +

γa
S
qa (8a)

ḣ2 = −a2
S

√
2gh2 +

a4
S

√
2gh4 +

γb
S
qb (8b)

ḣ3 = −a3
S

√
2gh3 +

1− γb
S

qb (8c)

ḣ4 = −a4
S

√
2gh4 +

1− γa
S

qa (8d)

where a1 = 1.31 · 10−4 m2, a2 = 1.51 · 10−4 m2, a3 = 9.27 ·
10−5 m2, a4 = 8.82 · 10−5 m2, S = 0.06m2, γa = 0.3, and
γb = 0.4. To obtain a discrete-time model, we deploy an
Euler scheme with Ts = 15 s such that xk+1 = f(xk, uk) +
vx, where vx is a state noise with zero mean and covariance
matrix Qx = (1 · 10−4)2 · I ∈ R4. The associated output
equation is

yk =

[
0 1 0 0
0 0 0 1

]
[h1 h2 h3 h4]

T
+ vy (9)

where vy is an output noise with zero mean and covariance
matrix Ry = (5 · 10−3)2 · I ∈ R2. The control input,

u = [qa qb]
T

is subject to the actuator limits

qa ∈
[
0, 0.9 · 10−3

] m3

s
and qb ∈

[
0, 1.1 · 10−3

] m3

s
. (10)

Further, the water level of each tank cannot exceed hmax
1,2 =

1.36m and hmax
3,4 = 1.3m to avoid overflow. In our example

we consider tank 4 to be unknown and therefore the
submodel defined by the RNN in (2a) must capture the
underlying dynamics of (8d) while the output p̂ ∈ R2

of the RNN must recover p1 = a4

S

√
2gh4 to capture the

interaction with the overall system and p2 = h4 to readily
apply the model in MHE and MPC for tracking of set

2024 IFAC NMPC
August 21-24, 2024  |  Kyoto, Japan

91



Algorithm 1 Physics-informed learning of NN submodel

1: Inputs: QΦ0, QΦ, QΦonline
, L, Ne, Nb, Lb, Linit, α, ϵ,

Qx, Qx0, Qs, Qs0, R, D = {{(uk, yk)}Nk=0}
Ntraj

j=0 ;
2: Initialize:

Φ̄0 ← Xavier intialization (Glorot and
Bengio, 2010)
Randomly split D into DT , DV and Dtest

Covariance initialization:

P0 ←

Q
−1/2
x0 0 0

0 Q
−1/2
s0 0

0 0 Q
−1/2
Φ0

;

Vy,j ← R−(1/2), ∀j;
Wx,j ← Q

−(1/2)
x , ∀j;

Offline MHE learning - DN ̸= ∅
3: for h = 1, . . . , Ne do:
4: for j = 1, . . . , Nb do
5: iTj ∼ U [1, NT ]
6: k0 ∼ U [0, N − Lb]
7: x̄L ← x̂k0 and s̄L ← ŝk0 obtained using MHE

with fixed Φ;
8: for k = k0, . . . , k0 + Lb do:
9: Update x̄k−L, s̄k−L, Φ̄k−L, Pk−L according

to (Kühl et al., 2011);
10: Solve MHE problem in (5);
11: end for
12: Reset the MHE:

13: P0 ←


Q

−1/2
x0 0 0
0

0 Q
−1/2
s0 0

0 0 [Pk−L]nx+ns:,nx+ns:

;

14: end for
15: Φ = 1

NbLb

∑Nb

i=1

∑Lb

j=1 Φi,j

16: Evaluate loss on DV

17: if MSEval ≤ ϵ then
18: break;
19: end if
20: QΦ ← αQΦ;
21: end for
22: Evaluate loss on Dtest

Online MHE learning

23: QΦ ← QΦonline

24: for k = 0, . . . ,M − 1 do:
25: Update x̄k−L, s̄k−L Φ̄k−L and Pk−L according to

(Kühl et al., 2011);
26: Solve MHE problem in (5);
27: end for

points on h4. Therefore, we can define the gray-box model
to be learned as

x̂k+1 = [h1 h2 h3]
T

= f(x̂k, uk, p̂k) (11a)

where f(x̂k, uk, p̂k) is obtained by integration of (8a)-(8c),
with p1,k replacing a4

S

√
2gh4 in (8b). The output equation

becomes

ŷk = [h2 h4]
T

= g(x̂k, uk, p̂k) = [h2 p̂2,k]
T
. (11b)

Defining q = [qa], the subsystem is governed by

ŝk+1 = r̂RNN (ŝk, qk; Φk) (11c)

and

Table 1. Offline training results.

Method MSEy MSEp MSEy,NLMPC costNLMPC

MHE 6.43 · 10−5 3.83 · 10−5 0.072 0.072

EKF 8.83 · 10−5 1.02 · 10−5 0.072 0.072

Pytorch − 1.14 · 10−5 − −
True model − − 0.068 0.068

p̂k = ĥRNN (ŝk, qk; Φk) . (11d)

For the GRU we use ŝ ∈ R2 which results in Φ ∈ R30.

4.1 Offline training training using MHE

30 open-loop trajectories of 1500 input-output pairs are
collected from random initial conditions using Multilevel-
Pseudo-Random-Signals (MPRS) as proposed in (Bonassi
et al., 2021). To safely collect open-loop trajectories,
i.e., without violating the maximum water level, only
a subset of input range given by (10) is used dur-
ing data collection. The flow rates are limited to qa ∈[
0, 0.65 · 10−3

]
m3

s and qb ∈
[
0, 0.75 · 10−3

]
m3

s . Alterna-
tively, a simple controller could be introduced in the data
collection to reduce the flow rate if any of the four tanks
come close to the maximum level, but instead we consider
this to be learned during online adaptation with the MHE
scheme and show how it is done safely without violating
the physical constraints. To train the gray-box model
in (11) with Algorithm 1 we use QΦ0 = (1 · 10−1)2 ·
I ∈ R30×30, QΦ = (1 · 10−3)2 · I ∈ R30×30, L = 10,
Ne = 25, Nb = 25, Lb = 500, Linit = 100, α = 0.95,
Qx = (1 · 10−4)2 · I ∈ R3×3, Qx0 = (1 · 10−3)2 · I ∈ R3×3,
Qs = (1 · 10−3)2 · I ∈ R2×2, Qs0 = (1 · 10−3)2 · I ∈ R2×2,
and Ry = (5 · 10−3)2 · I ∈ R2×2. Further, we use NT = 20,
NV = Ntest = 5 and k0,val = 300. We do not termi-
nate the algorithm early using ϵ. For the remainder of
this paper we use horizon L = 10 for both MHE and
MPC. For comparison a GRU is trained using EKF for
simultaneous state and parameter estimation by replacing
the MHE in Alg. 1. The implementation is carried out in
Casadi (Andersson et al., 2018) and the MHE problem
in (5) is solved using Ipopt (Wächter and Biegler, 2006).
Further, we train a GRU using Pytorch (Paszke et al.,
2019) using Adam (Kingma and Ba, 2017) with learning
rate 0.001 on the true input-output sequence subsystem,
which in our setup is considered unknown, but in a sim-
ulated environment can serve as “best-case” achievable
GRU and thus serve as a valuable comparison.

In Table 1 the offline training methods are compared in
terms of performance on the unseen test trajectories in
open-loop simulation from k0 = 300 where the initial state
has been reconstructed using MHE and EKF respectively.
We compare the ability to reconstruct the true outputs
of the subsystem, p, and the output of the full system, y.
Further, we compare performance of the learned models in
closed-loop MPC where the performance of MPC with the
true model is reported for comparison. For the MPC we
impose state constraints corresponding to the maximum
water levels and inputs constraints according to (10). We
penalize the deviation from the MPRS generated set point
trajectory for the outputs h2 and h4 by QMPC = 1 ·
I ∈ R2×2 and the input increments ∆uk = uk − uk−1 by
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Fig. 2. The RNNs ability to reconstruct the signal p from
the unknown submodel. Both the GRU learned from
EKF and MHE are capable of reconstructing p. The
plot shows the evaluation on a single test trajectory.

WMPC = 104 · I ∈ R2×2. The set points is generated such
that the state constraints on h1 and h3 are active and
thereby prevent perfect set-point tracking. Fig. 2 shows
that both EKF and MHE are capable of learning the
unknown sub-model with very high accuracy. Therefore
for this specific example, the main advantage of the MHE
is the possibility to impose extra constraints through (5f)
and (5g). To truly understand the trade-offs between EKF
and MHE for training RNNs, more complex examples
should be investigated. However, we remark that we found
MHE to be more robust than the EKF to different training
setups. This could be explained by the fact that MHE
is more robust to bad initialization (Kühl et al., 2011).
Interestingly, we find that Algorithm 1 tends to general-
ize better and obtain satisfactory performance with less
data when the trajectories are processed in random mini-
batches as proposed rather than processing the full train-
ing trajectories sequentially. Despite numerous attempts
we did not succeed in imposing the stability constraint
proposed in (Bonassi et al., 2021), e.g., Ipopt either found
the problem infeasible, failed in the restoration phase, or
kept iterating without satisfying the termination criteria.
In a real-time application for online adaptation such solver
failures might have catastrophic consequences and impos-
ing such a constraint may not be worth the risk. During
training the proposed MHE algorithm did not encounter
any issues related to instability. Further, (Mohajerin and
Waslander, 2019) claim that the stability of the learned
RNN is inherently chained to the stability of the system
being learned, but an unstable instance of the RNN can oc-
cur during training leading to a diverging learning process.
Such blow ups are more evident when relying on classical
training algorithms as open-loop simulation over longer
trajectories are required to evaluate the loss. In such cases
the δ-ISS constraint can provide a valuable measure in the
training process (Bonassi et al., 2021). On the other hand,
the proposed MHE framework tries to mitigate these issues
by (i) using a short estimation window, i.e., the dynamics
will only be propagated L steps which is much shorter than
the batch sizes used in conventional training algorithms;
(ii) solving the non-condensed problem which is known
to be suitable for unstable systems and serves to avoid
gradient “blow up”; (iii) embedding physical knowledge
to guide the training, i.e., by letting the gray-box model
inherit the stability properties of the known part of the
system.
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Fig. 3. Estimation of p1 online. Dashed lines show the
estimate while the solid lines are the true values. The
figure shows how the adaptive MHE scheme is able to
cope with part-to-part variations.
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(a) Closed-loop trajectory of h2.
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(b) Closed-loop trajectory of h4.

Fig. 4. Trajectories of the outputs tracked by the NMPC.

4.2 Online adaptation and nonlinear MPC

In this section we show how the model learned in Sec-
tion 4.1 is adapted online using the MHE scheme in (5).
We consider the scenario of part-to-part variations, i.e.,
the system that the MHE scheme is applied to differs
from the system in Section 4.1: a4 = 5.82 · 10−5 and
p1 = a4

S

√
2g(h4 + dh2

4) where d = 0.5. We use QΦonline =

(1 · 10−4)2 · I ∈ R30×30. For comparison we also show the
performance of the model learned in Section 4.1 without
online adaptation. As a final comparison, we use a linear
model where p̂1 = c1h4 and ḣ4 = c2h4 + c3qa where the
parameters, c1, c2 and c3, are estimated online using a
standard MHE-formulation (Kühl et al., 2011).

Fig. 3 and Fig. 4 show how the adaptive MHE (5) is
capable of adjusting to the unknown changes of the system.
The MSEp and MSEy,NLMPC for the adaptive, static and
linear model are shown in Table 2. Namely, the adaptive
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Table 2. Results in online adaptation.

Method MSEp MSEy,NLMPC

MHE adaptive 5.1 · 10−5 0.068

Static 1.1 · 10−2 0.078

Linear model 1.0 · 10−2 0.068

models (RNN and linear model) performs 14% better than
the static model in closed-loop MPC. At first glance, the
performance of the linear model looks promising, but from
Fig. 4b it is evident that the learning of such a simplified
linear model leads to oscillatory behavior which might be
critical depending on the use-case. The adaptive gray-
box model is superior at estimating p and the MSEp is
three orders of magnitude lower than both the static and
linear model. In this work we have considered part-to-part
variations which could also imitate rapid changing system
parameters, however, it is expected that the proposed
method will perform equally well with slowly varying
system parameters.

5. CONCLUSION AND FUTURE WORK

This paper proposed an MHE for learning and adapting
RNN structures exemplified with a GRU. By using RNNs
the proposed method can learn state-full sub-models and
thereby embed memory of the past history of the system,
contrary to classical feedforward neural networks. Our
method is inherently suitable for online adaptation and
enhanced further by the physics-informed model embed-
ding the RNN. The MHE can also be used offline to
reconstruct a model from a given set of noisy input/output
data available prior to deployment in an online setting.
One key feature is the ability to process the data in short
batches due to the preservation of knowledge through the
arrival cost, thereby avoiding long forward simulations of
the RNN which could lead to problems during training.
Further, the learning process can be enhanced through
the natural ability of MHE to handle constraints on the
estimated quantities. The work could readily be extended
to more complex or slightly unstable systems to see if
the proposed method is capable of learning when classical
training methods tend to fail. A more theoretical line
of research is the derivation of less conservative stability
conditions that are well-suited for online implementation.
Further, a theoretical sound scaling of the parameter
covariance correlated with the model fit would improve
the proposed algorithm. Lastly, a tailored implementation
based on a real-time-iteration scheme would enhance the
online applicability of the proposed method.
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