
A Numerically Robust Mixed-Integer
Quadratic Programming Solver for
Embedded Hybrid Model Predictive

Control

Alberto Bemporad ∗ Vihangkumar V. Naik ∗

∗ IMT School for Advanced Studies Lucca, Italy
(email: {alberto.bemporad, vihangkumar.naik}@imtlucca.it).

Abstract: The deployment of hybrid model predictive control (MPC) in practical applications
requires primarily an efficient and robust on-line Mixed-Integer Quadratic Programming (MIQP)
solver that runs in real time. In this paper we propose a new algorithm for solving MIQP
problems which is particularly tailored to solve small-scale MIQPs, such as those that arise in
embedded hybrid MPC applications. The algorithm couples a branch and bound (B&B) scheme
with a recently proposed numerically robust Quadratic Programming (QP) solver based on
nonnegative least squares (NNLS) and proximal-point iterations. The resulting MIQP solver
supports positive semidefinite Hessian matrices, often appearing in hybrid MPC formulations,
and warm starts with respect to both binary and real variables. We show that the speed
of execution of our solver is comparable with state-of-the-art commercial solvers, while it is
relatively simple to code in an embedded control system.

Keywords: Mixed-integer quadratic programming, quadratic programming, active-set methods,
nonnegative least squares, model predictive control, hybrid systems.

1. INTRODUCTION

Since hybrid Model Predictive Control (MPC) was intro-
duced almost two decades ago (Bemporad and Morari,
1999), it has attracted a lot of attention in both academia
and industry. The widespread popularity of hybrid systems
is mainly due to their ability of modeling a very large
spectrum of practical systems where physical processes
coexist with switching dynamics, discrete actuators, logic
rules, and constraints on system variables. MPC based on
hybrid models provides an optimized way of controlling
such systems. However, the real-time implementation of
hybrid MPC on embedded platforms is still a challenge, as
it requires solving a mixed-integer quadratic programming
(MIQP) problem at every sample time in a numerically
efficient and robust manner.

For this reason, several solution approaches to solve MIQP
problems in an embedded control setting have been inves-
tigated. In “desktop” applications the numerical package
is used to solve (sometimes large-scale) MIQPs with large
memory and computing resources available and no strin-
gent limits on execution time. Conversely, in embedded
applications, severe restrictions on CPU/memory/time re-
sources pose considerable differences: the number of vari-
ables (especially binary variables) should be small, the
code must be simple and library-free, the algorithm must
be numerically robust also when executed in single preci-
sion arithmetic.

As suboptimal solutions are often enough for practical con-
trol purposes, several heuristic approaches were introduced
to approximately solve the mixed-integer problem in a very

quick manner. The feasibility pump (FP) heuristic was
proposed for mixed-integer linear constraints (Fischetti
et al., 2005), and for binary and general-integers (Bertacco
et al., 2007). Recently, heuristic methods were used with
the alternating direction method of multipliers (ADMM)
(Takapoui et al., 2016), and accelerated dual gradient
projection (GPAD) (Naik and Bemporad, 2017) in order to
approximately solve the MIQP problem. However, heuris-
tic approaches are not guaranteed to converge to a feasible
solution. Under some assumptions, an approach for finding
suboptimal solutions based on operator splitting with con-
vergence guarantees was presented in (Frick et al., 2016).

The Branch and Bound (B&B) approach (Floudas, 1995)
to solve MIQP problems to optimality has been used
in combination with various algorithms to solve the QP
relaxations including dual active-set methods (Axehill and
Hansson, 2006), interior-point methods (Frick et al., 2015),
an active-set method based on nonnegative least squares
(NNLS) (Bemporad, 2015), GPAD (Naik and Bemporad,
2017), and ADMM based on the OSQP solver (Stellato
et al., 2018). The algorithms in (Bemporad, 2015), (Naik
and Bemporad, 2017), (Stellato et al., 2018) are relatively
simple to code, and are demonstrated to be quite effective
for small-scale problems. The first two approaches however
require a strictly convex objective function, with their
numerical performance deteriorating with the condition
number of the Hessian matrix. While regularizing the cost
function would improve numerical robustness, it would
bias the solution away from optimality.

In this paper we propose an MIQP algorithm based
on B&B and the numerically robust solver for positive

Preprints, 6th IFAC Conference on Nonlinear Model Predictive Control
Madison, WI, USA, August 19-22, 2018

Copyright © 2018 IFAC 502

semidefinite QPs recently introduced in Bemporad (2018).
The QP solver is based on an active-set method for solving
nonnegative least-squares (NNLS) problems, but differ-
ently from (Bemporad, 2016) it uses proximal-point iter-
ations that greatly improve robustness without worsening
execution time. Compared to the MIQP approach in (Be-
mporad, 2015), the numerical robustness of the resulting
MIQP solver is largely improved and can handle positive
semidefinite Hessian matrices. Moreover, it handles equal-
ity constraints, supports warm starting of QP relaxations
from parent nodes in the search tree, and more general
bilateral inequality constraints.

In addition, we include a warm start strategy for binary
variables within the B&B setup, which allows prioritizing
the exploration of a specific section of the binary tree. This
is especially useful in hybrid MPC (Bemporad et al., 1999),
moving-horizon estimation (Ferrari-Trecate et al., 2002)
and piecewise affine regression (Naik et al., 2017; Mejari
et al., 2018), where a good initial guess for the binary
variables is available by shifting the optimal solution
computed at the previous sample step.

We will show in numerical experiments that the resulted
approach gives quite comparable results against well-
known commercial solvers when tested on small-scale
MIQPs, such as those arising in embedded hybrid MPC
applications.

2. PROBLEM FORMULATION

Consider the Mixed-Integer Quadratic Programming (MIQP)
problem

min
z

V (z) ≜ 1

2
z′Qz + c′z (1a)

s.t. ℓ ≤ Az ≤ u (1b)

Gz = g (1c)

Āiz ∈ {ℓ̄i, ūi}, i = 1, . . . , p (1d)

where z ∈ Rn is the vector of optimization variables, Q ∈
Rn×n is the positive semidefinite Hessian matrix, Q ⪰ 0,
c ∈ Rn, A ∈ Rm×n and ℓ, u ∈ Rm describe the linear
inequality constraints, ℓ ≤ u, and G ∈ Rq×n, g ∈ Rq the
linear equality constraints. Binary equality constraints are
described by Ā ∈ Rp×n, ℓ̄, ū ∈ Rp, p ≤ m. Binary variables
zi ∈ {0, 1} are a special case of (1d), corresponding to
setting Āi as the i-th row of the identity matrix, ℓ̄i=0, and
ūi = 1. The QP relaxation of problem (1) is obtained by
replacing the integrality constraint (1d) with the following
linear inequality constraint of the form (1b) as

ℓ̄i ≤ Āiz ≤ ūi, i = 1, . . . , p. (1e)

Hybrid systems can efficiently be modeled using the Mixed
Logical Dynamical (MLD) framework (Bemporad and
Morari, 1999). The tool HYSDEL (Torrisi and Bemporad,
2004) allows one to describe a hybrid dynamical model and
get the equivalent MLD transformation. The hybrid MPC
problem based on MLD models can be recast as a MIQP
problem of the form (1a)-(1d). Very often the associated
Hessian matrix Q is only positive semidefinite. The MIQP
solution approach described in this paper does not require
regularizing Q to make the problem strictly convex.

3. SOLUTION OF QP RELAXATIONS

Solving problem (1a)-(1d) using B&B requires solving QP
relaxations, in which constraints (1d) are either relaxed
to inequality constraints ℓ̄i ≤ Āiz ≤ ūi or to equality
constraints Aiz = ℓ̄i or Aiz = ūi. To solve QP relax-
ations of the form (1a)-(1c), we slightly extend the solver
in (Bemporad, 2018) to handle bilateral constraints of the
form (1b), as summarized in Algorithm 1. It is based on
the idea of solving proximal-point iterations, where each
iteration consists of solving a regularized QP. The latter
that is recast as a least distance problem (LDP) and solved
using a nonnegative least squares (NNLS) algorithm.

3.1 Outer proximal-point iterations

Let Q = Q′ ⪰ 0 in (1). For any ϵ > 0, the sequence
{zk} of solutions to the following strictly convex quadratic
programs

zk+1 = arg minz
1

2
z′Qz + c′z +

ϵ

2
∥z − zk∥22

s.t. ℓ ≤ Az ≤ u
Gz = g

(2)

converges to a solution z∗ of the QP relaxation of the
form (1a)-(1c) as k tends to infinity (Bemporad, 2018,
Corollary 1).

3.2 Inner active-set solver

The dual of the QP problem (2) is the following convex
QP

min
λℓ,λu,µ

1

2

[
λℓ

λu
µ

]′[−A
A
G

]
(Q+ϵI)−1

[−A
A
G

]′[λℓ

λu
µ

]
+

[
dk
ℓ

dk
u

fk

]′[
λℓ

λu
µ

]
(3a)

s.t. λℓ, λu ≥ 0, µ free, (3b)

where λℓ, λu ∈ Rm, µ ∈ Rq, and dkℓ , d
k
u ∈ Rm, fk ∈ Rq are

defined as follows:[
dk
ℓ

dk
u

fk

]
≜

[−ℓ
u
g

]
+

[−A
A
G

]
(Q+ ϵI)−1(c− ϵzk). (3c)

The following theorem shows how the QP problem (2)
is equivalent to a least-squares problem in which some
of the variables are constrained to be nonnegative, ex-
tending (Bemporad, 2016, Th. 1) to the case of equality
constraints, bilateral inequalities as in (Bemporad, 2015)
and subsequently to scaling of dkℓ , dku, fk for improved
numerical robustness as in (Bemporad, 2018).

Theorem 1. Consider the QP (1a)–(1c) and let Q ⪰ 0,
ϵ > 0. Let L′L be a Cholesky factorization of Q + ϵI and
define M ≜ AL−1, N ≜ GL−1. Let γ, β be any positive
scalars. Consider the Partially Nonnegative Least Squares
(PNNLS) problem

min
yℓ,yu,ν

1

2

∥∥∥∥[−M ′

β(dkℓ)
′

]
yℓ+

[
M ′

β(dku)
′

]
yu+

[
N ′

β(fk)′

]
ν+

[
0
βγ

]∥∥∥∥2
2

(4a)

s.t. yℓ, yu ≥ 0, ν free (4b)

with yℓ, yu ∈ Rm, ν ∈ Rq, and let

δ∗ ≜ β(γ + (dkℓ)
′y∗ℓ + (dku)

′y∗u + (fk)′ν∗) (5a)

r∗ ≜
[
M ′(y∗ℓ − y∗u)−N ′ν∗

−δ∗
]

(5b)

2018 IFAC NMPC
Madison, WI, USA, August 19-22, 2018

503

where r∗ ∈ Rn+1 is the residual obtained at the optimal
solution (y∗ℓ , y

∗
u, ν

∗) of (4), where y∗ℓ , y
∗
u ∈ Rm, ν∗ ∈ Rq.

The following statements hold:

i) If r∗ = 0 then QP (1a)–(1c),(1e) is infeasible;
ii) If r∗ ̸= 0 then

z∗≜−(Q+ ϵI)−1

(
c− ϵzk+

A′(y∗u − y∗ℓ) +G′ν∗

βδ∗

)
(6)

and

λ∗
ℓ ≜ 1

βδ∗
y∗ℓ , λ∗

u ≜ 1

βδ∗
y∗u, µ∗ ≜ 1

βδ∗
ν∗

solve QP (2) and its dual (3), respectively.

The proof is a slight modification in (Bemporad, 2018,
Appendix A), specifically M is replaced by [−M M]

′
, dk

by [dk
ℓ dk

u]
′
, y by [yℓ yu]

′
, w by [wℓ wu]

′
, and λ by [λℓ λu]

′
.

3.3 Warm starting

At each proximal-point iteration, as well as when starting
to solve a new QP relaxation after a solution is available
from the parent node in the B&B search tree, the QP
problem (2) can be warm-started from an initial guess
zk and the corresponding problem (4) from sets of active
constraints Pu,Pℓ ⊆ {1, . . . ,m}, Pu ∩ Pℓ = ∅, along with
the initial guess yℓ ≥ 0, yu ≥ 0, wℓ, wu ∈ Rm and ν ∈ Rq

which satisfies the following conditions:

wℓ = −M(M ′(yu − yℓ) +N ′ν) + βδdkℓ (7a)

wu = M(M ′(yu − yℓ) +N ′ν) + βδdku (7b)

y′ℓwℓ = y′uwu = 0 (7c)

yℓi ≥ 0, wℓi = 0, ∀i ∈ Pℓ (7d)

yui ≥ 0, wui = 0, ∀i ∈ Pu (7e)

yℓi = 0, ∀i ∈ {1, . . . ,m} \ Pℓ (7f)

yui = 0, ∀i ∈ {1, . . . ,m} \ Pu (7g)

ν = −
[

N ′

β(fk)′

]# [
M ′(yu−yℓ)

δ

]
(7h)

where # denotes pseudoinversion, and

δ = β(γ + (dkℓ)
′yℓ + (dku)

′yu + (fk)′ν). (7i)

Terms (7a)-(7g), (7i) are derived from the Karush-Kuhn-
Tucker (KKT) conditions of problem (4). Condition (7h)
is derived from the proof of (Bemporad, 2018, Appendix
A) with the modifications mentioned in Section 3.2.

3.4 Parameter selection and scaling

The parameters β,γ>0 are selected as in (Bemporad, 2018)

γ = 1 + ∥fk∥1 + ∥dkℓPℓ
∥1 + ∥dkuPu

∥1, β =
1

γ
,

which are known to provide good numerical conditioning.
Unlike first-order methods which are well-known to be very
sensitive to scaling, our numerical experiments suggest
that this algorithm is less sensitive to the scaling. However,
in order to ensure better numerical robustness of the
overall MIQP solver, we use the scaling applied to the
constraints of type (1b), (1c) as

M̂i ≜
1

∥Mi∥2
, N̂i ≜

1

∥Ni∥2
M̂iℓi ≤ M̂iAiz ≤ M̂iui

N̂iGiz = N̂igi.

Algorithm 1 Robust QP solver based on NNLS and
proximal-point iterations

Input: QP matrices Q, c, A, G, vectors u, ℓ, g,
regularization term ϵ > 0, feasibility tolerance σ > 0, stop
tolerance η > 0, initial guess z0.

1. Compute inverse Cholesky factor L−1, L′L=(Q+ϵI);
2. M ← AL−1, N ← GL−1; Pℓ,Pu ← ∅;
3. Factorize NN ′ as LDL′ = NN ′;
4. k, h← 0;

5. vk←L−T (c−ϵzk); WP←
[
−MPℓ

MPu

N

]
; dkℓ ← −(ℓ+Mvk);

dku ← u+Mvk; θ
k
P ←

[
dk
ℓPℓ

dk
uPu

g+Nvk

]
; γ ← ∥θkP∥1; β ← 1

γ ;

6. [L,D]← rankone(L,D, 1, βθkP);
7. (yℓ, yu, ν,Pℓ,Pu, γ, β)← get feasible(Pℓ,Pu); h←h+1;

8. δ ← β(γ + (θkP)
′
[yℓPℓ
yuPu

ν

]
), a←W ′

P

[yℓPℓ
yuPu

ν

]
,

[wℓ
wu

]←Ma
[−I

I

]
+ βδ

[
dk
ℓ

dk
u

]
;

9. ρ← a′a+ δ2;
10. if ρ = 0 then QP problem (1) is infeasible; go to

Step 18;
11. if min{wℓi , wui

} ≥ −βδσ, ∀i ∈ {1, . . . ,m}, or Pℓ ∪
Pu = {1, . . . ,m} then go to Step 14;

12. iℓ ← argmini∈{1,...,m}\Pℓ
wℓi,

iu ← argmini∈{1,...,m}\Pu
wui,

if wℓiℓ ≤ wuiu then Pℓ ← Pℓ ∪ {iℓ}; γ ← γ + |dℓiℓ |;
otherwise Pu←Pu ∪ {iu}; γ←γ + |duiu |;
β̄=β, β= 1

γ ;

13. update LDLT factorization go to Step 7;
14. k ← k + 1;

15.
[

λℓk

λuk
µk

]
← 1

δ

[
yℓ
yu
ν

]
; uk ← 1

δa; zk ← L
−1(uk − vk);

16. if ∥zk − zk−1∥ > η then
[L,D]← rankone(L,D,−1, βdkP); go to Step 5;

17. z∗←zk, λ
∗
ℓ←λℓk , λ

∗
u←λuk

, µ∗←µk, P∗
ℓ←Pℓ, P∗

u←Pu;
18. end.

19. procedure(yℓ, yu, ν,Pℓ,Pu, γ, β)←get feasible(Pℓ,Pu)

19.1. solve the LS problem[sℓPℓ
suPu
sν

]
← argminz

∥∥∥[W ′
P

β(θk
P)′

]
z +

[0n
βγ

]∥∥∥2
2
;

sℓ{1,...,m}\Pℓ
← 0, su{1,...,m}\Pu

← 0;

19.2. if sℓPℓ
, suPu

≥ 0 then
[

yℓ
yu
ν

]
←

[
sℓ
su
sν

]
and go to

Step 19.8;

19.3. jℓ ← argminh∈Pℓ: sℓh≤0

{
yℓh

yℓh−sℓh

}
,

ju ← argminh∈Pu: suh≤0

{
yuh

yuh−suh

}
;

19.4.
[

yℓ
yu
ν

]
←

[
yℓ
yu
ν

]
+min{jℓ, ju} ·

([
sℓ
su
sν

]
−

[
yℓ
yu
ν

])
;

19.5. Iℓ ← {h ∈ Pℓ : yℓh = 0},Pℓ ← Pℓ \ Iℓ;
γ ← γ − ∥dℓIℓ

∥1;
Iu ← {h ∈ Pu : yuh = 0};Pu ← Pu \ Iu;
γ ← γ − ∥duIu

∥1; β̄ = β, β = 1
γ ;

19.6. update LDLT factorization
19.7. go to Step 19.1;
19.8. end procedure.

Output: Primal solution z∗ solving (1a)-(1d) dual solu-
tion (λ∗

ℓ , λ
∗
u, µ

∗), optimal active sets P∗
ℓ , P∗

u or infeasibility
status.

2018 IFAC NMPC
Madison, WI, USA, August 19-22, 2018

504

3.5 Stopping criteria and optimality

At Step 16 the iterates of Algorithm 1 stop when

∥zk − zk−1∥ ≤ η.

This condition corresponds to satisfying the optimality
condition

∥Qzk + c+A′(λuk
− λℓk) +G′µk∥ ≤ ϵη (9)

of the QP problem of the form (1a)–(1c). In fact, from (6),
we have

(Q+ ϵI)zk = −c+ ϵzk−1 −A′(λuk
− λℓk)−G′µk

ϵ(zk − zk−1) = −Qzk − c−A′(λuk
− λℓk)−G′µk

and hence ∥zk − zk−1∥ ≤ η implies (9).

In Algorithm 1, Steps 1-4 performs initialization, followed
by active-set iterations starting at Step 5. The active sets
Pu,Pℓ change for every iteration while solving problem (4)
at a given proximal-point iteration k; this is done via
rank-one updates of LDLT factorization (Bemporad, 2018,
Section III. C). Feasible values as in (7) are computed at
Steps 7, 8. Steps 9, 10 check for infeasibility. The inner
active set iterations continue from Step 5 until w is feasible
(within tolerance) at Step 11 or if all inequality constraints
have entered the active set, followed by computation of
solution zk at Steps 14, 15. Step 16 continues executing
proximal-point iterations until the criteria (9) is satisfied
followed by computing the optimal solution at Step 17.

4. MIQP SOLVER

Algorithm 2 describes a standard B&Bmethod to solve the
MIQP problem (1a)-(1d). It uses Algorithm 1 for solving
the QP relaxations (1a)-(1c),(1e). It consists of three basic
sets J , Iℓ̄, Iū, contains the indices of binary constraints of
type ℓ̄J≤ĀJz≤ ūJ , ĀIℓ̄z = ℓ̄Iℓ̄ and ĀIūz = ūIū respectively
where J = {1, . . . , p} \ (Iℓ̄ ∪ Iū), Iℓ̄ ∩ Iū = ∅. The tuple T
holds the sets Iℓ̄, Iū for each relaxed QP subproblem. The
stack S holds these tuples with the order of remaining QP
subproblems to be solved. The best cost associated with
an integer feasible solution is denoted by V0, z

∗ denotes
the optimal value of the MIQP problem. Vector zk is the
initial value of the optimization vector, which is initialized
with an arbitrary initial guess z0.

At Step 1, the set J is initialized with all p binary
constraints, which is equivalent to (1e) and represents the
root-node of the B&B tree. At Step 2.1, the last tuple
T is popped from the stack S. Step 2.2 solves this QP
relaxation using Algorithm 1.

Step 2.3 checks if the solution of the QP problem is feasible
and the solution V ∗ ≤ V0. Step 2.3.1 checks if all the binary
constraints are satisfied and updates the optimal values V ∗

and ξ∗. The binary constraint to be branched upon j is
picked from the set J having the largest fractional part at
Step 2.2.3.1. At Step 2.2.3.2, the index j is removed from
the set J , and two tuples T0, T1 are created corresponding
to the two subproblems with j-th binary constraint equal
to ℓ̄j and ūj respectively. In case of binary constraints
that derive from imposing binary variables zj ∈ {0, 1},
z∗j is replaced by either 0 or 1 in Step 2.2.3.2 for warm
start. Step 2.2.3.3 decides the priority among the two
subproblems T0, T1 based on the value of Ājz

∗ of the
relaxed solution. Once all QP problems are solved, the

Algorithm 2 MIQP solver

Input: MIQP problem matrices Q = Q′ ⪰ 0, c, A, Ā, G
and vectors ℓ, u, ℓ̄, ū, g, initial value z0; feasibility tolerance
ϵ ≥ 0.

1. set V0 ← +∞; z∗ ← ∅; J ← {1, . . . , p}; Iℓ̄ ← ∅; Iū ←
∅; zk ← z0; T ← {Iℓ̄, Iū, zk}; S ← {T };

2. while S ̸= ∅ do:
2.1. {Iℓ̄, Iū, zk} ← last element T of S; S ← S \ {T };
2.2. execute Algorithm 1 to solve QP problem for

z∗,V ∗;
2.3. if the QP problem is feasible and V ∗ ≤ V0 then

2.3.1. if Āiz
∗ ∈ {ℓ̄i, ūi}, ∀i ∈ J or Iℓ̄ ∪ Iū =

{1, . . . , p} then V0 ← V ∗, ξ∗ ← z∗; oth-
erwise

2.2.3.1. j ← argmin
i∈J

∣∣∣Āiz
∗ − ℓ̄i+ūi

2

∣∣∣;
2.2.3.2. J ← J \ j, T0 ← {Iℓ̄ ∪ {j}, Iū, z∗};

T1 ← {Iℓ̄, Iū ∪ {j}, z∗};
2.2.3.3. if Ājz

∗ ≤ ℓ̄j+ūj

2 then append {T1, T0}
to S otherwise append {T0, T1} to S;

3. if V0 = +∞ then (1) infeasible otherwise V∗ ← V0;
4. end.

Output: Solution ξ∗ of the MIQP problem (1), optimal
cost V∗, or infeasibility status.

value of V0 is checked at Step 3. If V0 is still having +∞
then (1) is infeasible, in the other case the optimal cost V∗

and the optimal solution ξ∗ is returned.

5. WARM STARTING BINARY VARIABLES

For simplicity we focus on the case of constraints (1d)
having the form zi ∈ {0, 1} for some indices i ∈ B,
B ⊆ {1, . . . , n}, with cardB = p. We want to introduce
a strategy in the MIQP solver that exploits warm starts
on (all or some of) the binary variables zi, which can be
immediately extended to more general constraints of the
form (1d).

Let Ĩℓ̄, Ĩū ⊆ B be the sets containing the indices of warm

started binary variables set equal to 0 or 1 respectively, Ĩℓ̄∩
Ĩū=∅, Ĩℓ̄ ∪ Ĩū ̸=∅. After solving the relaxed problem (1a)-
(1c), (1e) at the root node to compute the optimal solution
z∗ (steps up to Step 2.2 of Algorithm 2), and assuming
that z∗i ̸∈ {0, 1} for some i ∈ B, Steps 2.2.3.1-2.2.3.3
of Algorithm 2 are replaced by Algorithm 3, which is
described below.

Steps 1.1-1.3 are executed if the warm started binary
variables have fractional values. In this case, the priority
for branching is first given to these warm started variables
at Step 1.1. At Step 1.2, the selected j is removed from
the set J , and two new subproblems are created. These
subproblems are pushed on S with the order defined in
Step 1.3. Once all the warm started binaries are branched
upon, Steps 1.4-1.6 are executed for further branching on
the binary variables which were not warm started.

Step 2 is executed right after the relaxed problem at the
root node is solved and two subproblems are pushed on
the stack, and executed only once as ensured by condition
in 2. At Step 2.1, all the warm started values are removed
from set J . The binary constraints j having the largest
fractional part at is picked (from the indices of non warm

2018 IFAC NMPC
Madison, WI, USA, August 19-22, 2018

505

Algorithm 3 Warm start for binary variables

Input: Sets Ĩℓ̄, Ĩū containing the values corresponding to
the warm start, J , Iℓ̄, Iū; Optimal solution z∗ of the QP
problem;

1. if J ∩ (Ĩℓ̄ ∪ Ĩū) ̸= ∅ then: (first branch on the warm
started binary variables)

1.1. j ← inf(J ∩ (Ĩℓ̄ ∪ Ĩū));
1.2. J ← J \ j, T0 ← {Iℓ̄ ∪ {j}, Iū, z∗}; T1 ← {Iℓ̄, Iū ∪

{j}, z∗};
1.3. if j ∈ Ĩℓ̄ then append {T1, T0} to S otherwise

append {T0, T1} to S;
otherwise
1.4. j ← argmin

i∈J

∣∣z∗i − 1
2

∣∣;
1.5. J ← J \ j, T0 ← {Iℓ̄ ∪ {j}, Iū, z∗}; T1 ← {Iℓ̄, Iū ∪

{j}, z∗};
1.6. if z∗j ≤ 1

2 then append {T1, T0} to S otherwise
append {T0, T1} to S;

2. if card(J) = p− 1 then (just once below the root
node)

2.1. set J ← {1, . . . , p} \ (Ĩℓ̄ ∪ Ĩū);
2.2. j ← argmin

i∈J

∣∣z∗i − 1
2

∣∣;
2.3. J ← J \ j, T0 ← {Ĩℓ̄ ∪ {j}, Ĩū, z∗}; T1 ← {Ĩℓ̄, Ĩū ∪

{j}, z∗};
2.4. if z∗j ≤ 1

2 then append {T1, T0} to S otherwise
append {T0, T1} to S; (pushed at the top of S
with the highest priority)

Output: Two subproblems T1, T0 (in appropriate order)
are pushed at the top of the stack S.

started binary variables) at Step 2.2. At Step 2.3, two
new subproblems are created with j-th variable branched
upon along with the binary variables belonging to sets Ĩℓ̄
and Ĩū fixed equal to ℓ̄i and ūi respectively. These two
subproblems are pushed on the top of S as in Step 2.4.
The binary variables zj ∈ {0, 1}, z∗j is replaced by either
0 or 1 in Steps 1.2, 1.5 and 2.3 for warm start.

According to a last-in-first-out strategy, these two prob-
lems are solved before exploring nodes below the root node
which were formerly pushed on S. This step will force
the tree exploration from these two new subproblems, and
further branching will be done only if necessary, until leaf
nodes are reached. If the resulting leaves are feasible then
the value of V0 (the best known integer-feasible solution)
is updated appropriately with V ∗. In this case, finite value
of V0 upfront can reduce the number of QP subproblems
solved in the course of finding the global solution of MIQP
problem using the proposed B&B algorithm.

This step is followed by convention of solving the problems
from the stack S below the root node using Step 1 of
Algorithm 3. We ensure not to solve the nodes leading
to the leaves already solved while exploring the tree now
from beneath the root node.

We illustrate the flow of Algorithm 2+3 with an example
with 3 binary variables, warm started using the sequence
(1, 0, ⋆), that is the warm start z1 = 1, z2 = 0. The flow
of B&B is shown in Figure 1, where the number inside
the node denotes the order in which the QP relaxation
is executed. First the root node is solved and then two

problems are pushed on the stack with high priority to
the (1, ⋆, ⋆) node.

Then, the leaf problem (1, 0, 0) is solved first (QP #2), and
(1, 0, 1) immediately after (QP #3). Once these two leaves
have been solved, problem (1, ⋆, ⋆) is popped from the
stack (due to the last-in-first-out method), but not solved
(depicted as a dashed circle in Fig. 1), because we have
already explored the children nodes of (1, 0, ⋆). Indeed,
problems (1, 0, 0) and (1, 0, 1) are ignored when popped
again from stack herein. Therefore, problem (1, 1, ⋆) is
popped from the stack and solved (QP #4).

We remark that we have saved solving 2 QP relaxations
without compromising the optimality of the MIQP solu-
tion. In general, using this approach at least p − 1 QP
relaxations can be saved.

1

7

2 3

4

5 6

⋆⋆⋆

0⋆⋆

00⋆

000 001

01⋆

010 011

1⋆⋆

10⋆

100 101

11⋆

110 111

Fig. 1. Illustration example with 3 binary variables and
(1, 0, ⋆) as a binary warm start. The numbers indicate
the order in which the QP relaxations are solved,
dashed nodes correspond to QP subproblems that are
ignored

When solving hybrid MPC in receding horizon fashion, at
every sampling instance a sequence z is optimized over the
whole horizon of length N , the first computed value of the
input is applied to the system, then the horizon window
is shifted by one sample time and the procedure repeated.
Let z∗ = (v∗0|t, δ

∗
0|t, ζ

∗
0|t, . . . , v

∗
N−1|t, δ

∗
N−1|t, ζ

∗
N−1|t) be the

optimal solution computed at time t, where vk, ζk, δk are
the vectors of inputs, real-valued and binary auxiliary vari-
ables respectively, corresponding to the optimal trajectory
of the MLD model used by hybrid MPC (Bemporad and
Morari, 1999). We can exploit the shifted binary values
optimized at the previous step as the binary warm start,
in particular δ0|t+1 = δ∗1|t, . . . , δN−2|t+1 = δ∗N−1|t (and

similarly for binary inputs, if any), and use Algorithm 2
with Steps 2.2.3.1–2.2.3.3 replaced by Algorithm 3.

6. NUMERICAL RESULTS

We report numerical experiments carried out on a desktop
computer with Intel Core i7-4700MQ CPU 2.40 GHz and
8 GB RAM, using MATLAB R2015a. Algorithms 2, 3 are
implemented in interpreted MATLAB code and Algorithm
1 in compiled Embedded MATLAB code.

We consider the hybrid MPC problem from (Bemporad
and Morari, 1999, Example 5.1), with the default settings
as in bm99sim.m which is a part of the the Hybrid Toolbox
for MATLAB (Bemporad, 2003). This demo considers
unit weight on the output of the system and all the
other weights are zero. This hybrid MPC problem has
been tested for the prediction horizon N from 2 to 15.

2018 IFAC NMPC
Madison, WI, USA, August 19-22, 2018

506

N NNLS NNLS∗ GUROBI CPLEX

avg max avg max avg max avg max
2 2.0 2.6 2.0 2.6 1.6 2.0 3.1 6.0
3 3.1 5.1 2.5 4.8 2.7 3.0 6.3 11.5
4 5.3 8.8 3.1 6.9 3.1 3.9 8.9 15.7
5 8.1 16.4 3.9 13.0 3.9 4.8 10.8 15.7
6 13.6 25.5 5.1 18.3 4.7 7.3 11.1 17.1
7 21.7 46.2 6.4 30.2 5.6 9.5 17.5 80.4
8 29.7 71.0 8.1 43.4 7.2 13.2 15.5 80.2
9 49.5 115.9 11.1 69.8 8.8 15.3 22.8 110.6

10 76.2 146.1 14.4 103.2 11.1 17.6 35.1 95.3
11 121.3 254.6 20.6 179.1 13.0 23.9 37.3 102.5
12 155.8 410.8 26.9 263.4 14.9 31.2 61.7 103.7
13 247.6 607.9 35.5 384.9 17.5 36.6 47.3 119.5
14 304.9 893.7 46.3 562.4 21.4 67.4 81.6 150.6
15 484.2 1242.3 61.7 766.9 25.9 109.8 89.9 181.1

Table 1. Hybrid MPC problem: CPU time
(ms) per sampling step for different prediction

horizons N

The performance of Algorithm 1 is compared against
commercial solvers GUROBI (Gurobi Optimization, Inc.,
2014) and CPLEX (IBM, Inc., 2014) with presolvers
enabled. The maximum norm of the error in the input
trajectories is less than 10−4.

Table 1 report the CPU time taken by the different
solvers, where the columns NNLS and NNLS∗ denote
Algorithm 1+2 without warm starting binary variables
and Algorithm 1+2+3 with warm start of binary variables,
respectively. For N = 10, the MIQP problem has n =
40, p = 10 (i.e., 30 continuous variables and 10 binary
variables), and m = 160 linear inequalities.

7. CONCLUSIONS

Motivated by embedded hybrid MPC applications, this
paper has proposed a new MIQP solver based on branch
and bound that is able to exploit warm start on binary
variables. A numerically efficient and robust QP solver
based on nonnegative least squares and proximal point
iterations is used for solving the QP relaxations, which
does not require the Hessian matrix to be positive definite;
this is particularly useful in hybrid MPC problems based
on quadratic costs where the quadratic cost is only positive
semidefinite due to some variables having zero weight in
the MPC cost function. The reported numerical results
demonstrate that presented framework for warm starting
binary variables for hybrid MPC problems using the same
QP solution algorithm provides better performance in
terms of both average and maximum computation time.

REFERENCES

Axehill, D. and Hansson, A. (2006). A mixed integer dual
quadratic programming algorithm tailored for MPC. In
Proc. 45th IEEE Conference on Decision and Control,
5693–5698. San Diego, CA, USA.

Bemporad, A. (2003). Hybrid Toolbox – User’s
Guide. http://cse.lab.imtlucca.it/~bemporad/
hybrid/toolbox.

Bemporad, A. (2015). Solving mixed-integer quadratic
programs via nonnegative least squares. In 5th IFAC
Conf. on Nonlinear Model Predictive Control, 73–79.
Sevilla, Spain.

Bemporad, A. (2016). A quadratic programming algo-
rithm based on nonnegative least squares with appli-
cations to embedded model predictive control. IEEE
Trans. Automatic Control, 61(4), 1111–1116.

Bemporad, A. (2018). A numerically stable solver for
positive semidefinite quadratic programs based on non-
negative least squares. IEEE Trans. Automatic Control,
63(2), 525–531.

Bemporad, A., Mignone, D., and Morari, M. (1999). Mov-
ing horizon estimation for hybrid systems and fault
detection. In Proc. American Contr. Conf., 2471–2475.
Chicago, IL.

Bemporad, A. and Morari, M. (1999). Control of systems
integrating logic, dynamics, and constraints. Automat-
ica, 35(3), 407–427.

Bertacco, L., Fischetti, M., and Lodi, A. (2007). A feasibil-
ity pump heuristic for general mixed-integer problems.
Discrete Optimization, 4(1), 63–76.

Ferrari-Trecate, G., Mignone, D., and Morari, M. (2002).
Moving horizon estimation for hybrid systems. IEEE
Trans. Automatic Control, 47(10), 1663–1676.

Fischetti, M., Glover, F., and Lodi, A. (2005). The
feasibility pump. Mathematical Programming, 104(1),
91–104.

Floudas, C.A. (1995). Nonlinear and Mixed-Integer Opti-
mization. Oxford University Press.

Frick, D., Domahidi, A., and Morari, M. (2015). Embed-
ded optimization for mixed logical dynamical systems.
Computers & Chemical Engineering, 72, 21–33.

Frick, D., Jerez, J.L., Domahidi, A., Georghiou, A., and
Morari, M. (2016). Low-complexity iterative method
for hybrid MPC. ArXiv e-prints.

Gurobi Optimization, Inc. (2014). Gurobi Optimizer Ref-
erence Manual. URL http://www.gurobi.com.

IBM, Inc. (2014). IBM ILOG CPLEX Optimization Studio
12.6 – User Manual.

Mejari, M., Naik, V.V., Piga, D., and Bemporad, A.
(2018). Regularized moving-horizon PWA regression for
LPV system identification. In Proc. 18th IFAC Sympo-
sium on System Identification. Stockholm, Sweden.

Naik, V.V. and Bemporad, A. (2017). Embedded
mixed-integer quadratic optimization using accelerated
dual gradient projection. In Proc. 20th IFAC World
Congress, 10723–10728. Toulouse, France.

Naik, V.V., Mejari, M., Piga, D., and Bemporad, A.
(2017). Regularized moving-horizon piecewise affine
regression using mixed-integer quadratic programming.
In Proc. 25th Mediterranean Conf. on Control and
Automation, 1349–1354. Valletta, Malta.

Stellato, B., Naik, V.V., Bemporad, A., Goulart, P., and
Boyd, S. (2018). Embedded mixed-integer quadratic
optimization using the OSQP solver. In Proc. Euro-
pean Control Conference (ECC), 1536–1541. Limassol,
Cyprus.

Takapoui, R., Moehle, N., Boyd, S., and Bemporad, A.
(2016). A simple effective heuristic for embedded mixed-
integer quadratic programming. In Proc. American
Contr. Conf., 5619–5625. Boston, MA, USA.

Torrisi, F. and Bemporad, A. (2004). HYSDEL — A
tool for generating computational hybrid models. IEEE
Trans. Contr. Systems Technology, 12(2), 235–249.

2018 IFAC NMPC
Madison, WI, USA, August 19-22, 2018

507

