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Abstract: Solutions to optimal control problems are usually understood to provide optimal
trajectories. In this paper, we show that the optimal state-space system dynamics induce a
dynamics of the active sets. More specifically, given the optimal active set at the solution
obtained at the current time, its successor optimal active set (which, in turn, defines the successor
solution) can be found with index set operations. These operations do not involve any optimal
control (or other optimization or integration) problem, but they can be described with simple
rules. These rules constitute the symbolic dynamics for active sets. The present paper treats
a particular constrained nonlinear problem class, extending earlier results for the constrained
linear-quadratic case.
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1. INTRODUCTION

Constrained optimal control problems are more demand-
ing than their unconstrained counterparts. For example,
discrete-time finite-horizon constrained linear optimal con-
trol problems, such as those that arise in linear model
predictive control (MPC) formulations, admit a simple
analytical linear state-feedback solution in the absence of
constraints, while they require more substantial online or
offline computation effort in the presence of linear con-
straints.

It has proven to be useful to characterize the solution to
constrained optimal control problems with the set of active
sets, where we call a subset of the indices to all constraints
active set if this combination of constraints is active for
at least one feasible initial state. The set of active sets
then is the set of all active sets that may appear when
solving the optimal control problem (OCP). Constructing
the set of active sets is often associated with constructing
explicit solutions (Gupta et al., 2011; Herceg et al., 2013;
Mitze and Mönnigmann, 2020; Oberdieck et al., 2017;
Herceg et al., 2015; Feller et al., 2013), specifically for the
constrained linear-quadratic regulator (Bemporad et al.,
2002; Tøndel et al., 2003; Seron et al., 2002).

Even if no explicit feedback law is ultimately constructed,
the set of active sets of an OCP is still useful, as it
defines and characterizes its solution. We claim that this
characterization is not only interesting per se but also
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in practice. If an explicit solution is not computable,
either because it is too expensive to store and evaluate
(even for moderately complex linear-quadratic problems),
or not computable at all (as in the general nonlinear case),
knowing the optimal active set can greatly simplify online
optimization. For example in the simple case of upper
and lower bounds only, the OCP becomes unconstrained
and with a smaller or equal number of optimization
variables to determine. Even in case an explicit solution is
predetermined offline, knowing the optimal active set can
greatly simplify the solution of the point-location problem
online.

The characterization with active sets has led to several
interesting insights for the linear-quadratic case. Neigh-
boring regions of the piecewise solution to the OCP can
be identified from analyzing the active sets (Ahmadi-
Moshkenani et al., 2018). Similarly, it has been shown that
dynamic programming can be carried out with the active
sets (Mönnigmann, 2019), which helps to accelerate the
construction of all active sets (Mitze and Mönnigmann,
2020). Finally, symmetries of the solution to the OCP can
be found in the set of active sets (Mitze et al., 2023). All
these results are essentially based on geometric relations
of the regions defined by the active sets without requiring
geometric calculations.

In the present paper, we focus on dynamic relations
of active sets for a particular nonlinear problem class.
Specifically, we show that the successor active set can be
found with very simple operations on the current active
set (such as index shifts of index sets). In particular, no
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optimal control problems (or other optimization problems)
need to be solved to obtain successor active sets. Successor
active sets, which define the successor optimal solution,
can be constructed both for open-loop optimal and closed-
loop optimal solutions, where “closed-loop optimal” refers
to the usual MPC use of the OCP solution on a receding
horizon. We note that dynamic relations of active sets
have been used to determine robust MPC solutions for
the linear-quadratic case (Mönnigmann and Pannocchia,
2020) and a shrinking horizon nonlinear case (Dyrska and
Mönnigmann, 2024) before.

Section 2 introduces the problem class. Section 3 states
the main results. It first introduces the symbolic dynamics
informally (see (I), (II), (III) in subsection 3.3), illustrates
these ideas with a sample problem, and states formal
results. Brief conclusions and an outlook are stated in
Section 4.

2. PROBLEM STATEMENT

We consider discrete-time, nonlinear systems of the form

x(k + 1) = f(x(k), u(k)), k = 0, 1, . . . (1a)

with state x(k) ∈ Rn, input u(k) ∈ Rm, and a nonlinear
state-update function f : Rn × Rm → Rn. We assume
states and inputs are subject to constraints

x(k) ∈ X ⊂ Rn,

u(k) ∈ U ⊂ Rm (1b)

for all time steps k, where X and U are compact sets
that contain the origin in their interior and that can be
described as the intersection of a finite number of sublevel
sets. Furthermore, we assume f is twice continuously
differentiable on an open superset of X ×U , and f(0, 0) =
0.

We are interested in the infinite-horizon nonlinear optimal
control problem for (1)

min
u(k),x(k+1),k=0,1,...

∞∑
k=0

ℓ(x(k), u(k)) (2a)

subject to

x(k + 1) = f(x(k), u(k)), k = 0, 1, . . .

x(k) ∈ X , k = 0, 1, . . .

u(k) ∈ U , k = 0, 1, . . .

(2b)

for given current state x(0), and the stage cost ℓ(x, u),
which is specified later. The finite-horizon problem over
N steps

min
u(k),x(k+1),k=0,...N−1

ℓT (x(N)) +

N−1∑
k=0

ℓ(x(k), u(k)) (3a)

subject to

x(k + 1) = f(x(k), u(k)), k = 0, ..., N − 1

x(k) ∈ X , k = 0, ..., N − 1

u(k) ∈ U , k = 0, ..., N − 1

x(N) ∈ T .

(3b)

is used as an auxiliary problem, where ℓT (x) and T ⊆ X
with 0 ∈ int T are a terminal cost and constraint, respec-
tively, which are described in more detail in Assumption 1.
Let FN refer to the set of initial states x(0) for which (3)
with horizon N has a solution.

The following Assumption 1 allows to relate solutions
of (2) and (3). The assumption is mild for linear systems
but strong for nonlinear systems. It therefore deserves
some comments, which are stated below.

Assumption 1. Assume there exist a set T ⊆ X , a
feedback law κ : T → U and a terminal cost ℓT : T → R
such that int T is positive invariant for the closed-loop
system and such that, for any x(0) ∈ T , evaluating

u(k) = κ(x(k)),

x(k + 1) = f(x(k), κ(x(k)))
(4)

for k = 0, 1, . . . yields a minimum for (2) for initial
condition x(0) with cost

∑∞
k=0 ℓ(x(k), u(k)) = ℓT (x(0)).

Assumption 1 is strong because it essentially states we
know an optimal solution to the infinite-horizon problem
for all initial conditions from T and know the corre-
sponding infinite-horizon cost. This assumption can eas-
ily be fulfilled for linear-quadratic problems under mild
additional conditions (Chmielewski and Manousiouthakis,
1996; Scokaert and Rawlings, 1998), (Bemporad et al.,
2002, Sect. 3). A nonlinear class that respects Assump-
tion 1 results for switching cost functions of the form

ℓ(x, u) =

{
ℓ̃(x, u) if x ∈ T
ℓ̂(x, u) otherwise.

This switching cost function class yields the following
relation of the infinite-horizon cost (2a) to the finite-
horizon cost (3a):

∞∑
k=0

ℓ(x(k), u(k) =

∞∑
k=N

ℓ̃(x(k), u(k))︸ ︷︷ ︸
ℓT (x(N))

+

N−1∑
k=0

ℓ(x(k), u(k))

where only ℓ̃ appears in ℓT because x(N + k) ∈ T for
all k ≥ 0 if int T is positive invariant. Also note that
ℓT (x(N)) =

∑∞
k=N ℓ̃(x(k), u(k)) can be expressed in terms

of only x(N), because x+ = f(x, κ∞(x)) and u(x) = κ(x)
uniquely determine the sequences u(N), u(N +1), . . . and
x(N + 1), x(N + 2), . . . for a given x(N). The required
dual-mode controller results if we determine a control law
u = κ(x) that results in the desired properties on some set
T and then treat x+ = f(x, κ(x) + u) by setting u = 0 on
T .

The following example illustrates Assumption 1. The ex-
ample is used for all illustrations in the paper.

Example 1. Consider the system (1) with

f(x, u) = Ax+ bu+
1

4

[
0
x2
1

]
, A =

1

2

[
−1 1
−1 −1

]
, b =

[
0
1

]
constraint sets

X =
{
x ∈ R2| − 1 ≤ xi ≤ 1, i = 1, 2

}
U = {u ∈ R| − 1 ≤ u ≤ 1}

stage cost

ℓ(x, u) =
1

2
x⊤Qx+

1

2
Ru2, Q =

[
1 0
0 1

]
, R = 1/10

terminal cost ℓT (x) = 0, and terminal set T and controller
κT : T → R

T =
{
x ∈ R2|∥x∥22 ≤ 1

}
, κT (x) = 0.

It is easy to show that T is positive invariant for x(k +
1) = f(x(k), κT (x(k)). The proof is given in Appendix A
for completeness.
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3. SYMBOLIC DYNAMICS FOR ACTIVE SETS

3.1 Preliminaries

We need to state a clear relation between solutions of the
problems with finite and infinite horizons.

Lemma 1. Consider a constrained system (1) and sup-
pose Assumption 1 holds.

(a) Let x(0) be an arbitrary initial condition such that the
horizon-N problem (3) has an optimal solution, which we
denote

(u(k), x(k + 1))
N−1
k=0 . (5)

If x(N) ∈ int T , then (5) extended by (4) for all k ≥ N
is an optimal solution for the infinite-horizon problem (2)
with initial condition x(0).

(b) Conversely, let x(0) be an arbitrary initial condition
such that the infinite-horizon problem (2) has an optimal
solution, which we denote

(u(k), x(k + 1))
∞
k=0 . (6)

If there exists an N such that x(N) ∈ int T , then (6)
truncated after N steps is an optimal solution for (3) with
horizon N and initial condition x(0).

The proof of Lemma 1 is stated in Appendix B. Note that
Lemma 1 cannot be stated as an equivalence. Problems (2)
and (3) are not equivalent because the set of admissible
initial conditions is in general larger for (2) than for (3).

Remark 1. The condition x(N) ∈ int T can neither be
omitted nor replaced by x(N) ∈ T in part (a) of Lemma 1.
An example where all conditions of Lemma 1 but x(N) ∈
int T hold and the implication of Lemma 1 does not hold
is given in (Mönnigmann, 2019, Example 2 and Fig. 3) for
a linear example to which the lemma applies. We stress
this counterexample is not a pathological or otherwise
artificial case. We must expect full-dimensional regions of
initial conditions to exist such that (3) has solutions with
x(N) ∈ int T that cannot be extended to solutions for the
infinite-horizon problem (2) even if Assumption 1 holds.

3.2 Ordering the constraints

We assume without restriction the constraints are ordered
stage by stage, i.e., in the order

x(0) ∈ X , u(0) ∈ U , (qstage constraints)

x(1) ∈ X , u(1) ∈ U , (qstage constraints)

...

x(N − 1) ∈ X , u(N − 1) ∈ U , (qstage constraints)

x(N) ∈ T (qT constraints)

(7)

where the number of constraints per line is given in
parentheses. We refer to the stages evident from (7) as
stage 0, stage 1, . . . , stage N − 1, and the terminal stage,
respectively.

It turns out to be convenient to denote sets of active
constraints with bit sequences. For example, consider a
problem with horizon N = 2, qstage = 5, qT = 3,
q = Nqstage + qT = 13 constraints in the order (7) and
assume the active set A = {1, 3, 12} appears. Let q denote
the total number of constraints q = N qstage + qT .

We identify A with

10100︸ ︷︷ ︸
α0

. 00000︸ ︷︷ ︸
α1

. 010︸︷︷︸
α2

(8)

where dots are introduced to separate stages and the αi

refer to the bit tupels of the stages. We call (8) an active
set to avoid phrases like ’the bit sequence identified with
the active set’. RecallA is an active set of (3) if there exists
an x(0) ∈ FN with active set A at the optimal solution.

3.3 Informal summary

We intend to characterize the solution of the horizon-N+1
problem (3) by carrying over as much information from the
horizon-N problem as possible. We stress that the solution
for horizon N is in general not contained in the solution for
horizon N + 1. This can easily be illustrated with explicit
solutions in the linear-quadratic case, where the explicit
control law for horizon N + 1 does not coincide with the
law for N (wherever they both exist, i.e., on the feasible
set for N ; see Mönnigmann (2019), Fig. 1 for an example).

In fact, the solution for an initial condition x(0) and
horizon N does remain the same for N + 1 if x(N) ∈
int T . Solutions for which x(N) ∈ T is fulfilled with
x(N) ∈ ∂T , where ∂T refers to the boundary of T , do
not have this property. It may appear pedantic to even
pay attention to solutions with x(N) ∈ ∂T , since ∂T is
a set with measure zero. Solutions with this property do
in general exist, however, for full-dimensional regions of
initial conditions (see Mönnigmann, 2019, Fig. 3, for an
example again) and therefore are not negligible, because
they constitute parts of FN with nonzero measure.

Rather than analyzing the effect of an increasing horizon
point-by-point, i.e., x(0) by x(0), it proved useful to carry
out this analysis with the active sets and the regional
optimal feedback laws they define. Essentially, we need
three simple operations on active sets, which are referred
to as I, II and III below. Let ”x” refer to an unspecified
bit in an active set. Color is used as guide to the eye. In
(I) and (III) (but not in (II)) the terminal constraints are
assumed to be inactive as evident from the trailing zeros:

(I) Extending an A with an inactive stage
An active set for (3) with horizon N may be extended
to the right with a zero stage to obtain an active set
for (3) with horizon N + 1:

AN = α0.α1. · · · .αN−1.0 . . . 0

↓
AN+1 = α0.α1. . . . .αN−1.0 . . . 0.0 . . . 0

If AN is an active set for horizon N , then AN+1 is an
active set for horizon N+1. Specifically, AN+1 defines
the same region as AN or a superset thereof, and the
optimal solution is equal on the common region. (See
Prop. 1 and Example 2 below for a concise statement
of I and an example, respectively.)

(II) Deleting the first stage of an A
Deleting a stage on the left in an active set for (3)
with horizon N results in an active set for (3) with
horizon N − 1:

AN = x . . . x.x . . . x. · · · .x . . . x.0 . . . 0
↓

AN−1 = x . . . x. · · · .x . . . x.0 . . . 0
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If AN is an active set for horizon N , then AN−1 is
an active set for horizon N − 1. (See Prop. 2 and
Example 3.)

While (I) and (II) relate active sets for different horizons,
combining the two results in a simple relation between
active sets for the same horizon.

(III) Symbolic dynamics for active sets
Applying (I) and (II) to an active set for horizon N
results in a new active set for horizon N that is part
of the solution:

AN = x . . . x.x . . . x. · · · .x . . . x.0 . . . 0
↓

A′
N = x . . . x. · · · .x . . . x.0 . . . 0.0 . . . 0

Moreover, A′
N defines the successor region for the

region defined by AN . In other words, A′
N defines

the region to which the nominal system is driven when
the first optimal control signal is applied. (See Prop. 3
and Example 4.)

3.4 Precise statements and illustrations

Proposition 1 states claim (I) more precisely. The propo-
sition 1 extends Lemma 3 from Mönnigmann (2019) for
linear-quadratic problems to the nonlinear system class
treated here.

Proposition 1. (a) Consider (3) with constraint or-
der (7). If

α0. · · · .αN−1. 0 · · · 0︸ ︷︷ ︸
qT

(9)

is an active set of (3) with horizon N , then

α0. · · · .αN−1. 0 · · · 0︸ ︷︷ ︸
l(qX+qU )

. 0 · · · 0︸ ︷︷ ︸
qT

(10)

is an active set for horizon N + l for all l ≥ 0.

(b) The set defined by (10) is equal to or a superset of the
set defined by (9). Both active sets yield the same solution
on the set defined by (9).

Proof. (a) According to Lemma 1 part (a), the active
set (9) can be extended with (4) to a solution for the
infinite-horizon problem. Since int T is positive invariant
for the system subject to u(k) = κ(x(k)) from (4) by
assumption, all constraints on u(k), x(k), k ≥ N are
inactive. According to part (b) of Lemma 1, the infinite-
horizon solution can be truncated to any length N + l,
l ≥ 0. Since the constraints are inactive for all stages l ≥ 0,
the active set (10) exists for all l ≥ 0. (b) Let x(0) ∈ Rn be
an arbitrary point such that there exists a minimum for (3)
with horizon N and with active set AN . Let (5) refer to
this solution. According to Prop. 1 this solution can be
extended to a solution (6) for the infinite-horizon problem.
The positive invariance of int T implies x(N + l) ∈ int T
for all l ≥ 0. Therefore (6) can be truncated for any l ≥ 0
according to part (b) of Lemma 1. Since this truncated
solution yields the same active constraints for the first N
stages as the horizon-N problem and solution, and since
all additional stages N + l, l ≥ 0 are inactive, the active
set (10) results for horizon N + l for any l ≥ 0. We showed
that any x(0) ∈ Rn that is a solution to (3) with horizon
N and active set (9) also is a solution for (3) with horizon
N + l and active set (10) for any l ≥ 0. 2

We illustrate claim (I) and Prop. 1 with Example 2. The
results shown in Figs. 1 to 4 are obtained by solving (3)
on a grid of 100 × 100 points and recording all solutions
including the active sets.

Example 2. Figure 1 shows all initial states x(0) that
result in the active sets

000001.000000.0 (N = 2) (11a)

000001.000000.000000.0 (N = 3) (11b)

for (3) with Example 1 andN = 2 andN = 3, respectively.
It is evident from the figures that the set defined by (11b)
and N = 3 is a superset of the set defined by (11a).
Moreover, it is evident the optimal signal u(0) = −1 results
in both cases. The remaining optimal input signals are also
equal, which we claim without showing them. The active
constraint in both active sets corresponds to u(0) = −1.

As a side-effect, Example 2 shows that sets of points
defined by an active set may not be connected in the
nonlinear case.

Proposition 2 and Example 3 belong to claim (II). Note
that the terminal constraints are not required to be in-
active in Prop. 2. Furthermore, note that claim (II) and
Proposition 2 essentially state the principle of optimality
for active sets.

Proposition 2. Consider (3) with constraint order (7). If

AN = α0.α1 · · · .αN−1.αN (12)

is an active set for (3) with horizon N , then

AN−1 = α1 · · · .αN−1.αN (13)

is an active set for (3) with horizon N − 1. Moreover,
any x(0) from the set defined by AN is mapped to a
successor state in the set defined by AN−1 for the closed-
loop nominal system.

Proof. Let x(0) be any initial condition such that (3)
for horizon N results in an optimal solution with active
set (12). Let the optimal solution be denoted as in (5).
Then the sequence that results from (5) after removing
u(0) and x(1), i.e.,

(u(k), x(k + 1))
N−1
k=1 (14)

is an optimal solution for (3) with horizon N−1 and initial
condition x(1) by the principle of optimality. Since the
same constraints are active for (14) as for (5) the active
set (13) results, which proves the first part of the claim.
Since x(0) was an arbitrary initial condition from the set
defined by (12), and since x(1) belongs to the set defined
by (13), the second part of the claim holds. 2

Example 3. Figure 2 shows all initial states x(0) for
which (3) with Example 1 results in the active sets

000001.000001.000000.0 (N = 3)

000001.000000.0 (N = 2)

for N = 2 and N = 3, respectively. The yellow region
in the figure for N = 2 results from the yellow region for
N = 3 with the principle of optimality.

Finally, Prop. 3 and Example 4 state respectively illustrate
the main result, i.e., the symbolic dynamics for active sets
stated in claim (III). It is the very point of the paper
to show that sequences of active sets (e.g., (15)→(16) in
Prop. 3 or (18a)→(18b)→(18c) and (19a)→(19b)→(19c)
in Example 4) can be inferred from an active set with
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Fig. 1. Illustration of claim (I) and Prop. 1. The region
defined by (11a) for N = 2 (yellow, top diagrams) is a
subset of the region defined by (11b) for N = 3 (green
and yellow, bottom diagrams, yellow used to highlight
the region from N = 2). Grey area delineates FN .

inactive terminal constraints, where these sequences of
active sets define sequences of regions through which the
systems evolves under MPC. Obtaining these does not
require solving optimal control problems, but the successor
active sets can simply be constructed by deleting the first

Fig. 2. Illustration of claim (II) and Prop. 2. Initial states
from the region defined by (12) for N = 3 propagate
to the region defined by (13) for N = 2.

stage of the given active set and appending it by an
inactive stage.

Proposition 3. Consider (3) with constraint order (7).
If (15) is an active set, then (16) is an active set, where (16)
results from deleting α0 and inserting an inactive penulti-
mate stage in (15).

2024 IFAC NMPC
August 21-24, 2024  |  Kyoto, Japan

203



Fig. 3. Illustration of claim (III) and Prop. 3. The regions
belong to the active sets (18). Any initial point x(0)
located in the red region passes through the cyan and
green region and subsequently enters the blue region.
The sequence of these active sets can be found from
the first active set (18a) with claim (III) and Prop. 3
without solving any optimal control problem.

α0.α1.α2. · · · .αN−1. 0 · · · 0︸ ︷︷ ︸
qT

(15)

α1.α2. · · · .αN−1.0 · · · 0. 0 · · · 0︸ ︷︷ ︸
qT

(16)

Moreover, (16) defines the successor set to the set defined
by (15) or a superset thereof. In other words, for any x(0)
that belongs to the set defined by (15), the successor state
belongs to the set defined by (16).

Proof. If (15) is an active set for horizon N , then

α1.α2. · · · .αN−1.0 · · · 0 (17)

is an active set for horizon N according to Prop. 2.
Inserting an inactive penultimate inactive stage in (17)
results in (16), which is an active set for horizon N
according to Prop. 1. 2

Example 4. Consider the optimal control problem (3) for
Example 1 and N = 3.

Figure 3 shows the regions defined by active sets

000001.000010.000000.0 (red) (18a)

000010.000000.000000.0 (cyan) (18b)

000000.000000.000000.0 (green) (18c)

which result from applying claim (III) or Prop. 3 to (18a)
once and twice. The colors stated in parentheses corre-
spond to the colors of the regions in Fig. 3. To show
another example, Fig. 4 shows the regions defined by active
sets

Fig. 4. Illustration of claim (III) and Prop. 3 with another
example. The regions belong to the active sets (19).
See the caption of Fig. 3 for further explanations.

000001.000001.000000.0 (red) (19a)

000001.000000.000000.0 (cyan) (19b)

000000.000000.000000.0 (green) (19c)

which result from applying claim (III) or Prop. 3 to (19a)
once and twice.

4. CONCLUSIONS AND OUTLOOK

We showed how to infer active sets that characterize the
optimal successor solution given the active set of the
current optimal solution. It was the purpose of the paper
to establish the operations that need to be carried out
with the active sets. Because these rules do not involve
optimal control (or other optimization) problems but are
based on simple operations like index shifts, we coined the
term symbolic dynamics for active sets for them.

Future work will focus on extending the problem class. Ex-
tensions may either attempt to drop some of the assump-
tions, or to combine the two-stage cost function with an
advanced terminal controller such as an economic model
predictive controller.

Appendix A. PROPERTIES OF EXAMPLE 1

The linear autonomous part of the dynamical system is
locally asymptotically stable at x = 0, since its eigenvalues
are λ1,2 = − 1

2 ± i 12 . Furthermore, it is easy to show

that ∥ξ(k + 1)∥2 = ∥Aξ(k)∥2 = 1
2∥ξ(k)∥

2 for the linear
autonomous part of the example. This implies ∥x(k +

1)∥2 = ∥Ax(k) + 1
4

[
0
x2
1

]
∥2 ≤ 1

2∥x(k)∥
2 + 1

42x
4
1. Since the
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last expression is not larger than 1
2 + 1

16 for all x(k) the
closed unit disk, the example is positive invariant on T for
u = κT (x). It can be shown to be positive invariant on the
interior of T by the same arguments.

Appendix B. PROOF OF LEMMA 1

Part (a): Consider the infinite-horizon problem (2) for
x(0), assume (5) extended by (4) is not an optimal solution
and show a contradiction results. If (5) extended by
(4) is not an optimal solution, then there exists, in any
neighborhood of (5) extended by (4), a different sequence
that respects the constraints of (2) and yields a lower cost
function value for (2). Let

(ũ(k), x̃(k + 1))
∞
k=0

refer to this sequence and assume it is from a neighborhood
of (4, 5) sufficiently small for x(N) ∈ int T to imply

x̃(N) ∈ int T . (B.1)

This implies at least one of the terms
N−1∑
k=0

ℓ(x̃(k), ũ(k)) +

∞∑
k=N

ℓ(x̃(k), ũ(k))

evaluates to a lower value than its counterpart in
N−1∑
k=0

ℓ(x(k), u(k)) +

∞∑
k=N

ℓ(x(k), u(k)).

If this is the case for the second term, this contradicts the
optimality of (4). If this is the case for the first term, this
contradicts the optimality of (5), where we used the fact
that

(ũ(k), x̃(k + 1))
N−1
k=0

is admissible for (3) because it respects (B.1) and the
remaining constraints of (3) are fulfilled because (3) has
them in common with (2). Thus, the desired contradiction
results in any case.

Part (b): The truncated sequence (6) is feasible for the
horizon-N problem (3), since problems (2) and (3) have
the constraints for stages k = 0, . . . , N − 1 in common,
and the only remaining constraint of (3), i.e., x(N) ∈ T ,
is fulfilled by assumption. Now assume the truncated
sequence is feasible but not optimal for (3). This implies
there exists (in any, arbitrarily small, neighborhood N ⊂
RmN×RnN of the truncated sequence) a different sequence

(ū(k), x̄(k + 1))
N−1
k=0 (B.2)

that results in a lower cost function value, with x̄(N) ∈ T
(and, in general, x̄(N) ̸= x(N)). By part (a) we can
extend (B.2) to a solution for the infinite-horizon problem,
which we denote (ū(k), x̄(k))

∞
k=0. Since

(ū(k), x̄(k))
N−1
k=0 ̸= (u(k), x(k))

N−1
k=0 ,

we also have

(ū(k), x̄(k))
∞
k=0 ̸= (u(k), x(k))

∞
k=0 , (B.3)

and the optimality of the former does not contradict the
optimality of the latter.

Since N can be chosen to be arbitrarily small, we can
make the difference between the l.h.s. and r.h.s. in (B.3)
arbitrarily small (e.g., in the obvious 2-norm). This implies
there exists a solution (ū(k), x̄(k + 1))

∞
k=0 in any neighbor-

hood of (u(k), x(k + 1))
∞
k=0 such that the former results in

a lower cost function value than the latter, which is the
desired contradiction.
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Mönnigmann, M. (2019). On the structure of the set of
active sets in constrained linear quadratic regulation.
Automatica, 106, 61–69.
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