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Abstract. Explicit model predictive control (MPC) addresses the problem of re-
moving one of the main drawbacks of MPC, namely the need to solve a mathematical
program on line to compute the control action. This computation prevents the appli-
cation of MPC in several contexts, either because the computer technology needed to
solve the optimization problem within the sampling time is too expensive or simply
infeasible, or because the computer code implementing the numerical solver causes
software certification concerns, especially in safety critical applications.

Explicit MPC allows one to solve the optimization problem off-line for a given
range of operating conditions of interest. By exploiting multiparametric program-
ming techniques, explicit MPC computes the optimal control action off line as an
“explicit” function of the state and reference vectors, so that on-line operations re-
duce to a simple function evaluation. Such a function is piecewise affine in most
cases, so that the MPC controller maps into a lookup table of linear gains.

In this paper we survey the main contributions on explicit MPC appeared in the
scientific literature. After recalling the basic concepts and problem formulations of
MPC, we review the main approaches to solve explicit MPC problems, including a
novel and simple suboptimal practical approach to reduce the complexity of the ex-
plicit form. The paper concludes with some comments on future research directions.

Keywords: Model predictive control, explicit solutions, multiparametric program-
ming, piecewise affine controllers, hybrid systems, min-max control.

1 Model Predictive Control

In Model Predictive Control (MPC) the control action is obtained by solving a
finite horizon open-loop optimal control problem at each sampling instant. Each
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optimization yields a sequence of optimal control moves, but only the first move
is applied to the process: At the next time step, the computation is repeated over a
shifted time-horizon by taking the most recently available state information as the
new initial condition of the optimal control problem. For this reason, MPC is also
called receding or rolling horizon control.

The solution relies on a dynamic model of the process, respects all input and out-
put (state) constraints, and optimizes a performance index. This is usually expressed
as a quadratic or a linear criterion, so that, for linear prediction models, the resulting
optimization problem can be cast as a quadratic program (QP) or linear program
(LP), respectively, while for hybrid prediction models, the resulting optimization
problem can be cast as a mixed integer quadratic or linear program (MIQP/MILP),
as will be reviewed in the next sections. The main difference between MPC and con-
ventional control is therefore that in the latter the control function is pre-computed
off-line. The reason for the success of MPC in industrial applications is due to its
ability to handle processes with many manipulated and controlled variables and con-
straints on them in a rather systematic manner.

The process to be controlled is usually modeled by the system of difference
equations

x(t + 1) = f (x(t),u(t)) (1)

where x(t) ∈ R
n is the state vector, and u(t)∈ R

m is the input vector. We assume for
simplicity that f (0,0) = 0. The control and state sequences are requested to satisfy
the constraints

x(t) ∈ X ,u(t) ∈ U (2)

where U ⊆ R
m and X ⊆ R

n are closed sets containing the origin in their interior1.
Assuming that the control objective is to steer the state to the origin, MPC solves
the constrained regulation problem as follows. Assume that a full measurement of
the state x(t) is available at the current time t. Then, the following finite-horizon
optimal regulation problem is solved

PN(x(t)) : min
z

N−1

∑
k=0

l(xk,uk)+ F(xN) (3a)

s.t. xk+1 = f (xk,uk), k = 0, . . . ,N −1 (3b)

x0 = x(t), (3c)

uk ∈ U , k = 0, . . . ,Nu −1 (3d)

xk ∈ X , k = 1, . . . ,N −1 (3e)

xN ∈ XN , (3f)

uk = κ(xk), k = Nu, . . . ,N −1 (3g)

where z ∈ R
�, is the vector of optimization variables, z = [u′0 . . . u′Nu−1]

′, � = mNu

(more generally, z includes command inputs and additional optimization variables),

1 Mixed constraints on (x,u) can be treated as well, for instance to handle constraints on
outputs with direct feedthrough y(t) = fy(x(t),u(t)).
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and the choice of the closed set XN ⊆ X , terminal cost F , and terminal gain κ
ensure closed-loop stability of the MPC scheme [54]. At each time-step t, xk denotes
the predicted state vector at time t + k, obtained by applying the input sequence
u0, ..,uk−1 to model (1), starting from x0 = x(t). The number N > 0 is the prediction
horizon, Nu is the input horizon (1 ≤ Nu ≤ N), and “≤” denotes component-wise
inequalities. Because N is finite, if f , l and F are continuous and U is also compact
the minimum in (3a) exists. At each time-step t a solution to problem PN(x(t)) is
found by solving the mathematical program

min
z

h(z,x(t))

s.t. g(z,x(t)) ≤ 0, g ∈ R
q

(4)

obtained from (3), yielding the optimal control sequence z∗(x(t)). Only the first
input is applied to system (1)

u(t) = u∗0(x(t)) (5)

and the optimization problem (3) is repeated at time t + 1, based on the new state
x(t + 1).

The basic MPC setup (3) can be specialized to different cases, depending on the
prediction model, performance index, and terminal conditions used.

1.1 Linear Model and Quadratic Cost

A finite-horizon optimal control problem (3) with quadratic stage costs is formulated
by setting

l(xk,uk) = x′kQxk + u′kRuk, F(xN) = x′NPxN (6)

in (3a), where Q = Q′ ≥ 0, R = R′ > 0, and P = P′ ≥ 0 are weight matrices of
appropriate dimensions. Let (3b) be a deterministic linear discrete-time prediction
model

f (xk,uk) = Axk + Buk (7)

κ(x) = Kx in (3g), U , X be polyhedral sets, for example U = {u ∈ R
m : umin ≤

u ≤ umax, X = {x ∈ R
n : xmin ≤ x ≤ xmax}, and also XN be polyhedral. Then,

by substituting xk = Akx(t) + ∑k−1
j=0 A jBuk−1− j, problem (4) becomes a quadratic

program (QP):

h(z,x(t)) =
1
2

z′Hz+ x′(t)C′z+
1
2

x′(t)Y x(t) (8a)

g(z,x(t)) =Gz−W −Sx(t), (8b)

where H = H ′ > 0 and C, Y , G, W , S are matrices of appropriate dimensions [18].
Note that Y is not really needed to compute z∗(x(t)), it only affects the optimal value
of (8a).
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1.2 Linear Model and Linear Cost

Let ∞- or 1-norms be used to measure performance

l(xk,uk) = ‖Qxk‖p +‖Ruk‖p, F(xN) = ‖PxN‖p, p = 1,∞ (9)

where R ∈ R
nR×m, Q ∈ R

nQ×n, P ∈ R
nP×n, and use the same setup as described in

Section 1.1. In case of ∞-norms, by introducing auxiliary variables εu
0 , . . . , εu

N−1, εx
1 ,

. . . , εx
N satisfying εu

k ≥ ‖Ruk‖∞ (k = 0, . . . ,Nu −1), εx
k ≥ ‖Qxk‖∞ (k = 1, . . . ,N −1),

εx
N ≥ ‖PxN‖∞, or, equivalently,

εu
k ≥±Riuk, i = 1, . . . ,nR, k = 0, . . . ,Nu −1

εx
k ≥±Qixk, i = 1, . . . ,nQ, k = 1, . . . ,N −1

εx
N ≥±PixN , i = 1, . . . ,nP

(10)

where the superscript i in (10) denotes the ith row, problem (3) can be mapped into
the linear program (LP) [12]

h(z,x(t)) =[

Nu−1
︷ ︸︸ ︷

1 . . . 1 α
N

︷ ︸︸ ︷

1 . . . 1

mNu
︷ ︸︸ ︷

0 . . . 0]z (11a)

g(z,x(t)) =Gz−W −Sx(t), (11b)

where α = N −Nu + 1 is the number of times the last input move is repeated over
the prediction horizon, z � [εu

0 . . . εu
Nu−1 εx

1 . . . εx
N u′0 . . . u′Nu−1]

′ is the optimization
vector, and G, W , S are obtained from weights Q, R, P, model matrices A, B, (10),
constraint sets U , X , XN , and gain K. The case of 1-norms can be treated similarly
by introducing slack variables εu

ik ≥±Riuk, εx
ik ≥±Qixk, εx

iN ≥±PixN .
Note that the above reformulation extends beyond 1/∞-norms to any convex

piecewise affine cost l, F , that, thanks to the result of [62], can be rewritten as
the max of a finite set of affine functions. The use of linear programming in
optimization-based control dates back to the early sixties [60].

1.3 Linear Uncertain Model and Min-Max Costs

Robust MPC formulations [73] explicitly take into account uncertainties in the pre-
diction model

f (xk,uk,wk,vk) = A(wk)xk + B(wk)uk + Evk (12)

where

A(w) = A0 +
q

∑
i=1

Aiwi, B(w) = B0 +
q

∑
i=1

Biwi

wk ∈ W ∈ R
nw , vk ∈ V ∈ R

nv

Let vk, wk be modeled as unknown but bounded exogenous disturbances and para-
metric uncertainties, respectively, and W , V be polytopes. A robust MPC strategy
often used consists of solving a min-max problem that minimize the worst-case
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performance while enforcing input and state constraints for all possible distur-
bances. The following min-max control problem is referred to as open-loop con-
strained robust optimal control problem (OL-CROC) [13]

min
u0, ..., uN−1

⎧

⎪
⎨

⎪
⎩

max
v0, . . . ,vN−1 ∈ V
w0, . . . ,wN−1 ∈ W

N−1

∑
k=0

l(xk,uk)+ F(xN)

⎫

⎪
⎬

⎪
⎭

s.t. dynamics (12)
(3d), (3e), (3f) satisfied ∀vk ∈ V , ∀wk ∈ W

(13)

The min-max problem (12)–(13) can be solved via linear programming if 1- or ∞-
norms are used [24, 4], or by quadratic programming if quadratic costs are used [56].
Being based on an open-loop prediction, in some cases the approach can be quite
conservative. It is possible to reformulate the robust MPC problem using a closed-
loop prediction scheme as described in [63], whose approach reminds the methods
used in multi-stage stochastic optimization based on scenario trees. An alternative
method in which the min and max problems are interleaved and dynamic program-
ming is used is described in [13] to solve the (closed-loop constrained robust opti-
mal control problem, CL-CROC):

For j = N −1, . . . ,0 solve

J∗j (x j) � min
u j∈U

Jmax, j(x j,u j)

s.t. A(wj)x j + B(wj)u j + Ev j ∈ X j+1, ∀v j ∈ V , ∀wj ∈ W

where

Jmax, j(x j,u j) � max
v j ∈ V
w j ∈ W

{

l(x j,u j)+ J∗j+1(A(wj)x j + B(wj)u j + Ev j)
}

(14)

and

X j =
{

x ∈ X : ∃u ∈ U such that A(w)x + B(w)u + Ev ∈ X j+1,∀v ∈ V ,w ∈ W
}

(15)
with boundary condition

J∗N(xN) = ‖PxN‖p. (16)

1.4 Hybrid Model and Linear or Quadratic Costs

The MPC setup also extends to the case in which (1) is a hybrid dynamical model.
When the hybrid dynamics and possible mixed linear/logical constraints on discrete
and continuous input and state variables are modeled using the language HYS-
DEL [71], (3b) can be automatically transformed into the set of linear equalities
and inequalities
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f (xk,uk,δk,ζk) = Axk + B1uk + B2δk + B3ζk (17a)

E2δk + E3ζk ≤ E1uk + E4xk + E5, (17b)

involving both real and binary variables, denoted as the Mixed Logical Dynamical
(MLD) model, where xk ∈ R

nc ×{0,1}nb is the state vector, uk ∈ R
mc ×{0,1}mb

is the input vector, and ζk ∈ R
rc , δk ∈ {0,1}rb are auxiliary variables implicitly

defined by (17b) for any given pair (xk,uk). Matrices A, Bi, (i = 1,2,3), and Ei (i =
1, . . . ,5) denote real constant matrices, and inequalities (17b) must be interpreted
component-wise.

The associated finite-horizon optimal control problem based on quadratic costs
takes the form (8) with z = [u′0 ... u′N−1 δ ′

0 ... δ ′
N−1 ζ ′

0 ... ζ ′
N−1 ]′ and subject to the fur-

ther restriction that some of the components of z must be binary. The hybrid MPC
problem maps into a Mixed-Integer Quadratic Programming (MIQP) problem when
the quadratic costs (6) are used in (3a) [17], or a Mixed-Integer Linear Program-
ming (MILP) problem when ∞- or 1-norms are used as in (9) [11]. For both prob-
lems very efficient commercial and public domain solvers are available (see, e.g.,
http://plato.asu.edu/bench.html).

1.5 Extensions of the MPC Formulation

Tracking

The basic MPC regulation setup (3) can be extended to solve tracking problems.
Given an output vector y(t) = Cx(t) ∈ R

p and a reference signal r(t) ∈ R
p to track

under constraints (3d)–(3e), the cost function (3a) is replaced by

N−1

∑
k=0

(yk − r(t))Qy(yk − r(t))+ Δu′kRΔuk (18)

where Qy = Q′
y ≥ 0 ∈ R

p×p is a matrix of output weights, and the increments of

command variables Δuk � uk −uk−1, u−1 � u(t−1), are the new optimization vari-
ables, possibly further constrained by Δumin ≤ Δuk ≤ Δumax. In the above tracking
setup vector [x′(t) r′(t) u′(t − 1)]′ replaces x(t) in (4) and the control law becomes
u(t) = u(t −1)+ Δu∗0(x(t),r(t),u(t −1)).

Rejection of Measured Disturbances

In order to take into account measured disturbances v(t) ∈ R
nv entering the system,

one can simply change (3b) into

f (xk,uk) = Axk + Buk + Ev(t) (19)

where v(t) is the most recent available measurement of the disturbance entering
the process, and is supposed constant over the prediction horizon. In this case the
extended vector [x′(t) v′(t)] enters problem (4).

http://plato.asu.edu/bench.html
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Soft Constraints and Time-Varying Constraints

Soft constraints g(z,x(t)) ≤
[

1
...
1

]

ε , ε ≥ 0, are also easily taken into account by

adding a large penalty on ε or ε2 in h(z,x(t)) in (4) and by including the new opti-
mization variable ε in vector z.

Time-varying constraints g(z,x(t)) ≤ γ(t), γ(t) ∈ R
q, t = 0,1, . . ., can be also

immediately taken into account, in this case the optimization problem (4) depends
on both x(t) and γ(t).

2 Explicit Model Predictive Control

The MPC strategies described in Section 1 require running on-line optimization
algorithms to solve the optimization problem (4) at each time-step t, based on the
value of the current state vector x(t) (or, more generally, based on x(t), r(t), u(t−1),
v(t), γ(t)). For this reason, MPC has been traditionally labeled as a technology for
slow processes. Advances in microcontroller and computer technology are progres-
sively changing the concept of “slow”, but still solving (4) on line prevents the
application of MPC in many contexts, even for the simplest case of QP or LP. Com-
putation speed is not the only limitation: the code implementing the solver might
generate concerns due to software certification issues, a problem which is particu-
larly acute in safety critical applications.

The idea of explicit MPC is to solve the optimization problem (4) off-line for all
x(t) within a given set X , that we assume here polytopic

X = {x ∈ R
n : S1x ≤ S2} ⊂ R

n (20)

and to make the dependence of u(t) on x(t) explicit, rather than implicitly defined
by the optimization procedure that solves problem (4). It turns out that, as intuited
in [74], such a dependence is piecewise affine in most of the formulations seen in
Section 1, so that the MPC controller defined by (3), (5) can be represented in a
totally equivalent way as

u(x) =

⎧

⎪
⎨

⎪
⎩

F1x + g1 if H1x ≤ k1
...

...
FMx + gM if HMx ≤ kM.

(21)

Consequently, on-line computations are reduced to the simple evaluation of (21),
which broadens the scope of applicability of MPC to fast-sampling applications.
Explicit solutions of the form (21) to MPC problems can be obtained by solving
multiparametric programs.
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2.1 Multiparametric Programming: General Formulation

Consider the following mathematical program

N P(x) : min
z

f (z,x) (22a)

s.t. g(z,x) ≤ 0 (22b)

Az+ Bx + d = 0 (22c)

where z ∈ R
� collects the decision variables, x ∈ R

n is a vector of parameters,
f : R

� ×R
n → R is the objective function, g : R

� ×R
n → R

q, A is a qe × � real
matrix, B is a qe × n real matrix, and d ∈ R

qe . Problem (22) is referred as a mul-
tiparametric programming problem. We are interested in characterizing the solu-
tion of problem (22) for a given polytopic set X of parameters. The solution of a
multiparametric problem is a triple (V ∗,Z∗,Xf ), where (i) the set of feasible pa-
rameters Xf is the set of all x ∈ X for which problem (22) admits a solution,
Xf = {x ∈ X : ∃z ∈ R

�, g(z,x) ≤ 0, Az + Bx + d = 0}; (ii) The value function
V ∗ : Xf → R associates with every x ∈ Xf the corresponding optimal value of (22);

(iii) The optimal set Z∗ : Xf → 2R
�

associates to each parameter x ∈ Xf the corre-
sponding set of optimizers Z∗(x) = {z ∈ R

� : f (z,x) = V ∗(x)} of problem (22); (iv)
An optimizer function z∗ : Xf →R

� associates to each parameter x∈ Xf an optimizer
z ∈ Z∗(x) (Z∗(x) is just a singleton if N P(x) is strictly convex).

Let z be a feasible point of (22) for a given parameter x. The active constraints
are the constraints that fulfill (22b) at equality, while the remaining constraints are
called inactive constraints. The active set A (z,x) is the set of indices of the active
constraints, that is,

A (z,x) � {i ∈ {1, ..,q}|gi(z,x) = 0}.

The optimal active set A ∗(x) is the set of indices of the constraints that are active
for all z ∈ Z∗(x), for a given x ∈ X ,

A ∗(x) � {i|i ∈ A (z,x), ∀z ∈ Z∗(x)}.

Given an index set A ⊆ {1, ..,q}, the critical region CRA is the set of parameters
for which the optimal active set is equal to A , that is

CRA � {x ∈ X |A ∗(x) = A }. (23)

The following basic result for convex multiparametric programming was proved
in [50] in the absence of equality constraints:

Lemma 1. Consider the multiparametric problem (22) and let f , and the compo-
nents gi of g be jointly convex functions of (z,x), for all i = 1, ..,q. Then, Xf is a
convex set and V ∗ is a convex function of x.

The result can be easily generalized to the presence of linear equality constraints.
For generic nonlinear functions f , gi, the critical regions CRA and an optimizer
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function z∗ are not easily characterizable, and suboptimal methods have been pro-
posed [38, 15]. Procedures for solving at optimality the multiparametric programs
arising from the MPC problems introduced in Section 1 are described in the follow-
ing sections.

2.2 Multiparametric Quadratic Programming

By treating x(t) as the vector of parameters, the QP problem arising from the linear
MPC formulation of Section 1.1 can be treated as the multiparametric QP (mpQP)

QP(x) : V ∗(x) =
1
2

x′Yx + min
z

1
2

z′Hz+ x′F ′z (24a)

s.t. Gz ≤W + Sx. (24b)

In [18], the authors investigated the analytical properties of the mpQP solution, that
are summarized by the following theorem.

Theorem 1. Consider a multiparametric quadratic program with H > 0,
[

H F
F ′ Y

]≥ 0.
The set Xf of parameters x for which the problem is feasible is a polyhedral set, the
value function V ∗ : Xf → R is continuous, convex, and piecewise quadratic, and the
optimizer z∗ : Xf → R

� is piecewise affine and continuous.

The immediate corollary of the above theorem is that the linear MPC approach
based on linear costs described in Section 1.2 admits a continuous piecewise-affine
explicit solution of the form (21).

The arguments used to prove Theorem 1 rely on the first-order Karush-Kuhn-
Tucker (KKT) optimality conditions for the mpQP problem (24)

Hz+ Fx + G′λ = 0 λ ∈ R
q (25a)

λi(Giz−Wi −Six) = 0, i = 1, . . . ,q, (25b)

λ ≥ 0, (25c)

Gz ≤W + Sx, (25d)

where the superscript i denotes the ith row. Let us solve (25a) for z,

z = −H−1(G′λ + Fx) (26)

and substitute the result in (25b). Taken any point x0 ∈ Xf (easily determined by a
linear feasibility test on [G −S] [ z

x ]≤W , for instance), solve QP(x0) and determine
the optimal active set A0 = A ∗(x0). Let λ̂ and λ̃ denote the Lagrange multipliers
corresponding to inactive and active constraints, respectively, and assume that the
rows of G̃ are linearly independent. For inactive constraints, set λ̂ ∗(x)= 0. For active
constraints, −G̃H−1G̃′λ̃ −W̃ − S̃x = 0, and therefore set

λ̃ ∗(x) = −(G̃H−1G̃′)−1(W̃ +(S̃+ G̃H−1F)x), (27)
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where G̃, W̃ , S̃ correspond to the set of active constraints, and (G̃H−1G̃′)−1 exists
because the rows of G̃ are linearly independent. Thus, λ ∗(x) is an affine function of
x. By simply substituting λ ∗(x) into (26) it is easy to obtain

z∗(x) = H−1G̃′(G̃H−1G̃′)−1(W̃ +(S̃+ G̃H−1F)x) (28)

and note that z∗ is also an affine function of x. Vector z∗ in (28) must satisfy the
constraints in (25d), and by (25c), the Lagrange multipliers in (27) must remain
non-negative. The set of inequalities defining the critical region CRA0 in the x-space
is hence given by the polyhedron

CRA0 = {x ∈ R
n : Ĝz∗(x) ≤ Ŵ + Ŝx, λ̃ ∗(x) ≥ 0}. (29)

The critical region CRA0 is the largest set of parameters for which the fixed combi-
nation of constraints A0 is the optimal active set and for which z∗(x) is the optimizer
function, because it satisfies all the KKT conditions (25) together with the dual so-
lution λ ∗(x).

Different algorithms proposed to complete the characterization of the optimal
solution z∗(x) on the remaining set CRrest = X \CRA0 are reviewed below.

In [18] the authors provided an algorithm for exploring CRrest in order to generate
all possible critical regions. The method proceeds recursively by (i) partitioning the
set X ⊆ R

n into a finite number of polyhedra {CRA0 , R1, . . ., RN}, where Ri = {x ∈
X : Aix > Bi, A jx ≤ B j, ∀ j < i} and A, B define a minimal representation Ax ≤ B of
CRA0 , (ii) computing a new critical region CRi in each region Ri through the KKT
conditions (25), partitioning Ri \CRi, and so on. The procedure terminates when
no more new optimal combinations of active constraints are found. Note that the
number of critical regions for an mpQP problem is upper-bounded by the number
2q of possible combinations of active constraints. Such an upper-bound is usually
very conservative, as most of the combinations are never optimal for any x ∈ X .

A faster method is suggested in [68]. The active set of a neighboring region is
found by using the active set of the current region and the knowledge of the type of
the hyperplane that is crossed. That is, if an hyperplane of type Ĝiz∗(x) ≤ Ŵ i + Ŝix
is crossed, then the corresponding constraint is added to the active set, while if an
hyperplane of type λ̃ ∗

i (x) ≥ 0 is crossed, the corresponding constraint is withdrawn
from the active set.

The approach described in [5] is based on the idea that neighboring regions of
a given region CR can be determined by stepping out from each facet of CR by a
very small distance2, in order to determine new parameter vectors x around which
to blow a new critical region.

The approaches of [68, 5] implicitly rely on the assumption that the intersection
of the closures of two adjacent critical regions is a facet of both closures, a condi-
tion which is referred to as the facet-to-facet property. Conditions for the property to
hold are provided in [68]. The property is usually satisfied, however an example of

2 This is usually a fixed tolerance. To be exact, a simple mono-parametric QP should be par-
tially solved over a line stemming out of the facet, to avoid missing narrow critical regions.
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non-degenerate mpQP where the facet-to-facet property does not hold is shown
in [65], where the authors suggest to combine the algorithms of [68, 18] to over-
come the issue.

Once the optimizer function z∗ and Xf are found, the explicit MPC controller is
immediately obtained by saving the component u∗0 of z∗. The regions where u∗0(x) is
the same can be combined, provided that their union is polyhedral [16].

An alternative approach was taken in [64], where the authors derive a closed-
form expression for the global, analytical solution to the MPC problem for linear,
time-invariant, discrete-time models with a quadratic performance index and mag-
nitude constraints on the input. The approach exploits the geometric properties of
constrained MPC to obtain global analytic solutions which can be precomputed off-
line. A further approach to determine explicit MPC solutions was suggested inde-
pendently in [42], based on the idea of approximating the constrained LQR problem.

A reverse transformation procedure was introduced in [52] and later refined
in [51] to solve the finite-horizon problem (3) with linear prediction model and
quadratic costs using dynamic programming, by treating each stage of the dynamic
programming recursion as a parametric piecewise quadratic programming problem.

In [53, 55] also suggest reverse transformation to solve mpQP problems arising
from MPC formulations. In particular in [55] the authors presented an algorithm
based on dynamic programming, which explores all the possible solution condi-
tions in such a way that the combinatorial explosion of enumeration of active sets is
avoided.

From a practical viewpoint, the approaches mostly used for solving explicit MPC
based on mpQP are those of [68, 5].

Degeneracy in Multiparametric QP

Definition 1. Given an active set A , the linear independence constraint qualifica-
tion (LICQ) property is said to hold if the set of active constraint gradients are
linearly independent, i.e., the associated matrix G̃ has full row rank.

When LICQ is violated, we refer to as primal degeneracy. In this case the solution
λ̃ ∗(x) may not be uniquely defined (instead, z∗(x) is always unique if H > 0). We
refer to dual degeneracy if the dual problem of (24) is primal degenerate. In this case
the solution z∗(x) may not be unique, so clearly dual degeneracy can only happen if
H ≥ 0, detH = 0. The absence of primal degeneracy ensures the following property
of the value function V ∗ [6]:

Theorem 2. Assume that the multiparametric QP (24) is not primal degenerate.
Then the value function V ∗ is of class C 1.

In [18] the authors suggest two ways to handle primal degeneracy. The first one
is to compute a QR decomposition of G̃, recognize whether the associated critical
region is full-dimensional, and in this case project away the Lagrange multipliers
to get the critical region. The second way consists simply of collecting � linearly
independent constraints arbitrarily chosen, and proceed with the new reduced set,
therefore avoiding the computation of projections. Due to the recursive nature of
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the algorithm, the remaining other possible subsets of combinations of constraints
leading to full-dimensional critical regions will be automatically explored later.

A different approach is suggested in [70] for extending the algorithm of [68] to
handle both primal and dual degeneracy. In [43] the authors propose an algorithm for
solving multiparametric linear complementarity (mpLC) problems defined by pos-
itive semidefinite matrices. The approach is rather elegant, as it covers in a unified
way both (degenerate) mpQP and the multiparametric LP case, which is described
in the next Section 2.3.

2.3 Multiparametric Linear Programming

By treating x(t) as the vector of parameters, the linear MPC formulation of Sec-
tion 1.2 can be treated as the multiparametric LP (mpLP)

L P(x) : min
z

c′z (30a)

s.t. Gz ≤W + Sx, (30b)

where z ∈ R
� is the optimization vector, x ∈ X ⊂ R

n is the vector of parameters,
c, G, W , S are suitable constant matrices and X is the set of parameters of interest
defined in (20). The following result is proved in [29].

Theorem 3. Consider the mpLP problem (30). Then, the set Xf is a convex polyhe-
dral set, there exists an optimizer function z∗ : R

n → R
l which is a continuous and

piecewise affine function of x, and the value function V ∗ : R
n → R is a continuous,

convex, and piecewise affine function of x.

The first methods for solving parametric linear programs appeared in 1952 in the
master thesis published in [58], and independently in [32]. Since then, extensive
research has been devoted to sensitivity and (multi)parametric analysis, see the ref-
erences in [29] and also [30] for advances in the field. Gal and Nedoma provided the
first method for solving multiparametric linear programs in 1972 [31]. Subsequently,
until the beginning of the new millennium only a few authors [29, 28, 62] have dealt
with multiparametric linear programming solvers. Subsequently, a renewed interest
has arisen, mainly pushed by the application of mpLP in explicit MPC. For a recent
survey on multiparametric linear programming the reader is referred to [44].

The KKT conditions related to the mpLP (30) are

Gz ≤W + Sx, (31a)

G′λ = c, (31b)

λ ≥ 0, (31c)

(Giz−Wi −Six)λi = 0, ∀i. (31d)

For a given fixed parameter x0 ∈ X , by solving L P(x0) one finds a solution z∗0, λ ∗
0

and defines an optimal set of active constraints A (x0). By forming submatrices G̃,
W̃ , S̃ of active constraints and Ĝ, Ŵ , Ŝ of inactive constraints, as in the mpQP case,
and by assuming G̃ square and full rank, one gets that
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z∗(x) = (G̃−1S̃)x +(G̃−1W̃ ), (32)

is an affine function of x, λ ∗(x) ≡ λ ∗(x0) is constant, and the value function

V ∗(x) = (W + Sx)′λ ∗(x0), (33)

is also affine. Eqs. (32)–(33) provide the solution to (30) for all x ∈ X such that

Ĝ((G̃−1S̃)x +(G̃−1W̃ )) < Ŵ + Ŝx, (34)

which defines the polyhedral critical region CRA0 of all x for which the chosen
combination of active constraints A (x0) is the optimal one.

In [31] a critical region is defined as the set of all parameters x for which a
certain basis is optimal for problem (30). The algorithm proposed in [31] for solving
mpLPs generates non-overlapping critical regions by generating and exploring the
graph of bases. In the graph of bases, the nodes represent optimal bases of the given
multiparametric problem and two nodes are connected by an edge if it is possible to
pass from one basis to another by one pivot step (in this case, the bases are called
neighbors).

In [22] the authors proposed a geometric algorithm based on the direct explo-
ration of the parameter space as in [18]. The definition of critical regions in [22]
is not associated with the bases but with the set of active constraints and is related
directly to the definition given in [28, 2].

The approach of [5] is also easily applicable to solve multiparametric linear pro-
grams. The facet-to-facet property however is not always guaranteed to hold also in
mpLP problems. Conditions for ensuring that the property holds are reported in [46]
and depend on degeneracy situations.

Degeneracy in Multiparametric LP

An LP problem (30) is said to be primal degenerate for some x ∈ X if there exists a
z∗ (x)∈ Z∗(x) such that the number of active constraints at the optimizer larger than
the number � of optimization variables. In this case more than one basis describes
the optimal primal solution. Dual degeneracy occurs when the dual problem of (30)
is primal degenerate. In this case more than one primal solution z∗(x) is optimal.

Dual degeneracy is undesired in linear MPC formulations based on linear costs
as, depending on the on-line LP solver used, the solution may chatter from one opti-
mizer to another, with consequent stress of the actuators without a real performance
benefit.

Ways to handle degeneracy in mpLP are reported in [22] and in [46].

2.4 Explicit Solution of Min-Max MPC

In [13] the authors proposed an approach based on a combination of multiparametric
linear programming and dynamic programming to obtain solutions to constrained
robust optimal control problems in state feedback form. In particular, the solution
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of closed-loop constrained robust optimal control problems is a piecewise affine
function of the state, obtained by solving N mpLPs, while the solution z∗ to open-
loop constrained robust optimal control problems with parametric uncertainties in
the B matrix only can be found by solving an mpLP. A different approach was taken
in [47] to solve the CL-CROC formulation of [63] through a single (but larger)
mpLP.

For explicit MPC based on linear parameter-varying (LPV) models one could
in principle embed the problem into the robust min-max formulation of [13, 47].
However, this would unavoidably lead to a loss of performance. The ability to mea-
sure the parameter information is exploited in [19] to derive an explicit LPV-MPC
approach also based on dynamic programming and mpLP.

For min-max problems based on quadratic costs, the solution was proved to be
piecewise affine in [61], where the authors also showed that the critical regions were
defined not only by a set of active constraints, but also by a set of active vertices. In
[56] the problem was reformulated as a single mpQP.

2.5 Explicit Solution of Hybrid MPC

As detailed in [11], the MPC formulation based on ∞- or 1-norms subject to the
MLD dynamics (17) can be solved explicitly by treating the optimization problem
associated with MPC as a multiparametric mixed integer linear programming (mp-
MILP) problem.

An algorithm for solving mpMILPs was proposed in [1], based on a branch and
bound procedure in which an mpLP problem is solved at each node of the tree.
In [27] an alternative algorithm was proposed, which only solves mpLPs where the
integer variables are fixed to the optimal value determined by an MILP, instead of
solving mpLP problems with relaxed integer variables. More in detail, the mpMILP
problem is alternatively decomposed into an mpLP and an MILP subproblem. It
is easy to show that the explicit hybrid MPC controller has the form (21), but the
control law u(x) may be discontinuous across neighboring polyhedra [20].

It turns out that mpMILP is not very efficient in practice for solving hybrid MPC
problems based on linear costs explicitly. In addition, good algorithms for multi-
parametric mixed integer quadratic programming (mpMIQP) problems for dealing
with quadratic costs have not yet been proposed in the literature. Better ways to
handle hybrid MPC problems explicitly in the case of linear and quadratic costs use
piecewise affine (PWA) hybrid models. PWA models are defined by partitioning the
space of states and inputs into polyhedral regions and associating with each region
a different linear state-update equation

f (xk,uk) = Aixk + Biuk + fi if

[

xk

uk

]

∈ Xi, (35)

where {Xi}s
i=1 is a polyhedral partition of the state+input set. Hybrid systems of

the form (35) can be obtained for instance by converting HYSDEL/MLD models
using the method of [8] or [34].
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In [20] the authors propose an algorithm for computing the solution to prob-
lem (3) with linear or quadratic costs and PWA models. The procedure is based on
dynamic programming (DP) iterations. Multiparametric QPs are solved at each it-
eration, and quadratic value functions are compared to possibly eliminate regions
that are proved to never be optimal. In typical situations the total number of solved
mpQPs (as well as of generated polyhedral regions) grows exponentially with the
prediction horizon N, and may suffer the drawback of an excessive partitioning of
the state space. Nonetheless, the approach is preferable to gridding approaches usu-
ally employed to solve DP problems, especially in the case of nontrivial state-space
dimensions.

A different approach was proposed in [52, 53], where the authors propose a re-
verse transformation procedure to enumerate all possible switching sequences, and
for each sequence convert the PWA dynamics into a time-varying system and solve
an optimal control problem explicitly via mpQP. In [3] the authors propose a re-
lated approach that exploits dynamic programming ideas (more precisely, back-
wards reachability analysis) to obtain all the feasible mode sequences (therefore
avoiding an explicit enumeration of all of them), and that, after solving an mpQP
for each sequence, post-processes the resulting polyhedral partitions to eliminate
all the regions (and their associated control gains) that never provide the lowest
cost, using a DC (Difference of Convex functions) algorithm. A similar algorithm
is also used for explicit hybrid MPC based linear costs in the Hybrid Toolbox for
Matlab [9].

The partition associated with the fully explicit optimal solution to problem (3) in
the hybrid system case may not be polyhedral [20]. In this case, most explicit hybrid
MPC algorithms for quadratic costs keep possible overlapping critical regions (gen-
erated by different mpQPs) and also store either the value function V ∗ or the full
optimizer z∗, so that the optimal MPC move can be determined on-line by compar-
ing the optimal values of all regions (in most cases just one, or a only a few) where
x(t) belongs.

Finally, we mention that for the special class of hybrid models given by linear sys-
tems with quantized inputs u(t) problem (4) maps into a multiparametric nonlinear
integer programming problem, for which a solution algorithm was provided in [7].

3 Reducing Complexity of Explicit MPC

The complexity of the piecewise affine explicit MPC law can be easily assessed
after the MPC optimization problem is pre-solved off-line via the multiparametric
techniques described in the previous sections. For a fixed number of parameters
(states and reference signals), the complexity of the solution is given by the number
M of regions that form the explicit solution (21). The number M mainly depends
(exponentially, in the worst case) on the number q of constraints (and also of binary
variables/system modes in the hybrid case) included in the MPC problem formula-
tion (3), and only mildly on the number n of states. It also depends on the number �
of optimization variables, but mainly because q depends on � (consider for instance
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input constraints). In [10, Table I], a table shows such dependencies on random lin-
ear MPC problems. In the multiparametric QP case, an upper-bound to M is 2q,
which is the number of all possible combination of active constraints at optimality.

At the price of a possible loss of closed-loop performance, one way of reducing
complexity is to shorten the prediction horizons (and/or blocking input moves [67])
in order to decrease q and �. In practice, explicit MPC is limited to relatively small
problems (typically one/two inputs, up to five-ten states, up to three/four free control
moves) but allows one to reach very high sampling frequencies (up to 1 MHz) and
requires a very simple control code to be embedded in the system.

To address such limitations, several attempts have been made in different direc-
tions. Starting with a given piecewise affine solution, in [33] the authors provide an
approach to reduce the number of partitions by optimally merging regions where the
affine gain is the same, so that the original solution is maintained but equivalently
expressed with a minimal number of partitions. However, techniques for achieving
a more drastic reduction of complexity require changing the solution, by accepting
a certain level of suboptimality with respect to the original problem formulation (3).

Suboptimal mpQP solutions were proposed in [14] by relaxing the KKT condi-
tions, such as nonnegativity of optimal dual variables. For explicit MPC controllers
based on linear costs, a quite efficient “beneath/beyond” approximate mpLP algo-
rithm has been proposed in [44]. In [40, 39] the authors propose recursive rectangu-
lar partitions of the parameter space to determine a suboptimal solution to general
classes of multiparametric programming problems. Simplicial recursive partitions
are instead proposed in [15] for general classes of nonlinear multiparametric pro-
grams that are jointly convex with respect to optimization variables and parameters,
used in [57] for solving robust MPC formulations explicitly in approximate form.
Rather than looking directly at the multiparametric programming problem, in [36]
the authors propose to change the MPC formulation by recursively solving a se-
quence of simpler explicit MPC problems with horizon N = 1, where the terminal
set XN is varied at each iteration and obtained from the previous iteration. A re-
lated approach is given in [35] for PWA systems, which leads to minimum-time
controllers. Based on a dynamic programming formulation of the finite-horizon op-
timal control problem, in [49] the authors propose an approach to relax optimality
within a prescribed bound in favor of the reduced complexity of the solution, which
in the case of linear systems and piecewise affine convex costs leads to another form
of computing approximate mpLP solutions. In the hybrid case, suboptimal solutions
can be simply obtained by constraining the sequence of switching modes a priori,
like for example has been proposed in [37], and then applying any of the solution
methods proposed in Section 2.5.

More recently, authors have realized that a different way of obtaining suboptimal
explicit MPC solutions is to avoid storing a full partition, by keeping only a subset
of critical regions. For treating large MPC problems, in [59] the authors suggest the
partial enumeration of the possible combinations of active constraints at optimality,
so that the solution can be searched on line (explicitly or implicitly) within that
small subset. An off-line training session of simulations is suggested to identify the
subset of most important combinations of active constraints. In [26], the authors also
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suggest to remove combinations of active constraints repeatedly, as long as closed-
loop stability of the suboptimal solution is preserved. The drawback of the approach
is that it need to start from the full exact solution, which may be very expensive to
compute. A different novel approach which has analogies with both [59] and [26] is
described below.

3.1 A Novel Practical Approach for Reducing Complexity of
Explicit MPC

Under the assumption that only input constraints and soft state constraints can be
enforced, given a maximum number L of regions accepted in the suboptimal solu-
tion, the proposed approach can be summarized as follows:

Off-line computations

1. Run extensive simulations of closed-loop MPC (using on-line QP evaluations)
from several initial conditions and for several references and disturbances, as
in [59]. Collect the L most recurrent combinations of active constraints I1, I2, . . .,
IL at optimality. Alternatively, if a full explicit solution is available, pick up the
L regions with largest Chebychev radius.

2. Generate the corresponding critical regions CR1, CR2, . . ., CRL, where CRi = {x :
Hix ≤ Ki}.

On-line computations

Let x = x(t) be the current state (or, more generally, the current parameter vector
including also r(t), u(t −1), v(t), γ(t)).

1. Compute βi(x) = max j{H j
i x − K j

i }, that is the maximum violation of a facet
inequality3, for all regions j = 1, . . . ,L;

2. Let h ∈ {1, . . . ,L} such that βh(x) = mini=1,...,L βi(x);
3. If βh(x) ≤ 0, then x ∈CRh and u(x) = Fhx + gh; stop;
4. Otherwise all βi(x) > 0, and either compute the average

ū(x) =

(

∑
i=1,...,L

1
βi(x)

)−1

∑
i=1,...,L

1
βi(x)

(Fix + gi) (36a)

or extrapolate the solution from the critical region CRh corresponding to the least
violation βh(x)

ū(x) = Fhx + gh (36b)

3 Alternatively, one can compute the largest distance of x from a violated facet half-space

βi(x) = max j{ H j
i x−K j

i
√

H j
i (H j

i )′
}.
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5. Create a suboptimal input move by saturating u(x) = sat ū(x), where sat is a suit-
able saturation function (for instance, the standard saturation function in case U
is the box {u ∈ R

m : umin ≤ u ≤ umax} and X = R
n).

Note that the procedure is very general, as it can be applied to any of the MPC
formulations described in Section 1, and in particular to linear and hybrid MPC with
linear or quadratic costs4. While stability properties of the suboptimal solution can
only be checked a posteriori, contrary to [59] the number of regions is bounded
a priori, and off-line computations are much simpler, as numerical manipulations
over the exact full partition are not required. Note that for a given reduced partition
and a set X of parameters of interest as defined in (20), the largest minimal vio-
lation βmax = maxx∈X βh(x) can be computed by solving the mixed-integer linear
programming problem

βmax = max
x,ε,{δ j

i }
ε

s.t. [δ j
i = 1]↔ [H j

i x ≤ K j
i + 1ε], ∀ j = 1, . . . ,ni, ∀i = 1, . . . ,L

∑ni
j=1 δ j

i ≤ ni −1
δi ∈ {0,1}ni, ∀i = 1, . . . ,L
S1x ≤ S2

(37)
where ni = dim(Ki) is the number of inequalities defining the ith critical region,
superscript j denotes the jth row or component, and 1 is a vector of all ones. Note
that, as the aim is to have L very small, the number ∑L

i=1 ni of binary variables in
the MILP (37) is also small. The quantity βmax can be used as a tuning parameter to
decide the number L of regions to include in the suboptimal explicit MPC controller.

An Example

Consider the double integrator example described in [18, Example 7.3] with N =
Nu = 8, but with the different sampling time Ts = 0.1. The exact explicit solution,
computed in about 3 s on a Laptop PC Intel Core Duo 1.2 GHz using the Hybrid
Toolbox for Matlab [9], consists of M = 99 regions and is depicted in Figure 1(a),

The solution with L = 3 regions reported in Figure 1(b), corresponds to ε =
1.4661 in (37) and leads to the closed loop trajectories of Figure 1(c), obtained by
averaging as in (36a).

For the hybrid explicit MPC controller described in [23, Figure 6b], which con-
sists of 671 regions, experiments have shown that, after simulation training, the
suboptimal approach described above with L = 60 regions leads to almost indistin-
guishable closed-loop MPC trajectories.

4 In case of hybrid MPC based on quadratic costs, polyhedral critical regions may be over-
lapping. In this case, the explicit form of the cost function V (x) on those regions must be
also taken into account, in order to define a value for ū(x) that penalizes both a large β (x)
and a large cost V (x).
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(a) Exact explicit MPC con-
troller

(b) Reduced partition and exact
(♦) vs. suboptimal (∗) closed-
loop state trajectories
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(c) Exact (solid) vs. suboptimal (dashed) closed-loop trajectories

Fig. 1 Exact and suboptimal explicit MPC controller (L = 3)

4 Implementation of Explicit MPC

The explicit MPC solution (21) pre-computed off-line is a lookup table of linear
feedback gains. The right gain is selected on-line by finding the region {x : Hix≤ ki}
of the polyhedral partition where the current state x(t) (or, more generally, the cur-
rent vector of parameters) lies. This problem has been referred to as point-location
problem. The most simple solution is to store all the M polyhedra of the partition
and on-line search through them until the right one is found. While this procedure
is extremely easy to implement in a computer code, more efficient ways have been
proposed for evaluating explicit MPC controllers, which become appealing when
the number M of regions is large.

By exploiting the properties of multiparametric linear and quadratic solutions,
in [6] two new algorithms are proposed that avoid storing the polyhedral regions,
significantly reducing the on-line storage demands and computational complexity
of the evaluation of control. In [69] the authors suggest to organize the hyperplanes
defining the regions on a binary search tree (possibly further subdividing some of
the regions), so that the time to locate the state vector on-line within the partition
becomes logarithmic in the number of stored cells and memory space is saved. For
the multiparametric linear case, another method is given in [45], where additively
weighted nearest neighbour search ideas are used to solve the point location problem
logarithmically in the number N of regions. Assuming that a bound between the
evolution of the real process and the prediction model is known, in [66] the authors
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suggest to limit the point location problem only to those regions that are reachable
in one time step from the currently active one. In [25] the authors propose a search
tree algorithm based on bounding boxes and interval trees. A subdivision walking
method is proposed in [72].

From the hardware synthesis viewpoint, [41] showed that explicit MPC solutions
can be implemented in an application specific integrated circuit (ASIC) with about
20,000 gates, leading to computation times in order of 1 μs.

Whether the explicit form (21) is preferable to the one based on on-line opti-
mization depends on available CPU time, data memory, and program memory (see
e.g. [10, Table II] for a comparison in the linear quadratic case).

5 Tools for Explicit MPC

The Hybrid Toolbox for Matlab [9] allows one to design explicit MPC control laws
for linear and hybrid systems. Various functions for the design, visualization, simu-
lation, and C-code generation of explicit MPC controllers are provided. Similar and
other functionalities can be found in the Multi Parametric Toolbox for Matlab [48].

6 Explicit MPC in Applications

Industrial problems addressed through explicit MPC techniques have been reported
in dozens of technical papers, starting from what is probably the first work in this do-
main [21]. The most suitable applications for explicit MPC are fast-sampling prob-
lems (in the order of 1-50 ms) and relatively small size (1-2 manipulated inputs,
5-10 parameters). Most of the applications of explicit MPC have been reported in
the automotive domain and electrical power converters.

7 Conclusions

At the time of writing this survey, exact explicit characterizations of MPC for lin-
ear and hybrid systems have been quite well studied. Efficient algorithms exist to
compute solutions to multiparametric linear and quadratic programming problems
and explicit control laws, and Matlab toolboxes are available to let control engineers
apply these ideas in practical applications. Nonetheless, the field is far from being
mature. The clear limitation of exact explicit MPC solutions is that the number of re-
gions composing the solution grows massively with the size of the problem (mainly
with the number of constraints in the MPC problem).

Future research efforts should therefore pursue three main directions. First, new
suboptimal methods that allow trading off between loss of closed-loop performance
and number of partitions are needed; the whole concept of looking for optimal open-
loop performance is actually weak, as the MPC cost function is usually chosen by
trial and error. Second, PWA solutions are not necessarily the best way to define
suboptimal MPC laws, other piecewise-nonlinear ways of defining the solution may
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lead to more compact representations; in this respect, links to nonlinear approx-
imation approaches could be sought to approximate samples of the MPC control
profile computed through (4) within guaranteed error bounds. Third, semi-explicit
methods should be also sought, in order to pre-process of line as much as possible
of the MPC optimization problem without characterizing all possible optimization
outcomes, but rather leaving some optimization operations on-line.
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57. Muñoz de la Peña, D., Bemporad, A., Filippi, C.: Robust explicit MPC based on ap-
proximate multi-parametric convex programming. IEEE Trans. Automatic Control 51(8),
1399–1403 (2006)

58. Orchard-Hays, W.: Notes on linear programming (part 6): the Rand code for the simplex
method (sx4). Technical Report 1440, Rand Corporation (1955)

59. Pannocchia, G., Rawlings, J.B., Wright, S.J.: Fast, large-scale model predictive control
by partial enumeration. Automatica 43, 852–860 (2007)

60. Propoi, A.I.: Use of linear programming methods for synthesizing sampled-data auto-
matic systems. Automation and Remote Control 24(7), 837–844 (1963)

61. Ramı́rez, D.R., Camacho, E.F.: Piecewise affinity of min-max mpc with bounded additive
uncertainties and a quadratic criterion. Automatica 42(2), 295–302 (2006)

62. Schechter, M.: Polyhedral functions and multiparametric linear programming. Journal of
Optimization Theory and Applications 53(2), 269–280 (1987)

63. Scokaert, P.O.M., Mayne, D.Q.: Min-max feedback model predictive control for con-
strained linear systems. IEEE Trans. Automatic Control 43(8), 1136–1142 (1998)

64. Seron, M.M., DeDoná, J.A., Goodwin, G.C.: Global analytical model predictive con-
trol with input constraints. In: Proc. 39th IEEE Conf. on Decision and Control, Sydney,
Australia, pp. 154–159 (2000)

65. Spjøtvold, J., Kerrigan, E.C., Jones, C.N., Tøndel, P., Johansen, T.A.: On the facet-to-
facet property of solutions to convex parametric quadratic programs. Automatica 42(12),
2209–2214 (2006)

66. Spjøtvold, J., Rakovic, S.V., Tøndel, P., Johansen, T.A.: Utilizing reachability analysis in
point location problems. In: Proc. 45th IEEE Conf. on Decision and Control, San Diego,
CA, pp. 4568–4569 (2006)

67. Tøndel, P., Johansen, T.A.: Complexity reduction in explicit linear model predictive con-
trol. In: Proc. 15th IFAC World Congress, Barcelona, Spain (2002)

68. Tøndel, P., Johansen, T.A., Bemporad, A.: An algorithm for multi-parametric quadratic
programming and explicit MPC solutions. Automatica 39(3), 489–497 (2003)

69. Tøndel, P., Johansen, T.A., Bemporad, A.: Evaluation of piecewise affine control via
binary search tree. Automatica 39(5), 945–950 (2003)

70. Tøndel, P., Johansen, T.A., Bemporad, A.: Further results on multiparametric quadratic
programming. In: Proc. 42th IEEE Conf. on Decision and Control, Maui, Hawaii, USA,
pp. 3173–3178 (2003)



A Survey on Explicit Model Predictive Control 369

71. Torrisi, F.D., Bemporad, A.: HYSDEL — A tool for generating computational hybrid
models. IEEE Trans. Contr. Systems Technology 12(2), 235–249 (2004)

72. Wang, Y., Jones, C.N., Maciejowski, J.: Efficient point location via subdivision walking
with application to explicit MPC. In: Proc. European Control Conf., Kos, Greece, pp.
447–453 (2007)

73. Witsenhausen, H.S.: A min-max control problem for sampled linear systems. IEEE
Trans. Automatic Control 13(1), 5–21 (1968)

74. Zafiriou, E.: Robust model predictive control of processes with hard constraints. Com-
puters & Chemical Engineering 14(4/5), 359–371 (1990)




	Model Predictive Control
	Linear Model and Quadratic Cost
	Linear Model and Linear Cost
	Linear Uncertain Model and Min-Max Costs
	Hybrid Model and Linear or Quadratic Costs
	Extensions of the MPC Formulation

	Explicit Model Predictive Control
	Multiparametric Programming: General Formulation
	Multiparametric Quadratic Programming
	Multiparametric Linear Programming
	Explicit Solution of Min-Max MPC
	Explicit Solution of Hybrid MPC

	Reducing Complexity of Explicit MPC
	A Novel Practical Approach for Reducing Complexity of  Explicit MPC

	Implementation of Explicit MPC
	Tools for Explicit MPC
	Explicit MPC in Applications
	Conclusions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


