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This paper considers discrete-time nonlinear, possibly discontinuous, systems in closed-loop with Model Predictive
Controllers (MPC). The aim of the paper is to provide a priori sufficient conditions for asymptotic stability in
the Lyapunov sense and robust stability, while allowing for both the system dynamics and the value function
of the MPC cost (the usual candidate Lyapunov function in MPC) to be discontinuous functions of the state.
The motivation for this work lies in the recent development of MPC for hybrid systems, which are inherently
discontinuous and nonlinear systems. As an application of the general theory, it is shown that Lyapunov stability
is achieved in hybrid MPC. For a particular class of piecewise affine systems, a modified MPC set-up is proposed,
which is proven to be robust to small additive disturbances via an input-to-state stability argument.

1 An introductory survey

One of the problems in Model Predictive Control (MPC) that has received an increased attention over the years
consists in guaranteeing closed-loop stability for the controlled system. The usual approach to ensure stability in
MPC is to consider the value function of the MPC cost as a candidate Lyapunov function. Then, if the system
dynamics and the MPC value function are continuous, the classical Lyapunov stability theory [1] can be used to
prove that the MPC control law is stabilizing [2]. The first results that weaken the requirement that the MPC value
function must be continuous in the state were presented in [3,4], which consider terminal equality constraint MPC.
Attractivity is proven in [3] for the closed-loop system without requiring that the MPC control (and hence the MPC
value function) is continuous in the state. However, continuity of the system dynamics on a neighborhood of the
origin is employed to prove Lyapunov stability. Although continuity of the systemis still assumedin [4], which
shows that MPC can generate discontinuous state feedbacks, the Lyapunov stability proof (Theorem 2 in [4])does
not usethe continuity property. Later on, an exponential stability result is given in [5] and an asymptotic stability
theorem is presented in [6], which considers sub-optimal MPC. The theorems of [5,6] explicitly point out that both
the system dynamics and the candidate Lyapunov function only need to be continuous at the equilibrium. Stability
of sub-optimal MPC is proven in [6] under the usual assumptions (existence of classK bounds onV and its forward
difference) plus the extra requirement that the MPC optimal sequence of controls is upper bounded in norm by aK
function of the norm of the state. A recent overview on stability of receding horizon control in discrete-time can be
found in [7]. Although continuity of the system dynamics and local continuity of the candidate Lyapunov function
are assumed in [7], the stability proof (Theorem 4.3.2 in [7]) only uses continuity ofV at the equilibrium, as done
in [4]. The issue of discontinuous state feedback stabilization andcontinuous-timereceding horizon control was
addressed in [8], where it was pointed out that only attractivity can be proven for the equilibrium of the closed-loop
system.

Next to closed-loop stability, one of the most studied properties of MPC controllers is the so-called inherent
robustness, which ensures that a nominally stabilizing controller is robust in the presence of perturbations. The
importance of this property cannot be overstated, since all controllers designed to be nominally stable are usually
affected by perturbations when applied in practice. Previous results developed forsmoothnonlinear MPC, such
as the ones in [5, 9], prove that robust asymptotic stability and Input-to-State Stability (ISS) [10] with respect to
additive disturbance inputs is achieved, if the system dynamics, the MPC value function and the MPC control law
areLipschitz continuous. An important warning regarding robustness of MPC was issued in [11], which points
out that even if the system is continuous, the absence of a continuous Lyapunov function or continuous control
law may result in a closed-loop system that has no robustness. A novel approach, which no longer requires for
the terminal cost to be a local Lyapunov function, is employed in [12] to achieve robust asymptotic stability for
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the MPC closed-loop system, under the assumption that the system dynamics and the MPC value function are
continuous.

This paper is motivated by the recent development of MPC for hybrid systems, which are inherently discontin-
uous and nonlinear systems. Many efficient tools for solving hybrid MPC optimization problems already exist, e.g.
the Hybrid Toolbox [13] and the MPT Toolbox [14], and attractivity was proved for the equilibrium of the closed-
loop system in [15, 16]. However, proofs of Lyapunov stability only appeared in the hybrid MPC literature very
recently, e.g. [17–20]. Note that [17] and [18] considercontinuousPiecewise Affine (PWA) systems (affected by
additive disturbances in [17]) and the (robust) Lyapunov stability result of Theorem 2 in [17] is obtained by forcing
the MPC value function (1,∞-norms based) to be zero in the terminal set and by taking certain assumptions that
are hard to bea priori guaranteed in general. The stability result of Theorem 5 in [18] (quadratic cost based MPC)
uses the assumption that the origin lies in the interior of one of the polyhedral regions on which the PWA system
is defined, while Theorem 14.1.5 in [19] addresses exponential stability of quadratic cost MPC of PWA systems,
but it relies on the survey [21], where continuity of the MPC value function is assumed. In [20], the authors pro-
vide a priori sufficient conditionsfor asymptotic stability in the Lyapunov sense for discontinuous PWA systems
in closed-loop with∞-norms based MPC controllers. In this paper we consider discrete-time nonlinear,possibly
discontinuous, systems in closed-loop with MPC controllers and we aim at providing a general theorem on asymp-
totic stability in the Lyapunov sense that unifies most of the previously-mentioned results. Besides closed-loop
stability, the issue ofinherent robustnessis particularly relevant for hybrid systems and MPC because, in this case,
the system dynamics, the MPC value function and the MPC control law are generally discontinuous. Based on the
result of [10], we present an ISS theorem for MPC. For a class of constrained PWA systems, a modified∞-norms
MPC set-up is proposed, which is proven to be robust to small additive disturbances via the general ISS result.

2 Preliminaries

Let R, R+, Z andZ+ denote the field of real numbers, the set of non-negative reals, the set of integer numbers and
the set of non-negative integers, respectively. For a setS ⊆ Rn, we denote by∂S the boundary ofS, by int(S)
its interior and bycl(S) its closure. A polyhedron is a convex set obtained as the intersection of a finite number of
open and/or closed half-spaces. Consider the nominal and perturbed discrete-time autonomous nonlinear systems
described by

xk+1 = G(xk), k ∈ Z+, (1a)

x̃k+1 = G̃(x̃k, wk), k ∈ Z+, (1b)

wherexk, x̃k ∈ Rn are the states at sampling instantk, G : Rn → Rn andG̃ : Rn × Rl → Rn are nonlinear,
possibly discontinuous, functions. For simplicity of notation, we assume that the origin is an equilibrium in (1),
meaning thatG(0) = 0 andG̃(0, 0) = 0. The vectorw ∈ W ⊆ Rl represents an unknown disturbance and the
setW is assumed to be known and with0 ∈ int(W). For a sequence{wj}j∈Z+ let ‖{wj}j∈Z+‖ := sup{‖wj‖ |
j ∈ Z+}. Also, letw[k] denote the truncation of{wj}j∈Z+ at timek, i.e. w[k](j) = wj if j ≤ k, andw[k](j) = 0
if j > k. Due to space limitations, we refer to [22] for definitions regarding Lyapunov stability, attractivity,
asymptotic stability in the Lyapunov sense and exponential stability of the origin for the nominal system (1a).

Definition 2.1 A real-valued scalar functionϕ : R+ → R+ belongs to classK if it is continuous, strictly increas-
ing andϕ(0) = 0. It belongs to classK∞ if ϕ ∈ K and it is radially unbounded (i.e.ϕ(s) → ∞ ass → ∞). A
functionβ : R+ × R+ → R+ belongs to classKL if for each fixedk, β(·, k) ∈ K and for each fixeds, β(s, ·) is
non-increasing andlimk→∞ β(s, k) = 0.

Definition 2.2 [10] The perturbed system (1b) is (globally)Input-to-State Stable (ISS)for w ∈ W if there exist a
KL-functionβ and aK-functionγ such that, for each initial conditionx0 ∈ Rn and eachw[k−1] ∈ Wk it holds
that‖xk‖ ≤ β(‖x0‖, k) + γ(‖w[k−1]‖) for all k ∈ Z+ \ {0}.

3 Non-smooth nonlinear MPC: problem set-up

Consider the following nominal and perturbed discrete-time dynamical nonlinear systems:

xk+1 = g(xk, uk), k ∈ Z+, (2a)

x̃k+1 = g̃(x̃k, uk, wk), k ∈ Z+, (2b)
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wherexk, x̃k ∈ Rn anduk ∈ Rm are the states and the control input, respectively, at sampling instantk and
g : Rn×Rm → Rn andg̃ : Rn×Rm×Rl → Rn are nonlinear, possibly discontinuous, functions withg(0, 0) = 0
andg̃(0, 0, 0) = 0. In the sequel we will investigate the stability and the robust stability of the nominal system (2a)
and the perturbed system (2b), respectively, in the case when MPC is used to generate the control input. We assume
that the state and the input vectors are constrained for both systems (2a) and (2b), in a convex, compact subsetX
of Rn and a convex, compact subsetU of Rm, respectively, which contain the origin in their interior. For a fixed
N ∈ Z≥1, let xk(xk,uk) := (x1/k, . . . , xN/k) denote the state sequence generated by the nominal system (2a)
from initial statex0/k := xk and by applying the input sequenceuk := (u0/k, . . . , uN−1/k) ∈ UN . Furthermore,
let XT ⊆ X denote a desired target set that contains the origin. The class ofadmissible input sequencesdefined
with respect toXT and statexk ∈ X is UN (xk) := {uk ∈ UN | xk(xk,uk) ∈ XN , xN/k ∈ XT }. Now consider
the following constrained optimization problem.

Problem 3.1 Let the target setXT ⊆ X and N ≥ 1 be given and letF : Rn → R+ with F (0) = 0 and
L : Rn × Rm → R+ with L(0, 0) = 0 be mappings. At timek ∈ Z+ let xk ∈ X be given and minimize the cost
functionJ(xk,uk) := F (xN/k) +

∑N−1
i=0 L(xi/k, ui/k) over all input sequencesuk ∈ UN (xk).

In the MPC literature [21],F , L andN are called the terminal cost, the stage cost and the prediction horizon,
respectively. We call an initial statex ∈ X feasibleif UN (x) 6= ∅. Similarly, Problem 3.1 is said to befeasiblefor
x ∈ X if UN (x) 6= ∅. LetXf (N) ⊆ X denote the set offeasible initial stateswith respect to Problem 3.1 and let

VMPC : Xf (N) → R+, VMPC(xk) , inf
uk∈UN (xk)

J(xk,uk) (3)

denote the MPC value function corresponding to Problem 3.1. The existence of a minimum in (3) is usually
guaranteed by assuming continuity of the dynamics (2a) and of the stage and terminal costs [21]. However, it is
known that the global optimum is also achieved in various cases of hybrid MPC [15, 16], although in these cases
the system and the terminal cost can be discontinuous. Since hybrid MPC is one of the main motivations for this
work, we assume in the sequel that there exists an optimal sequence of controlsu∗k := (u∗0/k, u∗1/k, . . . , u∗N−1/k)
for Problem 3.1 and any statexk ∈ Xf (N). Hence, the infimum in (3) is a minimum andVMPC(xk) = J(xk,u∗k).
Then, theMPC control lawis defined as

uMPC
k = u∗0/k; k ∈ Z+. (4)

The following stability analysis holds in the case when the optimum is not unique in Problem 3.1, i.e. all results
apply irrespective of which optimal sequence is selected.

4 Non-smooth nonlinear MPC: stability and ISS

Let haux : Rn → Rm denote an arbitrary, possibly discontinuous, nonlinear function which is zero at zero and let
XU := {x ∈ X | haux(x) ∈ U} denote the safe set with respect tostate and inputconstraints for this control law.
Furthermore, letXT ⊆ XU denote a positively invariant set [22] for system (2a) in closed-loop withuk = haux(xk).

The following theorem was obtained as a kind of general and unifying result by putting together the previous
results on stability of discrete-time MPC that were mentioned in the introductory survey.

Assumption 4.1 Terminal cost and constraint setThere existα1, α2 ∈ K, a neighborhood of the originN ⊆
Xf (N) and a feedback control lawhaux such thatL(x, u) ≥ α1(‖x‖) for all x ∈ Xf (N) and allu ∈ U, F (x) ≤
α2(‖x‖) for all x ∈ N and

F (g(x, haux(x)))− F (x) + L(x, haux(x)) ≤ 0 for all x ∈ XT . (5)

Assumption 4.2 Terminal equality constraintXT = {0}, F (x) = 0 for all x ∈ X and there existα1, α2 ∈ K
and a neighborhood of the originN ⊆ Xf (N) such thatL(x, u) ≥ α1(‖x‖) for all x ∈ Xf (N) and allu ∈ U
andL(x∗i/k, u∗i/k) ≤ α2(‖xk‖), for any optimalu∗k, initial statexk =: x∗0/k ∈ N andi = 0, . . . , N − 1, where
(x∗1/k, . . . , x∗N/k) := xk(xk,u∗k).

Theorem 4.3 Fix N ≥ 1 and suppose that Assumption 4.1 holds and that XT ⊆ XU is a positively invariant set
for system (2a) in closed-loop with uk = haux(xk) that contains the origin in its interior, or, that Assumption 4.2
holds. Then it holds that:
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(i) If Problem 3.1 is feasible at time k ∈ Z+ for state xk ∈ X, then Problem 3.1 is feasible at time k + 1 for
state xk+1 = g(xk, uMPC

k ) and, moreover, Problem 3.1 is feasible for all x ∈ XT ;
(ii) The origin of the MPC closed-loop system (2a)-(4) is asymptotically stable in the Lyapunov sense for all

states in Xf (N);
(iii) If Assumption 4.1 or Assumption 4.2 holds with α1(‖x‖) := a‖x‖λ, α2(‖x‖) := b‖x‖λ for some con-

stants a, b, λ > 0, then the origin of the MPC closed-loop system (2a)-(4) is locally exponentially stable.

Proof Due to space limitations we only present the Lyapunov stability proof (note that our proof differs from the
one of Theorem 4.3.2 in [7]) for the terminal cost and constraint case (i.e. when Assumption 4.1 holds) and we
refer to [22] for the complete proof. By optimality and Assumption 4.1 it follows thatVMPC(x) ≥ α1(‖x‖) for all
x ∈ Xf (N) andVMPC(x) ≤ α2(‖x‖) for all x ∈ Ñ , whereÑ := XT∩N , and thatVMPC(g(x, uMPC

k ))−VMPC(x) ≤
−α1(‖x‖) for all x ∈ Xf (N). SinceX is assumed to be compact andXf (N) ⊆ X, it follows thatXf (N) is
bounded. From (i) it follows thatXf (N) is a positively invariant set for the MPC closed-loop system (2a)-(4). Let
xk be the solution of (2a)-(4), obtained from the initial conditionx0 at timek = 0. Choose anη > 0 such that
the ballBη := {x ∈ Rn | ‖x‖ ≤ η} satisfiesBη ⊆ Ñ . Due toα1, α2 ∈ K we can choose for any0 < ε ≤ η a
δ ∈ (0, ε) such thatα2(δ) < α1(ε). For anyx0 ∈ Bδ ⊆ Xf (N), due to positive invariance ofXf (N), it follows:

. . . ≤ VMPC(xk+1) ≤ VMPC(xk) ≤ . . . ≤ VMPC(x0) ≤ α2(‖x0‖) ≤ α2(δ) < α1(ε). (6)

Since we have thatVMPC(x) ≥ α1(ε) for all x ∈ Xf (N) \ Bε it follows thatxk ∈ Bε for all k ∈ Z+. Hence, the
origin of the MPC closed-loop system (2a)-(4) isLyapunov stable. 2

Note the following aspects regarding Theorem 4.3: (i) The hypothesis of Theorem 4.3 only requires that both
V andg are continuous atx = 0, while allowing for both of them to be discontinuous forx 6= 0; (ii) We only
useα1, α2 ∈ K locally, in an arbitrary neighborhood of the origin. Outside this neighborhood it is sufficient that
α1, α2 ∈ M (a real-valued scalar functionϕ : R+ → R+ belongs to classM (ϕ ∈ M) if it is non-decreasing
and if ϕ(0) = 0 andϕ(x) > 0 for x > 0). Also, it is sufficient thatα1 ∈ M in Assumption 4.1 for proving
attractivity only, as shown in [3]. Allowing for classM bounds, which can be discontinuous, might be convenient
from a synthesis point of view, e.g. when dealing with hybrid systems; (iii) Exponential stability can be guaranteed
on the basis of the hypothesis alone only locally fornon-smooth nonlinear MPC. Exponential stability inXf (N)
is obtained if, for example,α1(‖x‖) := a‖x‖λ, α2(‖x‖) := b‖x‖λ for somea, b, λ > 0 and Assumption 4.2
holds withN replaced byXf (N). In [7] (Theorem 4.4.2-(iv)) it is proven thatcontinuity ofVMPC onXf (N) and
Assumption 4.1 are sufficient for exponential stability inXf (N).

Next, we state a version of the global ISS result of Lemma 3.5 from [10] applied for the MPC set-up, for the
case when the disturbance input satisfiesw ∈ Bµ := {w ∈ W | ‖w‖ ≤ µ} with µ > 0 sufficiently small.

Theorem 4.4 [10] Let α1, α2, α3 ∈ K∞, σ ∈ K and let Vr := {x ∈ Rn | VMPC(x) ≤ r} be such that
Vr ⊆ Xf (N). Suppose L(x, u) ≥ α1(‖x‖) for all x ∈ Xf (N) and all u ∈ U, VMPC(x) ≤ α2(‖x‖) for all x ∈ Vr

and that there exists a µ ∈ (0, r) such that

VMPC(g̃(xk, uMPC
k , wk))− VMPC(xk) ≤ −α3(‖xk‖) + σ(‖wk‖), ∀xk ∈ Vr, wk ∈ Bµ, k ∈ Z+. (7)

Then, the perturbed system (2b) in closed-loop with the nominal MPC control (4) is input-to-state stable for all
initial conditions x0 ∈ Vr and all disturbance inputs wk ∈ Bµ, k ∈ Z+.

Although in Lemma 3.5 of [10] it is assumed thatV is continuous, the continuity property is not used in the
proof. Hence, if one can ensure a priori that inequality (7) is satisfied at all timesk ∈ Z+, without requiring
continuity ofVMPC, ISS can be achieved for the closed-loop system. Note that ifVMPC is uniformly continuous
onXf (N), the disturbance acts additively on the state and the hypothesis of Theorem 4.3 holds, then it is easy to
prove that the hypothesis of Theorem 4.4 is satisfied, which ensures ISS. For other robust stability results that use
continuous candidate Lyapunov (ISS) functions see [11,12]. For the sake of completeness we give a proof for the
following particular case of Theorem 4.4, i.e. whenα1(‖x‖) := a‖x‖λ, α2(‖x‖) := b‖x‖λ andα3(‖x‖) := c‖x‖λ

for somea, b, c, λ > 0, which was also used in [5,9] for Lipschitz continuous nonlinear systems.

Lemma 4.5 Suppose that there exist some a, b, c, λ > 0 such that the hypothesis of Theorem 4.4 holds with
α1(‖x‖) := a‖x‖λ, α2(‖x‖) := b‖x‖λ and α3(‖x‖) := c‖x‖λ. Then, the perturbed system (2b) in closed-loop
with the nominal MPC control (4) is ISS for all x0 ∈ Vr and all wk ∈ Bµ, k ∈ Z+.
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Proof From the hypothesis of Theorem 4.4 we have thatα1(‖x‖) ≤ VMPC(x) ≤ α2(‖x‖) for all x ∈ Vr. For
x ∈ Vr \ {0}, due toVMPC(x) ≤ α2(‖x‖) for all x ∈ Vr we have that

VMPC(x)− α3(‖x‖) ≤ (1−
α3(‖x‖)
α2(‖x‖)

)VMPC(x) = ρVMPC(x), ∀x ∈ Vr \ {0},

whereρ := 1− c
b . Next, we show thatρ ∈ [0, 1). Since inequality (7) holds forwk = 0 for all k ∈ Z+ it follows

that0 ≤ VMPC(g̃(xk, uMPC
k , 0)) ≤ VMPC(xk) − c‖xk‖λ ≤ (b − c)‖xk‖λ. Hence, it follows thatb ≥ c > 0 and

thusρ ∈ [0, 1). SinceVMPC(0)−α3(‖0‖) = ρVMPC(0) = 0, we have thatVMPC(x)−α3(‖x‖) ≤ ρVMPC(x) for all
x ∈ Vr. Then,

VMPC(g(x̃k, uMPC
k , wk)) = VMPC(x̃k+1) ≤ ρVMPC(x̃k) + σ(‖wk‖), ∀x̃k ∈ Vr, wk ∈ Bµ, k ∈ Z+. (8)

Next, chooseµ ∈ (0, r) such thatσ(µ) ≤ (1− ρ)r. Then, from (8) it follows that

VMPC(x̃k+1) ≤ ρVMPC(x̃k) + σ(µ) ≤ ρr + (1− ρ)r = r, ∀x̃k ∈ Vr, w ∈ Bµ, k ∈ Z+.

Hence,Vr is a robustly positively invariant set [22] for the perturbed system (2b)-(4) and inequality (8) yields:

VMPC(x̃k+1) ≤ ρk+1VMPC(x0) + ρkσ(‖w0‖) + ρk−1σ(‖w1‖) + . . . + σ(‖wk‖),

for all x0 ∈ Vr, wk ∈ Bµ, k ∈ Z+. Then, it follows that:

α1(‖x̃k+1‖) ≤ VMPC(x̃k+1) ≤ ρk+1α2(‖x0‖) +
kX

i=0

ρiσ(‖wk−i‖) ≤ ρk+1α2(‖x0‖) + σ(‖w[k]‖)
1

1− ρ
,

for all x0 ∈ Vr, w[k] ∈ Bk+1
µ , k ∈ Z+. One can easily check thatα1 ∈ K∞ impliesα−1

1 ∈ K∞. Then,α−1
1 ∈ K∞

andσ ∈ K yields:

‖x̃k+1‖ ≤ α−1
1 (ρk+1α2(‖x0‖) + σ(‖w[k]‖)

1

1− ρ
) ≤ α−1

1 (2 max(ρk+1α2(‖x0‖), σ(‖w[k]‖)
1

1− ρ
)) ≤

≤ α−1
1 (2ρk+1α2(‖x0‖)) + α−1

1 (2σ(‖w[k]‖)
1

1− ρ
), ∀x0 ∈ Vr, w[k] ∈ Bk+1

µ , k ∈ Z+.

Let β(s, k) := α−1
1 (2ρkα2(s)). For a fixedk ∈ Z+, we have thatβ(·, k) ∈ K due toα2 ∈ K∞, α−1

1 ∈ K∞
andρ ∈ (0, 1)1. For a fixeds, it follows thatβ(s, ·) is non-increasing andlimk→∞ β(s, k) = 0, due toρ ∈ (0, 1)
andα−1

1 ∈ K∞. Thus, it follows thatβ ∈ KL. Now letγ(s) := α−1
1 (2σ(s) 1

1−ρ ). Since 1
1−ρ > 0, it follows that

γ ∈ K due toα−1
1 ∈ K∞ andσ ∈ K. Hence, the closed-loop system (2b)-(4) is ISS in the sense of Definition 2.2

for all x0 ∈ Vr and all disturbance inputswk ∈ Bµ, k ∈ Z+. 2

5 ∞-norms based MPC of constrained PWA systems

In this section we consider the class of time-invariant discrete-time piecewise affine systems, i.e.

xk+1 = Ajxk + Bjuk + fj when xk ∈ Ωj , j ∈ S, k ∈ Z+; (9a)

x̃k+1 = Aj x̃k + Bjuk + fj + wk when x̃k ∈ Ωj , wk ∈ Bµ ⊂ Rn, j ∈ S, k ∈ Z+. (9b)

Also, we take the auxiliary controllerhaux(x) := Kjx whenx ∈ Ωj , j ∈ S. Here,Aj ∈ Rn×n, Bj ∈ Rn×m,
fj ∈ Rn, Kj ∈ Rm×n, j ∈ S with S := {1, 2, . . . , s} afinite setof indices. The collection{Ωj | j ∈ S} defines a
partition ofX, meaning that∪j∈SΩj = X andΩi ∩Ωj = ∅ for i 6= j. EachΩj is assumed to be a polyhedron (not
necessarily closed). LetS0 := {j ∈ S | 0 ∈ cl(Ωj)} and letS1 := {j ∈ S | 0 6∈ cl(Ωj)}, so thatS = S0 ∪ S1.
We assume that the origin is an equilibrium state for (9) withu = 0 and we require thatfj = 0 for all j ∈ S0. This
includes PWA systems whichmay be discontinuous over the boundaries. Next, consider the case when∞-norms
are used to define the MPC cost function, i.e.F (x) = ‖Pjx‖∞ whenx ∈ Ωj andL(x, u) = ‖Qx‖∞ + ‖Ru‖∞.
HerePj ∈ Rpj×n, j ∈ S, Q ∈ Rq×n andR ∈ Rr×n are assumed to be matrices that have full-column rank.

In [20] the authors developed ways to compute (off-line) the terminal weight matrices{Pj | j ∈ S} and the
feedbacks{Kj | j ∈ S} such that inequality (5) holds. Then, it can be shown that PWA systems in closed-loop
with MPC controllers calculated as in (4) and using an∞-norms based cost in Problem 3.1 satisfy the hypothesis
of Theorem 4.3, thereby establishing Lyapunov stability for the origin of the closed-loop system. A similar result

1If ρ = 0 we have that‖x̃k‖ ≤ α−1
1 (σ(‖wk−1‖)) ≤ β(‖x0‖, k) + α−1

1 (σ(‖w[k−1]‖)) for anyβ ∈ KL, k ∈ Z+ \ {0}.
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for quadratic cost based MPC and PWA prediction models can be found in [22]. However, due to the fact that in
hybrid MPC both the system and the MPC value function may be discontinuous in general, it follows, as pointed
out in [11], that the closed-loop system may have no robustness, despite the fact that nominal asymptotic stability
is guaranteed. Since most of the work that has been done in hybrid MPC addresses the nominal case, it is relevant
to investigate this robustness issue.

In this paper we aim at modifying hybrid MPC so as to ensurea priori a certain level of inherent robustness to
perturbations. The approach is based on the ISS result of Lemma 4.5. The key idea is to constrain the nominal pre-
dicted state and the corresponding sequence of controls such that the mode sequence corresponding to a perturbed
initial state remains the same as the nominal predicted mode sequence. This is done by not allowing the predicted
state to take values in the regions of the state space where the effect of the disturbance might trigger a different
mode sequence. In the sequel we illustrate this approach for a particular class of PWA systems (i.e. the case when
0 ∈ int(Ωj∗) for somej∗ ∈ S) that was also considered in [18] in order to ensure nominal stability for the MPC
closed-loop system. Note that for this class of PWA systems there exists a neighborhood of the originN ⊆ Ωj∗

whereVMPC is uniformly continuous due to the fact that the PWA system is linear inΩj∗ . This property together
with nominal stability of the MPC closed-loop system ensures local ISS, i.e. for allx0 ∈ Vr∗ , wherer∗ > 0 is such
thatVr∗ ⊆ N ⊆ Ωj∗ . Next, we develop an MPC set-up that yields an ISS closed-loop system for all initial condi-
tionsx0 ∈ Vr := {x ∈ Xf (N) | VMPC(x) ≤ r}. Let S ∼ P := {x ∈ Rn | x + P ⊆ S} denote the Pontryagin
difference of two arbitrary setsS andP, let η := maxj∈S ‖Aj‖∞ and letLi

µ := {x ∈ Rn | ‖x‖∞ ≤ µ
∑i−1

p=0 ηp}
for all i ∈ Z≥1. Also, let γ > 0 be such that‖Qx‖∞ ≥ γ‖x‖∞ for all x ∈ Rn, let F (x) = ‖Px‖∞ for all
x ∈ X, whereP ∈ Rp×n has full column rank, and letξ := ‖P‖∞. Consider now the following (tightened) set of
constraints:

ŨN (xk) := {uk ∈ UN | xi/k ∈ Xi, i = 1, . . . , N − 1, xN/k ∈ XT }, k ∈ Z+, (10)

whereXi := ∪j∈S{Ωj ∼ Li
µ} ⊆ X for all i = 1, . . . , N − 1 and(x1/k, . . . , xN/k) is a state sequence generated

from initial statex0/k := xk and by applying the input sequenceuk to the nominal PWA model (9a). Note that
the idea of a tightened set of constraints is not new in robust MPC, e.g. it was used in [9] for Lipschitz continuous
nonlinear systems. Here we employ this set-up for PWA systems.

Theorem 5.1 Assume that 0 ∈ int(Ωj∗) for some j∗ ∈ S and let c0, . . . , cN denote positive constants. Take
r > µ > 0, N ≥ 1 and θ > θ1 > 0 such that µ ≤ min( (1−γ/N maxi=0,...,N ci)r

ξηN−1+‖Q‖∞
Pp=N−2

p=0 ηp

2, θ−θ1
ξηN−1 ), Fθ := {x ∈ Rn |

F (x) ≤ θ} ⊆ Ωj∗ ∩ XU ∩ XN−1 and g(x, haux(x)) ∈ Fθ1 for all x ∈ Fθ (g denotes here the PWA system (9a)).
Set XT = Fθ1 . Furthermore, suppose that Assumption 4.1 holds for the nominal PWA system (9a)and the state
feedback haux and that inequality (5) is satisfied for all x ∈ Fθ. Then it holds that:

(i) If Problem 3.1 with the set of constraints ŨN (xk) is feasible at time k ∈ Z+ for state xk ∈ X, then Problem
3.1 is feasible at time k + 1 for state x̃k+1 = Ajxk + Bju

MPC
k + fj + wk for all wk ∈ Bµ;

(ii) The perturbed PWA system (9b) in closed-loop with the MPC control (4) calculated using the nominal
PWA model (9a) to obtain the predicted state trajectory and by solving Problem 3.1 with the modified set of
constraints (10) at each sampling instant is ISS for all x0 ∈ Vr and all wk ∈ Bµ, k ∈ Z+.

Proof Let (x∗1/k, . . . , x∗N/k) denote the optimal predicted state sequence obtained at timek from initial state
x0/k := xk and by applying the input sequenceu∗k to the PWA model (9a). Let(x̃1/k+1, . . . , x̃N/k+1) denote
the state sequence obtained from the perturbed initial statex̃0/k+1 := x̃k+1 = xk+1 + wk = x∗1/k + wk and by
applying the input sequencẽuk+1 := (u∗1/k, . . . , u∗N−1/k, haux) to the nominal PWA model (9a).

(i) The state constraints imposed in (10) ensure: (P1)(x̃i/k+1, x
∗
i+1/k) ∈ Ωji+1 × Ωji+1 , ji+1 ∈ S for all

i = 0, . . . , N − 2 and that‖x̃i/k+1 − x∗i+1/k‖∞ ≤ ηiµ for i = 0, . . . , N − 2. Pick the indicesji+1 ∈ S such

that x∗i+1/k ∈ Ωji+1 for all i = 0, . . . , N − 2. Then, due tox∗i+1/k ∈ Ωji+1 ∼ Li+1
µ , it follows by Lemma

2 of [9] that x̃i/k+1 ∈ Ωji+1 ∼ Li
µ ⊂ Xi for i = 0, . . . , N − 2. Property (P1) fori = N − 2 implies that

x̃N−1/k+1 = x∗N/k +
∏N−1

i=1 Ajiwk. Then, it follows thatF (x̃N−1/k+1) − F (x∗N/k) ≤ ξηN−1µ, which implies

thatF (x̃N−1/k+1) ≤ θ1 + ξηN−1µ ≤ θ due tox∗N/k ∈ XT = Fθ1 andµ ≤ θ−θ1
ξηN−1 . Hence,̃xN−1/k+1 ∈ Fθ ⊂

XU ∩ XN−1 and thenhaux(x̃N−1/k+1) ∈ U and x̃N/k+1 ∈ XT = Fθ1 . Thus, the sequence of inputsũk+1 is
feasible at timek + 1.

(ii) For ∞-norms based hybrid MPC it is known [16] that all the elements of the MPC optimal sequence of
controlsu∗k are PWA functions of the statexk. Moreover,fj∗ = 0 andR has full-column rank implies that there
exists a neighborhood of the origin where these controls are Piecewise Linear (PWL). Then, it can be shown that
there exist constantsβi > 0 such that‖u∗i/k‖∞ ≤ βi‖xk‖∞ for i = 0, . . . , N − 1. Using Lemma 1 of [20]

2This ensures thatVr is a robustly positively invariant set [22], as shown in the proof of Lemma 4.5.
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it follows that there exist constantsci > 0 such thatF (x∗N/k) ≤ cN‖xk‖∞ andL(x∗i/k, u∗i/k) ≤ ci‖xk‖∞ for
all xk ∈ Xf (N) and i = 0, . . . , N − 1, k ∈ Z+. Hence,VMPC(x) ≤ α2(‖x‖∞) for all x ∈ Xf (N), where
α2(‖x‖∞) := N maxi=0,...,N ci‖x‖∞. Then,L(x, u) ≥ ‖Qx‖∞ ≥ γ‖x‖∞ for all x ∈ Rn, u ∈ Rm implies
α1(‖x‖∞) ≤ VMPC(x) ≤ α2(‖x‖∞) for all x ∈ Xf (N). Let x̃k+1 denote the solution of the perturbed system
(9b)-(4) obtained as indicated before part (i) of the proof. Then, by optimality, property (P1),x̃N−1/k+1 ∈ Fθ and
from inequality (5) it follows that:

VMPC(x̃k+1)− VMPC(xk) ≤ J(x̃k+1, ũk+1)− J(xk,u∗k) = −L(x∗0/k, u∗0/k) + F (x̃N/k+1)− F (x̃N−1/k+1)+

+ L(x̃N−1/k+1, haux(x̃N−1/k+1)) + F (x̃N−1/k+1)− F (x∗N/k) +

N−2X

i=0

(L(x̃i/k+1, ũk+1(i + 1))− L(x∗i+1/k, u∗i+1/k)) ≤

≤ −L(x∗0/k, u∗0/k) + F (x̃N/k+1)− F (x̃N−1/k+1) + L(x̃N−1/k+1, haux(x̃N−1/k+1)) + (ξηN−1 + ‖Q‖∞
N−2X

p=0

ηp)‖wk‖∞ ≤

≤ −α3(‖xk‖∞) + σ(‖wk‖∞),

whereα3(‖x‖∞) = α1(‖x‖∞) := γ‖x‖∞ andσ(‖wk‖∞) := (ξηN−1 + ‖Q‖∞
∑N−2

p=0 ηp)‖wk‖∞. Hence, it
follows thatVMPC satisfies the hypothesis of Lemma 4.5, thereby establishing ISS for the closed-loop system.2

Note the following aspects regarding Theorem 5.1: (i) In the above proof we showed that there exista, b > 0
such thata‖x‖∞ ≤ VMPC(x) ≤ b‖x‖∞ for all x ∈ Xf (N). This implies that the hypothesis of Theorem 4.3 is
sufficient forexponential stability inXf (N) for ∞-norms MPC and PWA prediction models, even thoughVMPC

is not continuous onXf (N) in general; (ii) ISS is no longer achieved via the above reasoning if the tightened
set of constraints (10) is employed for general PWA systems, i.e. when0 6∈ int(Ωj) for all j ∈ S, due to the
fact that the setsXi, i ≥ 1, do not contain the origin in this case. Future work deals with the implementation of
this idea for general PWA systems via a dual-mode MPC scheme. (iii) One has to make a trade off in ensuring
that the disturbance does not affect the predicted mode sequence on one hand, and in keeping the tightening of the
constraints (10) as mild as possible on the other hand. This problem may be tackled by making the state constraints
time varying, i.e. such thatXi → X for all i ≥ 1 whenwk → 0 ask → ∞ (an estimate of the disturbance may
be required) or by incorporating a local feedback which ensures that‖Aj + BjKj‖∞ is small for allj ∈ S (and
henceη is small) and by using the MPC control in order to ensure constraint satisfaction for the local controller in
Xf (N). These approaches make the object of future research.

6 Conclusions

In this paper we have presented an overview of the stability and robust stability theory for nonlinear MPC while
focusing on the application and the extension of the classical results to non-smooth nonlinear systems. A stability
theorem has been developed, which unifies many previous results. Robust stability issues have also been addressed
and the input-to-state stability result of [10] was applied to non-smooth nonlinear MPC. The potential of these
results for hybrid MPC has been illustrated for a particular class of PWA systems.
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