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Abstract: In this paper, we present an approach for real-time nonlinear model predictive control
(NMPC) of constrained multivariable dynamical systems described by nonlinear difference
equations. The NMPC problem is formulated by means of a quadratic penalty function as
an always feasible, sparse nonlinear least-squares problem subject to box constraints on the
decision variables. This formulation is exploited by the proposed fast solution algorithm, which
is based on the Gauss-Newton method and bounded-variable least squares (BVLS). Linear time-
invariant and linear time-varying model predictive control based on BVLS are special cases of
the proposed NMPC framework. The proposed approach and its benefits are demonstrated
through a typical numerical example in simulation.
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1. INTRODUCTION

Nonlinear Model Predictive Control (NMPC) is a popular
control strategy which is able to deal with constrained
nonlinear systems. However, a common obstacle is the
need of solving a nonconvex optimization problem within
a stipulated sampling period. A common approach in tack-
ling this issue is developing efficient algorithms tailored to
NMPC problems. Often, a suboptimal solution which can
be computed fast and efficiently is preferred over a precise
one that requires longer computational times (Diehl et al.
(2005)). Many different tools have been developed for this
purpose, see e.g. (Cannon (2004); Houska et al. (2011);
Stella et al. (2017); Diehl et al. (2009); Ohtsuka (2004);
Li and Biegler (1989); Zavala and Biegler (2009)). In this
work instead, we follow a different approach and formulate
the NMPC problem in a simple way such that it becomes
possible to employ existing fast optimization algorithms.

The quadratic penalty method (Nocedal and Wright
(2006)) converts a constrained nonlinear optimization
problem to an unconstrained one, which is solved iter-
atively by incrementing the penalty parameter until the
solution is achieved. Using a large enough value of the
penalty parameter yields an approximately optimal solu-
tion in a single iteration. The need of adequately selecting
the penalty parameter to balance accuracy of the solution
and ill-conditioning of the problem made this approach
not the most appealing for general-purpose solvers. In
NMPC, however, small constraints violations are typically
negligible compared to model inaccuracy and external per-
turbations acting on the system. Therefore, the quadratic
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penalty method is very appealing for such applications due
to the possibility of developing efficient implementations.
We propose to use a single iteration of the quadratic
penalty method which keeps simple bounds on the decision
variables as such and relaxes the equality constraints via
a quadratic penalty function. The obtained problem is
bound-constrained nonlinear least-squares (NLLS), which
we solve by employing the Gauss-Newton method (Bjorck
(1996)) and a Bounded-Variable Least-Squares (BVLS)
solver, which is both efficient and numerically robust.

As opposed to standard infeasibility handling approaches
which relax the output constraints (Scokaert and Rawl-
ings (1999); Houska et al. (2011)), we relax the equality
constraints related to the model of the system. The main
motivations for such a choice are that (a) it preserves
feasibility of the optimization problem, similarly to the
output constraint relaxation, and (b) the available model
is an approximate representation of the true system. In
particular, we show through a typical numerical example
that the constraint violation is not significant unless the
original problem becomes infeasible, and therefore, the
control performance is not deteriorated.

We first define in Section 2 the class of models, perfomance
index, and constraints that are typically considered for
formulating NMPC problems. Based on that, the NMPC
problem formulations which we consider are described
in Section 3, where we also derive the proposed NMPC
formulation. Next, in Section 4 we describe in detail the
optimization algorithm which we employ in order to solve
the resulting nonlinear optimization problem. Numerical
results and their discussion are presented in Section 5 with
concluding remarks in Section 6.



2018 IFAC NMPC
Madison, WI, USA, August 19-22, 2018

2. PRELIMINARIES

We describe the system dynamics by using the following
input-output model

f(Ye, Uy, Vi) = 0, (1)

where we define the inputs and outputs respectively as
Uk = (uk—nb7 sy uk—1)7 U € Rnu7 Yk = (yk—naa v 7yk)a
yr € R™. Vector Vi, = (Vg—ny,- .-, Vk—1), ¥k € R™ defines
a measured disturbance and O represents a zero vector.
Function f : R"™ x R™™ x R — R™ is in general
nonlinear where n,, n;, and n. define the model order. We
assume it to be differentiable, i.e. of class C'. The class
of nonlinear models of the form (1) includes for instance,
state-space models and the noise-free polynomial NARX
(nonlinear autoregressive exogenous) models (Leontaritis
and Billings (1985)).

We consider a convex quadratic performance index ‘J’,
which is separable in time and a typical choice for reg-
ulation and reference tracking in MPC:

Np N Nuy—2 N
30 = 3 I s =T )IB+ D SIWE =B
j=1 Jj=0
1 1
+ 5 (Np = Nu+ 1) - [WeF (upgny 1 = Bg vy -1)lI3 (2)

where N, and N, denote the prediction and control
horizon respectively. Matrices W, € R™*"™ and W, €
R™ X" are positive semidefinite tuning weights, and g, @
denote the references for outputs and inputs, respectively.
In general, the proposed NMPC approach described in
Section 3.3 is not limited to the above mentioned perfor-
mance index. Depending on the control objectives, any
cost function that results in a sum of squares of linear
or C! nonlinear functions may be considered in order to
formulate the NMPC problem.

As we will explain in Section 4, in order to exploit an
efficient solution algorithm, the only inequality constraints
that we consider are simple bounds on the optimization
variables. General inequalities (3) can be converted to the
considered setting by introducing slack variables v € R™
having non-negativity constraints such that

g(wy) <0  becomes, (3)
g(wg) +v, =0 and v >0,

where wi = (Uk, o Uy Ny—1, Ykt 1s - Ykt N, )5 2k =
(wy,vg) and g : RM==m) 5 R™ is assumed to be dif-
ferentiable of class C', while n, and n; denote the number
of decision variables and general inequality constraints
respectively. We summarise all NMPC constraints at each
time step k as

h(z) =0 (4)
pr < 2k < @k (5)

where pg,qr € R"= are vectors defining bounds on the
input and output variables, and non-negativity constraint
on the slack variables. Owing to the construction of
equalities (4), it is worth noting that the Jacobian matrix
of h w.r.t. z evaluated at any given zj is sparse, with its
sparsity pattern depending on the chosen model (1).
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3. NMPC PROBLEM FORMULATIONS
3.1 Constrained NLP
Employing the performance index (2) and the constraint

set defined by (4) and (5), the NMPC problem can be
defined as the following constrained NLP

1 _
ming ||W (2 — 2)3 (6a)
s.t. h(z) =0, (6b)
pr < 2k < gk, (6¢)

where, W e R("==m) %7 jg block-sparse and is constructed
from square root of the tuning weights (W,,, W,,) defined
in (2), z is constructed from the input and output ref-
erences such that the elements corresponding to slack
variables are zero. While one usually avoids the use of
slack variables in the definition of the general (nonlinear)
inequalities (3), we abide by this definition, since it is
required by the formulation proposed in Section 3.3.

3.2 Soft-constrained NLP

In practice, due to unmodeled dynamics and perturbations
acting on the system, the imposed constraints might be-
come impossible to satisfy such that Problem (6) becomes
infeasible. In order to preserve feasibility, a common ap-
proach is to introduce additional slack variable(s) e in
the problem to relax the output constraints, which then
become soft constraints. Details regarding this approach
based on exact penalty functions may be referred in (Bor-
relli et al. (2017); Kerrigan and Maciejowski (2000)). For
completeness, we provide a possible relaxation of (6) using
an exact penalty approach.

o1 _ o
min W (zx — 2) B+ Zlelg+oze (7a)
s.t. h(zx) =0, (7b)
P — Ve< zp < qp + Ve, (7c)
>0, (7d)

where V' is a matrix with all elements non-negative such
that only the output constraints are relaxed and the
remaining constraints are strictly satisfied. The tuning
weights 01,09 are such that o7 > 0 is a small weight,
and o9 > 0 is a large weight which ensures that € > 0 only
when Problem (6) becomes infeasible and ¢ = 0 otherwise.
Problem (7), which we will refer to as ‘NLP-soft’ can
be solved by an NLP solver. In this paper, however, we
propose to use a different reformulation of (6) which allows
us to use algorithms based on ideas recently proposed
in Saraf and Bemporad (2017).

3.8 Bound-constrained NLLS

The quadratic penalty method (Nocedal and Wright, 2006,
Sec. 17.1), in just one iteration, with a large value of
penalty p yields a solution close to a local or global
minimum which is usually sufficient for MPC problems.
Based on this, instead of relaxing the output bounds, we
propose to relax the equality constraints and penalize their
violation with a quadratic penalty as
1
min W — ) B0 3
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where p > 0 is a large weight. Alternatively,

1 2
. 1 7W(Zk — 5) -
min b =

min
pr<z(k)<aqr 2 h(Zk)

1 2
pe<z(k)<ax 5 IrGe)lz;

(®)
where, r : R™ — R” is implicitly defined by the above
equivalence and is referred to as the vector of residuals.
While it is desirable to have a large value of penalty p
such that the introduced inaccuracy is minimal, in order
to avoid numerical issues due to ill-conditioning of the
problem, p must not be too large. Note that Problem (8)
which we will refer to as ‘NLLS-box’, cannot become
infeasible as the equality constraints are relaxed. Relaxing
the equality constraints has a practical justification as the
prediction model (1) is only an approximation of the actual
system dynamics and rather opportunistic violations of
these equations only act as a perturbation in the predic-
tions, or in other words, change the magnitude of model
mismatch. In Section 5, we will show that the constraint
violations are significant only when problem (6) becomes
infeasible.

2

4. OPTIMIZATION ALGORITHM

Problem (8) can be efficiently solved using the bounded-
variable nonlinear least-squares (BVNLLS) algorithm de-
scribed in Algorithm 1. The main idea is to solve the
NLLS-box problem by an approach that follows the steps
of a Gauss-Newton Hessian approximation based Sequen-
tial Quadratic Programming (SQP) (Nocedal and Wright
(2006)) while exploiting the special structure of (8). The
Gauss-Newton method (Bjorck, 1996, Sec. 9.2) is a well
known approach to solve Nonlinear Least Squares (NLLS)
problems and is based on a sequence of linear approxi-
mations of the residual function r(z) in (8). BVNLLS is
an extension of the Gauss-Newton method to handle box-
constraints, in which a box-constrained Least Squares (LS-
box) problem is solved in each iteration until termination
criteria are met. If z; denotes the current solution estimate,
then a correction step Az is computed as a solution to the
LS-box problem
min
p—2;<Az<q—z

@Az +r(z)]3, 9)

where p and ¢ denote the bounds on z, J(z) = V,7(2) " is
the Jacobian matrix of r(z) w.r.t. z, and the new solution
estimate is z;y1 = z; + Az. We solve Problem (9) using
an efficient implementation of the bounded-variable least-
squares (BVLS) algorithm (Stark and Parker (1995)),
which is a primal active-set method and we initialize it
with a zero vector as the initial guess. Convergence of
the BVNLLS algorithm that involves Gauss-Newton step
computations is ensured by including a backtracking line-
search method (Nocedal and Wright, 2006, Sec. 3.1) based
on the Armijo-Goldstein condition (Bjorck, 1996, Sec.
9.2.1), which forms Steps 6-10 of the BVNLLS algorithm.
Necessary and sufficient conditions for the termination of
the algorithm are described as follows based on first-order
optimality conditions that must be satisfied by a local or
global minimum of (8). We first note that Algorithm 1
starts with an initial guess (coldstart or a warmstart) that
satisfies the bounds. Moreover, since Step 5 of Algorithm 1
generates a step such that the next iterate also satisfies
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Algorithm 1 Bounded-Variable Nonlinear Least Squares
(BVNLLS)

Inputs: Vectors p and ¢ that define bounds on z, initial

guess z € {zlp < z0 < q}, b = r(z), optimality
tolerance v > 0, ¢ € (0,1) and 7 € (0,1);

L Je](z), u7ij:%aie{la"'vnr}aj6{1a"';nz}§

22 L {jl2(7) <p()} U« {jl2(5) = a(h) };

3. d < J'b;
N(F) < d(5), Vi € L£; Au(j) < —d(4),Vj € U;

4: if N(j) > v, V) € L and A\, (j) > 7,Vj € U and
|[d(5)|< v,Vj ¢ LUU then go to Step 12;

5. Az < arg min  ||JAz + b||3

p—2z<Az<qg—z

6: @ = 1; 0 < callJAz||2; ¥ < bTb; b+ r(z + Az);
¢« bl

7. while ¢ > 1 — 60 do

8 «a <+ Ta; 6 < ab,

9: b r(z+alz); g b'b;

10: end while

11: z ¢ z + alAz; go to Step 1;

12: 2% <= 25 Ni(J) <= 0,V) & L5 Ay (4) < 0,V5 ¢ U;

13: end.

Outputs: Local or global optimum z* of (8), objective
function value at z* = ¢, and Lagrange multiplier
vectors \; and A, corresponding to lower and upper
bounds respectively.

the bounds, the primal feasibility condition of problem (8)
is satisfied at any iteration. Let us denote the Lagrange
multipliers for lower and upper bounds respectively as \;
and \,, and the sets of active lower and upper bounds
respectively as £ and Y. We denote the gradient of the
NLLS cost function at iterate i as

di = JT(Zl)T'(Zl)
If z; is a local minimum of (8), then the following KKT
conditions hold:

d,‘ — )\[ + /\u = 0, (10&)
() =di(j),  VjEL, (10b)
di(j) =0, vie{lLnJ}\{LUU}, (10d)
d;(j) > 0, VjeL, (10e)
d;(j) <0, VjeU. (10f)

where we used £ NU = (. This defines the termination
criterion evaluated in Step 4 of Algorithm 1.

The LS-box Problem (9) only has simple bounds, which
allows the corresponding convex QP to be solved by a
primal active-set method (Nocedal and Wright, 2006) by
applying efficient linear algebra routines to the smaller-
dimensional space of the primal variables which are not
at their bounds. For generic QPs, instead, one needs to
work in a higher dimensional space which also includes the
Lagrange multipliers. In BVLS, the Lagrange multipliers
corresponding to the active-set are obtained simply from
respective entries in the gradient vector of the least-squares
cost. The same characteristic is also present in BVNLLS,
implied by (10) and Step 3 of Algorithm 1. Moreover,
for generic QPs, active-set methods require to form and
factorize the Hessian matrix J(z;)".J(2;), which has a
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condition number squared as compared to that of the
Jacobian matrix J(z;). In our setting, we expect to have a
high condition number due to the necessity of choosing
the penalty parameter p large enough. This can cause
ill-conditioning while solving QPs based on the Hessian
matrix even when it does not occur in BVLS, in which
the matrix that is factorized is the Jacobian. A detailed
description and comparison of different QP solvers for LS-
box is beyond the scope of this paper and will be the
subject of future publications.

In summary, the above mentioned characteristics make
BVNLLS computationally efficient, and comparatively nu-
merically robust. It is also interesting to note that a single
full Gauss-Newton step of Algorithm 1 would generate a
solution that is equivalent to the one produced by the Real-
Time Iteration (RTT) scheme (Diehl et al. (2005)), a special
case of linear time-varying MPC (Gros et al. (2016)). This
solution can then be used to provide a warmstart for
the next time instant (cf. Diehl et al. (2009); Gros et al.
(2016)).

Relation Between BVNLLS and SQP A popular method
to solve the NLP (6) is the sequential quadratic pro-
gramming (SQP) algorithm. The QP subproblem solved
in each Gauss-Newton Hessian approximation based SQP
iteration 7 is

min|| J;Az + b3

s.t. Vh(z) " Az + h(z) = 0,
p—z <Az <q—z.

(11)

A quadratic penalty function based elimination of the
linear equality constraints (11) would result in the same
LS-box problem that is solved in Step 5 of the BVNLLS
algorithm. Hence, BVNLLS is similar to a Gauss-Newton
SQP algorithm which relaxes the equality constraints and
penalizes the square of their violation.

There are two main differences between BVNLLS and the
LS-box based SQP formulation. The first one is related
to how the Lagrange multipliers of the box constraints are
computed: while in SQP they are derived from the solution
of the QP subproblem, in BVNLLS the structure of the
problem is exploited to directly compute them from Step 3
of Algorithm 1. The second one is related to the merit
function used in the linesearch procedure. Since there are
no equality constraints involved in BVNLLS iterations, the
merit function is the cost function itself, whereas in the
case of SQP, the following ¢; merit function is used

¢(zi, 1) = W (2 = 2)l5+ullh(zi) 11

where, p > ||Ait1]loo is a sufficiently large penalty param-
eter (Nocedal and Wright, 2006, Sec. 18.1). As a result,
while the step is computed in the same way, the LS-box
based SQP is not guaranteed to always find a descent
direction, since h(z) = 0 is never enforced exactly. This
is not a problem in BVNLLS, as the merit function and
the step computation are consistent.

5. NUMERICAL EXAMPLE AND RESULTS

In this section, the proposed NMPC formulation based
on BVNLLS optimization is tested for performance in
simulations. It is compared against the performance of
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benchmark NLP formulations (6) and (7) in terms of
quality of control and execution speed.

5.1 Simulation setup

For the purpose of illustration, we consider the Continuous
Stirred Tank Reactor (CSTR) (Seborg et al. (2004)), which
is common in the process industry and is an open-loop
unstable system with highly nonlinear dynamics. All sim-
ulations have been performed in MATLAB R2015b ! using
the continuous-time model of the CSTR system present in
the model predictive control toolbox as a reference for the
true system. Discretizing the model equations using the
forward Euler method with a sampling period ts = 6 sec-
onds and substituting the model parameters, the following
nonlinear discrete-time prediction model of the form (1)
is obtained which represents the continuous-time model

accurately enough:
963.6

Tiy1 = Tp + ts(Tr, — 1.3T3 + k1Cae” T +0.3T5,),
(12a)

—5963.6
Chpsr = Oa, +t5(Cag, — k2Cape” T —Ca,), (12b)

where constants k1 = 416375136, k2 = 34930800; T',T;]
and T} respectively denote the temperatures of the reactor,
jacket coolant and the feedstream in K; Cy and Cx¢ respec-
tively denote the concentration of reagent in the reactor
and the feedstream in kgmol/m3. The control objective
here is to manipulate the input 7j in order to keep Cj
at the desired set-point in the presence of measured dis-
turbances Tty and Ca¢. The simulation setup here is kept
similar to the CSTR, demo in the MPC toolbox of MAT-
LAB. For testing the controller in reference tracking of the
concentration Cp, a ramp reference as shown in Figure 1
is considered. The corresponding temperature references
for the jacket coolant and reactor are computed from (12)
by assuming the measured disturbances to be constant in
prediction. In order to test the controller’s performance
in regulation, the feedstream temperature is fluctuated
as a sinusoid with white measurement noise acting on
all temperature states. The constraints? that must be
satisfied are upper and lower bounds on the variables and
input rate. In order to handle the input rate constraints,
the bounds on the first input increment in predictions are
imposed. This can be done by replacing the lower bound
Ui DY max{ug, ., Uk—1 + Aumin} and the upper bound
Uk, by min{ug Ug—1 + AUmax} Where u represents
the input, Awu its increment with limits indicated by the
subscript.

max ?

The MPC problems are formulated as described in Sec-
tion 3. BVNLLS uses a MATLAB-interfaced C imple-
mentation of the BVLS algorithm based on recursive QR
updates. The NLP problems (6), (7) are solved using
MATLAB’s ‘fmincon’ solver with SQP and for compar-
isons, also the sparse NLP solver ‘TPOPT’ (Wachter and
Biegler (2006)) compiled in MATLAB with the ‘MA57’
linear systems solver. The solver IPOPT is considered

1 The codes have been run on a Macbook Pro 2.6 GHz Intel Core
i5 with 8GB RAM.
2 The reactor’s temperature is constrained in the range of 300-400
K whereas its concentration lies within 0-10 kgmol/m3. The input
is constrained within the range of 240-360 K and its rate is limited
within +2 K/min.
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Fig. 1. Performance in tracking and regulation using
formulation (8) and BVNLLS solver.

with manually supplied exact sparse Jacobian evaluation
functions including sparsity pattern, and an initial guess
for the primal and dual variables in order to incorporate all
benefits of the tool. The fmincon SQP solver of MATLAB
is also provided with gradient evaluation functions and a
warmstart for faster convergence.

5.2 Control performance comparison

Figure 1 demonstrates the quality of performance in ref-
erence tracking and regulation of the proposed NMPC
approach. The prediction horizon is set to 10 steps and
the control horizon to 1 step. The weight on the coolant’s
and reactor’s temperature tracking error is set to 1 and
10 respectively, whereas the weight on reactor concen-
tration’s tracking error is set to 100. The value of the
penalty parameter (,/p) in (8) is set to 10*. The solvers
are initialized with the feasible initial guess z = 0.5(p +
q) and future warmstarts are derived by using the shift-
initialization technique (Diehl et al. (2005); Gros et al.
(2016)). We compare the cost function values achieved
with the considered formulations in Figure 2. We also
observe that the equality constraints are almost strictly
satisfied by the proposed NMPC approach even though
they were relaxed with a quadratic penalty function. In
conclusion, the same quality of performance is achieved as
compared to the NLP formulation (6) due to a negligible
difference between the optimal value of the cost functions
achieved in the two cases.

5.3 FEzecution time comparison

Figure 3 shows that the BVNLLS solver is considerably
faster for small to medium sized problems (30 to 150
decision variables and same number of bilateral bound
constraints). Note that the BVNLLS and fmincon solvers
have a numerically dense implementation whereas the
IPOPT solver uses sparse numerical methods. Observ-
ing these comparisons demonstrate that the BVNLLS
based approach is an attractive practical alternative to
solve NMPC problems in real-time embedded applications
where computational complexity may restrict the use of
MPC.
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Fig. 2. Comparison of the optimized cost for the problem
formulations (6), (8).
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Fig. 3. CPU time for each solver during closed-loop simula-
tion of the CSTR w.r.t. prediction horizon (N, = N,,
number of variables and box constraints = 3N, num-
ber of equality constraints = 2.V},).

5.4 Infeasibility handling performance comparison

Finally, the way in which infeasibility is handled by the
formulations (7) and (8) is compared through a simulation
scenario with the CSTR system, such that the reactor tem-
perature reference (373.13 K) exceeds the reduced upper
bound (370 K). As shown in Figure 4, given the short
prediction horizon (N, = 10,N, = 1), formulation (6)
becomes inapplicable as the constraints become too strict
to satisfy when the reactor temperature almost reaches
its limit and the coolant temperature cannot reach fast
enough in time to a value that would satisfy the con-
straints. The slack variable € in (7) is only active when (6)
is infeasible (cf. Figure 5). Comparing this against the
equality constraints’ relaxation in the NLLS-box case, it is
clear that the constraint violations occur noticeably and
essentially so, only when the NLP problem (6) becomes
infeasible. Figure 4 shows that the trajectories in both
cases coincide due to actuator saturation, which leads to
the same inputs computed during instances of infeasibility.
In general, one might expect different trajectories if the
infeasibilities arise when the actuator limits are far. This
fact is observed in the bottom part of Figure 5 where we
compare the value of the performance index, which is a
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Fig. 5. Constraint relaxation comparison between the
NLLS-box and soft-constrained NLP approaches.

function of the predicted sequence of inputs and outputs.
The way infeasibility is handled in both cases is similar
to the linear MPC case, which is thoroughly discussed
in Saraf and Bemporad (2017).

6. CONCLUSION

In this paper an NMPC approach based on a simple box-
constrained nonlinear least-squares formulation with a fast
solution method has been proposed. Results suggest that
the approach can be an appealing alternative in practical
applications where fast computations are a priority. Future
work includes investigation of theoretical conditions on the
penalty parameter such that closed-loop stability proper-
ties are preserved, an issue that has already been solved
for the linear MPC case (Saraf and Bemporad (2017)).
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