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This paper considers discrete-time nonlinear, possibly discontinuous, systems in closed-loop with Model Predictive
Controllers (MPC). The aim of the paper is to provide a priori sufficient conditions for asymptotic stability in
the Lyapunov sense and robust stability, while allowing for both the system dynamics and the value function
of the MPC cost (the usual candidate Lyapunov function in MPC) to be discontinuous functions of the state.
The motivation for this work lies in the recent development of MPC for hybrid systems, which are inherently
discontinuous and nonlinear systems. As an application of the general theory, it is shown that Lyapunov stability
is achieved in hybrid MPC. For a particular class of piecewise affine systems, a modified MPC set-up is proposed,
which is proven to be robust to small additive disturbances via an input-to-state stability argument.

1 Anintroductory survey

One of the problems in Model Predictive Control (MPC) that has received an increased attention over the years
consists in guaranteeing closed-loop stability for the controlled system. The usual approach to ensure stability in
MPC is to consider the value function of the MPC cost as a candidate Lyapunov function. Then, if the system
dynamics and the MPC value function are continuous, the classical Lyapunov stability theory [1] can be used to
prove that the MPC control law is stabilizing [2]. The first results that weaken the requirement that the MPC value
function must be continuous in the state were presented in [3,4], which consider terminal equality constraint MPC.
Attractivity is proven in [3] for the closed-loop system without requiring that the MPC control (and hence the MPC
value function) is continuous in the state. However, continuity of the system dynamics on a neighborhood of the
origin is employed to prove Lyapunov stability. Although continuity of the systesiill assumedn [4], which

shows that MPC can generate discontinuous state feedbacks, the Lyapunov stability proof (Theoreni@as[4])

not usethe continuity property. Later on, an exponential stability result is given in [5] and an asymptotic stability
theorem is presented in [6], which considers sub-optimal MPC. The theorems of [5, 6] explicitly point out that both
the system dynamics and the candidate Lyapunov function only need to be continuous at the equilibrium. Stability
of sub-optimal MPC is proven in [6] under the usual assumptions (existence okclamends ol and its forward
difference) plus the extra requirement that the MPC optimal sequence of controls is upper bounded in nkrm by a
function of the norm of the state. A recent overview on stability of receding horizon control in discrete-time can be
found in [7]. Although continuity of the system dynamics and local continuity of the candidate Lyapunov function
are assumed in [7], the stability proof (Theorem 4.3.2 in [7]) only uses continultyatfthe equilibrium, as done

in [4]. The issue of discontinuous state feedback stabilizationcantinuous-timeeceding horizon control was
addressed in [8], where it was pointed out that only attractivity can be proven for the equilibrium of the closed-loop
system.

Next to closed-loop stability, one of the most studied properties of MPC controllers is the so-called inherent
robustness, which ensures that a nominally stabilizing controller is robust in the presence of perturbations. The
importance of this property cannot be overstated, since all controllers designed to be nominally stable are usually
affected by perturbations when applied in practice. Previous results developgddothnonlinear MPC, such
as the ones in [5, 9], prove that robust asymptotic stability and Input-to-State Stability (ISS) [10] with respect to
additive disturbance inputs is achieved, if the system dynamics, the MPC value function and the MPC control law
areLipschitz continuous An important warning regarding robustness of MPC was issued in [11], which points
out that even if the system is continuous, the absence of a continuous Lyapunov function or continuous control
law may result in a closed-loop system that has no robustness. A novel approach, which no longer requires for
the terminal cost to be a local Lyapunov function, is employed in [12] to achieve robust asymptotic stability for
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the MPC closed-loop system, under the assumption that the system dynamics and the MPC value function are
continuous

This paper is motivated by the recent development of MPC for hybrid systems, which are inherently discontin-
uous and nonlinear systems. Many efficient tools for solving hybrid MPC optimization problems already exist, e.g.
the Hybrid Toolbox [13] and the MPT Toolbox [14], and attractivity was proved for the equilibrium of the closed-
loop system in [15, 16]. However, proofs of Lyapunov stability only appeared in the hybrid MPC literature very
recently, e.g. [17-20]. Note that [17] and [18] considentinuousPiecewise Affine (PWA) systems (affected by
additive disturbances in [17]) and the (robust) Lyapunov stability result of Theorem 2 in [17] is obtained by forcing
the MPC value functionl( co-norms based) to be zero in the terminal set and by taking certain assumptions that
are hard to ba priori guaranteed in general. The stability result of Theorem 5 in [18] (quadratic cost based MPC)
uses the assumption that the origin lies in the interior of one of the polyhedral regions on which the PWA system
is defined, while Theorem 14.1.5 in [19] addresses exponential stability of quadratic cost MPC of PWA systems,
but it relies on the survey [21], where continuity of the MPC value function is assumed. In [20], the authors pro-
vide a priori sufficient conditiongor asymptotic stability in the Lyapunov sense for discontinuous PWA systems
in closed-loop withbo-norms based MPC controllers. In this paper we consider discrete-time nonposaibly
discontinuoussystems in closed-loop with MPC controllers and we aim at providing a general theorem on asymp-
totic stability in the Lyapunov sense that unifies most of the previously-mentioned results. Besides closed-loop
stability, the issue ahherent robustness particularly relevant for hybrid systems and MPC because, in this case,
the system dynamics, the MPC value function and the MPC control law are generally discontinuous. Based on the
result of [10], we present an ISS theorem for MPC. For a class of constrained PWA systems, a modifieths
MPC set-up is proposed, which is proven to be robust to small additive disturbances via the general ISS result.

2 Preliminaries

LetR, R, Z andZ.. denote the field of real numbers, the set of non-negative reals, the set of integer numbers and
the set of non-negative integers, respectively. For &setR"”, we denote by)S the boundary ofS, by int(S)

its interior and byl(S) its closure. A polyhedron is a convex set obtained as the intersection of a finite number of
open and/or closed half-spaces. Consider the nominal and perturbed discrete-time autonomous nonlinear systems
described by

LTrt+1 = G(Ik)v ke Z+7 (1a)

£k+1 = G(a?k7wk), ke Z+, (1b)

wherezy, T, € R™ are the states at sampling insténtz : R® — R" andG : R” x Rl — R™ are nonlinear,
possibly discontinuous, functions. For simplicity of notation, we assume that the origin is an equilibrium in (1),
meaning thatG(0) = 0 andG(0,0) = 0. The vectorw € W C R/ represents an unknown disturbance and the
setW is assumed to be known and withe int(WV). For a sequencéw;}jez. let||[{w;}jez. || := sup{|w;]| |

J € Z4 }. Also, letwy;,) denote the truncation dfw; }jcz, attimek, i.e. wy(j) = w; if j <k, andwy (j) = 0

if 7 > k. Due to space limitations, we refer to [22] for definitions regarding Lyapunov stability, attractivity,
asymptotic stability in the Lyapunov sense and exponential stability of the origin for the nominal system (1a).

Definition 2.1 A real-valued scalar functiop : R, — R, belongs to clas« if it is continuous, strictly increas-
ing andp(0) = 0. It belongs to clas& . if ¢ € K and it is radially unbounded (i.e2(s) — oo ass — o0). A
function : Ry x Ry — R, belongs to clas& L if for each fixedk, (-, k) € K and for each fixead, (s, -) is
non-increasing antimy_. ., B(s, k) = 0.

Definition 2.2 [10] The perturbed system (1b) is (globallyput-to-State Stable (IS®)r w € W if there exist a
KL-function 8 and ak-function+ such that, for each initial condition, € R™ and eachu;_1; € WF¥ it holds
that||ze || < B(|lzoll, k) + v (|[wpey |) for all k € Z.4 \ {0}.

3 Non-smooth nonlinear MPC: problem set-up

Consider the following nominal and perturbed discrete-time dynamical nonlinear systems:

Tpt1 = g(Tk,uk), k€ Ly, (2a)
i.k+1 = g(‘%kvukvwk)a ke Z+7 (Zb)
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wherezy, 7, € R™ andu, € R™ are the states and the control input, respectively, at sampling instand
g:R"xR™ — R" andg : R” x R™ x R! — R™ are nonlinear, possibly discontinuous, functions witt, 0) = 0
andg(0,0,0) = 0. In the sequel we will investigate the stability and the robust stability of the nominal system (2a)
and the perturbed system (2b), respectively, in the case when MPC is used to generate the control input. We assun
that the state and the input vectors are constrained for both systems (2a) and (2b), in a convex, compact subset
of R™ and a convex, compact sub&ebf R™, respectively, which contain the origin in their interior. For a fixed

N € Zxi, letxy(zr, ug) = (w14, ..., 2n/) denote the state sequence generated by the nominal system (2a)
from initial statex /;, := = and by applying the input sequenag := (ug/p, ..., un_1/x) € UV. Furthermore,

let ¥r C X denote a desired target set that contains the origin. The clasdnufsible input sequencdsfined

with respect to¥r and stater;, € X isUy (zx) := {up € UV | xp(2p, uz) € XV, Tk € Xr}. Now consider

the following constrained optimization problem.

Problem 3.1 Let the target se’y C X and N > 1 be given and lef’ : R* — R, with F(0) = 0 and
L:R™ x R™ — R, with L(0,0) = 0 be mappings. Attimé < Z, letz; € X be given and minimize the cost
functionJ (zx, uy) := F(zn/i) + Zﬁi‘ol L(x;/1,u/;) over all input sequenceas, € Uy (xy).

In the MPC literature [21]F, L and N are called the terminal cost, the stage cost and the prediction horizon,
respectively. We call an initial statee X feasibleif Uy (z) # 0. Similarly, Problem 3.1 is said to Heasiblefor
z € Xif Un(z) # 0. Let X;(N) C X denote the set deasible initial statesvith respect to Problem 3.1 and let

VMPC : Xf(N) — R+7 VMpc(.’Ek) e inf J({L‘k, llk) (3)
u, EUN (z1)

denote the MPC value function corresponding to Problem 3.1. The existence of a minimum in (3) is usually
guaranteed by assuming continuity of the dynamics (2a) and of the stage and terminal costs [21]. However, it is
known that the global optimum is also achieved in various cases of hybrid MPC [15, 16], although in these cases
the system and the terminal cost can be discontinuous. Since hybrid MPC is one of the main motivations for this
work, we assume in the sequel that there exists an optimal sequence of captrels(ug ., uj /5., - Uy _1/5)
for Problem 3.1 and any staig € X;(NN). Hence, the infimum in (3) is a minimum af@hpec(zr) = J(zk, uj,).
Then, theMPC control lawis defined as

uf*C =g kE€Zy. (4)

The following stability analysis holds in the case when the optimum is not unique in Problem 3.1, i.e. all results
apply irrespective of which optimal sequence is selected.

4 Non-smooth nonlinear MPC: stability and ISS

Let haux : R™ — R™ denote an arbitrary, possibly discontinuous, nonlinear function which is zero at zero and let
Xu = {z € X| haux(z) € U} denote the safe set with respecttate and inputonstraints for this control law.
Furthermore, lef'r C X}y denote a positively invariant set [22] for system (2a) in closed-loop itk haux(xk ).

The following theorem was obtained as a kind of general and unifying result by putting together the previous
results on stability of discrete-time MPC that were mentioned in the introductory survey.

Assumption 4.1 Terminal cost and constraint s&here exist;, a2 € K, a neighborhood of the origin/ C
X¢(N) and a feedback control sy such thatl(z, u) > o (||z|]) forallz € X¢(N) and allu € U, F(z) <
as(||z||) forallz € N and

F(g(z, hau(z))) — F(x) + L(z, hau(z)) <0 forall z e Xp. (5)

Assumption 4.2 Terminal equality constraintr = {0}, F(z) = 0 for all z € X and there existv;,as € K
and a neighborhood of the origii® C X;(N) such thatL(z,u) > a;(||z]|) forallz € X¢(N) and allu € U
andL(z; ), uj,;.) < oo(||lkl]), for any optimahy, initial statex, =: z7 . € N andi =0,...,N — 1, where

(@} s @) = Xe(@k, 0.

Theorem 4.3 Fix N > 1 and suppose that Assumption 4.1 holds and that Xr C Ay is a positively invariant set
for system (2a) in closed-loop with uy, = h,ux(xy) that contains the origin in its interior, or, that Assumption 4.2
holds. Then it holds that:
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(i) If Problem 3.1 is feasible at time k € 7 for state x;, € X, then Problem 3.1 is feasible at time k + 1 for
state z41 = g(zy, uPC) and, moreover, Problem 3.1 is feasible for all x € Xr;

(iiy The origin of the MPC closed-loop system (2a)-(4) is asymptotically stable in the Lyapunov sense for all
states in Xy (N);

(iii) If Assumption 4.1 or Assumption 4.2 holds with a1 (||z||) := alz||*, az(||z|) := b||z||* for some con-

stants a, b, A > 0, then the origin of the MPC closed-loop system (2a)-(4) is locally exponentially stable.

Proof Due to space limitations we only present the Lyapunov stability proof (note that our proof differs from the
one of Theorem 4.3.2 in [7]) for the terminal cost and constraint case (i.e. when Assumption 4.1 holds) and we
refer to [22] for the complete proof. By optimality and Assumption 4.1 it follows Watc(x) > a1 (||z||) for all

xc Xy (N) andVMpc(J?) < Oég(”l‘”) forallz ./\7, where\ := XrnN, and thaﬁ/Mpc(g(.r, U%PC))—VMpc(J?) <
—aq(||z|]) for all z € Xy(N). SinceX is assumed to be compact aati(N) C X, it follows that Xy (N) is
bounded. From (i) it follows that’; (V) is a positively invariant set for the MPC closed-loop system (2a)-(4). Let

xx be the solution of (2a)-(4), obtained from the initial conditianat timek = 0. Choose am > 0 such that

the ballB, := {z € R" | ||z|| < n} satisfiesB,, C N. Due toa;, as € K we can choose for any < ¢ < n a

d € (0,¢) such thatv (0) < a1 (e). Foranyzy € Bs C Xy(INV), due to positive invariance of;(N), it follows:

oo < Vpc(@r+1) < Vwec(zk) < ... < Vpc(zo) < as(||zol]) < a2(d) < ai(e). (6)

Since we have thdtypc(z) > a1 (e) for all z € X;(N) \ B, it follows thatz,, € B, forall k € Z. Hence, the
origin of the MPC closed-loop system (2a)-(4Ligpunov stable |

Note the following aspects regarding Theorem 4.3: (i) The hypothesis of Theorem 4.3 only requires that both
V andg are continuous at = 0, while allowing for both of them to be discontinuous for# 0; (i) We only
useas, as € K locally, in an arbitrary neighborhood of the origin. Outside this neighborhood it is sufficient that
a1, a9 € M (areal-valued scalar functiop : Ry — R, belongs to class\t (p € M) if it is non-decreasing
and if ¢(0) = 0 andp(z) > 0 for z > 0). Also, it is sufficient that; € M in Assumption 4.1 for proving
attractivity only, as shown in [3]. Allowing for clas&t bounds, which can be discontinuous, might be convenient
from a synthesis point of view, e.g. when dealing with hybrid systems; (iii) Exponential stability can be guaranteed
on the basis of the hypothesis alone only locallyrion-smooth nonlinear MPExponential stability int’s (V)
is obtained if, for exampleq; (||z]|) = allz|*, az(||z) = b|j=||* for somea,b, A > 0 and Assumption 4.2
holds with replaced byX;(N). In [7] (Theorem 4.4.2-(iv)) it is proven thabntinuity ofViypc on Xy (N) and
Assumption 4.1 are sufficient for exponential stabilityip(V).

Next, we state a version of the global ISS result of Lemma 3.5 from [10] applied for the MPC set-up, for the
case when the disturbance input satisfies 5, := {w € W | ||w| < u} with ¢ > 0 sufficiently small.

Theorem 4.4 [10] Let a1, a0,a3 € Ko, 0 € K and let V. := {x € R"™ | Vipce(z) < r} be such that
YV, € Xp(N). Suppose L(z,u) > ai(||z||) forall z € X¢(N) and all w € U, Vype(z) < ao(||z||) forallz € V),
and that there exists a y € (0,7) such that

VMpc(g(mk,uﬁ/IPC, wi)) — Vmpc(zr) < —as(||lzi|) + o(||lwkl), Vi € Ve,wi € By, k € Zy. )

Then, the perturbed system (2b) in closed-loop with the nominal MPC control (4) is input-to-state stable for all
initial conditions x¢ € V, and all disturbance inputs wy, € B, k € Z..

Although in Lemma 3.5 of [10] it is assumed thatis continuous, the continuity property is not used in the
proof. Hence, if one can ensure a priori that inequality (7) is satisfied at all timesZ, without requiring
continuity of Viypc, ISS can be achieved for the closed-loop system. Note tH&jdE is uniformly continuous
on X;(NN), the disturbance acts additively on the state and the hypothesis of Theorem 4.3 holds, then it is easy to
prove that the hypothesis of Theorem 4.4 is satisfied, which ensures ISS. For other robust stability results that use
continuous candidate Lyapunov (ISS) functions see [11, 12]. For the sake of completeness we give a proof for the
following particular case of Theorem 4.4, i.e. wher(||z|)) := a||z||*, ao(||z) := b]|z|* andas(||z|) := ¢/|z|*
for somea, b, ¢, A > 0, which was also used in [5, 9] for Lipschitz continuous nonlinear systems.

Lemma 4.5 Suppose that there exist some a,b,c,\ > 0 such that the hypothesis of Theorem 4.4 holds with
ai(||z]) := allz|]*, ao(||z|]) := b||z||* and as(||z||) := c||z||*. Then, the perturbed system (2b) in closed-loop
with the nominal MPC control (4) is ISS for all zy € V, and all wy, € B, k € Z .
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Proof From the hypothesis of Theorem 4.4 we have that|z|) < Vuec(z) < ao(]jz|) for all z € V,.. For
x €V, \ {0}, due toViypc(z) < as(||z||) for all € V), we have that

_ az(llzlD

ca(llz)
wherep := 1 — 7. Next, we show thap € [0, 1). Since inequality (7) holds fap;, = 0 for all & € Z_ it follows
that0 < Vipc(g(zk, ul®C,0)) < Vipc(zk) — cllzi|* < (b — ¢)||lzk|*. Hence, it follows that > ¢ > 0 and
thusp € [0, 1). SinceVupc(0) — as(]|0]]) = pVmpc(0) = 0, we have thatpc(z) — as(||z]]) < pVimpc(z) for all
x € V,. Then,

Wpc(z) —as((lz|]) < (1

YWmpc(z) = pVmpc(z), Vx € Vr \ {0},

PC

Vipc(9(Zk, ulPC wr)) = Vupc(Zr+1) < pVirc(@x) + o(lwkl), Vir € Vi, wr € B,k € Zy.  (8)

Next, choose: € (0,r) such thatr () < (1 — p)r. Then, from (8) it follows that
Vmpc(Zrt1) < pVpc(@r) +o(pu) <pr+ (1 —pir=7r, VipeV, we B, kecZ,.
Hence,V, is a robustly positively invariant set [22] for the perturbed system (2b)-(4) and inequality (8) yields:

Viec(Zir1) < M Vaee(wo) + p*a(wol)) + ¥ o (lwrll) + ... + o (|fw]),

forall zo € V,., wy € B,,, k € Z,. Then, it follows that:

k
. 1
a1([|Ze411) < Vipc(@rt1) < p¥ aa(llzol) + D plo(lwe—ill) < p*aa(llzoll) + a(llw[k]ll)fp,
=0
forallzg € V., wy,) € Bﬁ“, k € Z,. One can easily check that € implieSaf1 € Koo Then,afl € Ko
ando € K yields:

k+1 k+1

- _ 1 _ 1
[Z611l < @yt (p*Faz(l|zol) JFG(”w[k]H)E) < ay ' (2max(p az(vaoll),U(Hw[k]ll)fp)) <

_ _ 1
<ar '@ as(|lzol)) + o 1(2‘7(Hw[k]”)71 — p), Vo € Vi, wiyy € BET k€ Zy.

Let B(s, k) := a;*(2p*az(s)). For afixedk € Z,, we have thaf3(-, k) € K due toas € Koo, o' € Koo
andp € (0,1). For a fixeds, it follows that3(s, -) is non-increasing antimy, ., 3(s, k) = 0, due top € (0,1)
anda; ' € Koo Thus, it follows thatd € KL. Now let~(s) := a; ' (20(s) 1=). Sincer > 0, it follows that
v € K due toa; * € Ko, ando € K. Hence, the closed-loop system (2b)-(4) is ISS in the sense of Definition 2.2
for all zo € V, and all disturbance inputs, € B,,, k € Z... O

5 oo-norms based MPC of constrained PWA systems
In this section we consider the class of time-invariant discrete-time piecewise affine systems, i.e.

1 = Ajer + Bjug + f; when x,€Q;,j€8, keZy; (9a)
Thy1 = Ajfk JrBjuk Jrfj +w, when I € Qj,wk S B# CR" je8S keZ,. (9b)

Also, we take the auxiliary controllgtayx(z) := K;x whenz € Q;, j € S. Here,A; € R"*", B; € R™*™,

fi eR" K; e R™*", j e Swith S := {1,2, ..., s} afinite setof indices. The collectiof; | j € S} defines a
partition of X, meaning that);cs?; = XandQ, NQ; = 0 for ; # j. EachQ; is assumed to be a polyhedron (not
necessarily closed). L&y := {j € S | 0 € cl(Q;)} and letS; := {j € S| 0 & cl(Q;)}, so thatS = Sy U S;.
We assume that the origin is an equilibrium state for (9) with 0 and we require thaf; = 0 forall j € Sy. This
includes PWA systems whiainay be discontinuous over the boundarisigxt, consider the case whea-norms
are used to define the MPC cost function, i§x) = || Pjz||- Whenz € Q; andL(z, u) = [|Qz |« + || Ru| -
HereP; ¢ RP*", j € §,Q € R?™*™ andR € R™*" are assumed to be matrices that have full-column rank.

In [20] the authors developed ways to compute (off-line) the terminal weight matiees j € S} and the
feedbackg K | j € S} such that inequality (5) holds. Then, it can be shown that PWA systems in closed-loop
with MPC controllers calculated as in (4) and using-amorms based cost in Problem 3.1 satisfy the hypothesis
of Theorem 4.3, thereby establishing Lyapunov stability for the origin of the closed-loop system. A similar result

Ut p = 0 we have thatli || < oy (o(l[wr—1)) < Bllwoll, k) + a7 (o (lwge_y 1)) for any3 € KL, k € Z4.\ {0}.
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for quadratic cost based MPC and PWA prediction models can be found in [22]. However, due to the fact that in
hybrid MPC both the system and the MPC value function may be discontinuous in general, it follows, as pointed
out in [11], that the closed-loop system may have no robustness, despite the fact that nominal asymptotic stability
is guaranteed. Since most of the work that has been done in hybrid MPC addresses the nominal case, it is relevant
to investigate this robustness issue.

In this paper we aim at modifying hybrid MPC so as to ensupeiori a certain level of inherent robustness to
perturbations. The approach is based on the ISS result of Lemma 4.5. The key idea is to constrain the nominal pre-
dicted state and the corresponding sequence of controls such that the mode sequence corresponding to a perturbed
initial state remains the same as the nominal predicted mode sequence. This is done by not allowing the predicted
state to take values in the regions of the state space where the effect of the disturbance might trigger a different
mode sequence. In the sequel we illustrate this approach for a particular class of PWA systems (i.e. the case when
0 € int(§2;~) for somej* € S) that was also considered in [18] in order to ensure nominal stability for the MPC
closed-loop system. Note that for this class of PWA systems there exists a neighborhood of th&/ofigiby -
whereVupc is uniformly continuous due to the fact that the PWA system is line&;in This property together
with nominal stability of the MPC closed-loop system ensures local ISS, i.e. fog a@lV,.-, wherer* > 0is such
thatV,- C N C Q;-. Next, we develop an MPC set-up that yields an ISS closed-loop system for all initial condi-
tionszy € V, := {z € Xy(N) | Vmpc(z) < r}. LetS ~ P := {z € R" | z + P C S} denote the Pontryagin
difference of two arbitrary setS andP, letn := max;cs [| 4o and letl}, := {z € R" | ||z]lo < NZ;;lo n*}
forall i € Z>1. Also, lety > 0 be such thal|Qz|l.c > v|z||« for all z € R”, let F(z) = ||Pz|| for all
x € X, whereP € RP*" has full column rank, and l&t:= || P|| .. Consider now the following (tightened) set of
constraints: 3

Un(zk) = {uy € UN |z, €X;,i=1,....,N — 1, an; € X}, k € Zy, (10)

whereX; := Ujes{Q; ~ L‘L} CXforalli=1,...,N —1and(z,...,zn/) IS a state sequence generated
from initial statex,,;, := z and by applying the input sequenag to the nominal PWA model (9a). Note that

the idea of a tightened set of constraints is not new in robust MPC, e.g. it was used in [9] for Lipschitz continuous
nonlinear systems. Here we employ this set-up for PWA systems.

Theorem 5.1 Assume that 0 € int(2;+) for some j* € S and let cy, ..., cn denote positive constants. Take

r>pu>0 N>1and6 > 6, > 0 such that u < min(églgjl/ﬁlgﬁx"’:;:’;;ﬁf;);p2, E%T\,ejl), Fo = {r € R" |

F(z) <0} C Q- N XyNXpy_1 and g(x, haux(x)) € Fy, forall z € Fy (g denotes here the PWA system (9a)).
Set Xp = Fp,. Furthermore, suppose that Assumption 4.1 holds for the nominal PWA system (9a) and the state
feedback h,,x and that inequality (5) is satisfied for all x € Fy. Then it holds that:

(i) If Problem 3.1 with the set of constraints Uy (x,) is feasible at time k € Z., for state xzj, € X, then Problem
3.1 is feasible at time k + 1 for state Ty11 = A;jx), + BjulC + f; + wy, for all wy, € By;

(i) The perturbed PWA system (9b) in closed-loop with the MPC control (4) calculated using the nominal
PWA model (9a) to obtain the predicted state trajectory and by solving Problem 3.1 with the modified set of
constraints (10) at each sampling instant is ISS for all xy € V, and all wy, € B, k € Z.

Proof Let (x*l‘/k, .. ,xj‘v/k) denote the optimal predicted state sequence obtained atktifream initial state
ro/, = xp and by applying the input sequenag to the PWA model (9a). LetZ: /41, ...,Tn/k41) denote
the state sequence obtained from the perturbed initial 8taig | := Tx+1 = 41 + Wk = x’{/k + wy and by
applying the input sequendg, ., := (u}*/k, e ,u}“v_l/k, haux) to the nominal PWA model (9a).

(i) The state constraints imposed in (10) ensure: ((I%:L)kﬂ,xfﬂ/k) € Q. X Q.. ., Jig1 € Sforall
i=0,...,N —2and that||%; /11 — x;f+1/k||oo < npufori=0,...,N — 2. Pick the indiceg;;; € S such
thatzy, , , € Q. foralli =0,...,N —2. Then, due tar;,, , € Q;,,, ~ L, it follows by Lemma
2of [9] thatZ; 1 € Qy,, ~ L), C X;fori =0,...,N — 2. Property (P1) foi = N — 2 implies that
IN-1/k+1 = Ty p + Hf;‘ll Aj,wg. Then, it follows thatF (T _1/x+1) — Fl(2}y ;) < En™N—1u, which implies

that F(&n_1/x41) < 61 + &V ~'p < 0 due toxy, , € X = Fp, andu < 5277\,9_11. Hencezy 1 k11 € Fo C
Ay N Xy_1 and thenhau(Zy—1/k+1) € Uandiy,,41 € X = Fp,. Thus, the sequence of inpuls, ; is
feasible at time: + 1.
(i) For co-norms based hybrid MPC it is known [16] that all the elements of the MPC optimal sequence of
controlsu;, are PWA functions of the statg,. Moreover,f;- = 0 and R has full-column rank implies that there
exists a neighborhood of the origin where these controls are Piecewise Linear (PWL). Then, it can be shown that

there exist constants; > 0 such that|u}, [« < Bilzklls fori = 0,...,N — 1. Using Lemma 1 of [20]

2This ensures tha,. is a robustly positively invariant set [22], as shown in the proof of Lemma 4.5.
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it follows that there exist constants > 0 such thatF(zy, ;) < en||@klle @NdL(z] ), uf))) < ciflzglo for

all z;, € Xy)(N)andi = 0,...,N — 1, k € Z,. Hence,Vypc(z) < as(||z]|) for all z € X (N), where
az(]|z]|co) = Nmax;—o.. n~ ¢zl Then,L(z,u) > ||Qz|lec > 7|zl for all z € R™,u € R™ implies
a1(]|z]|so) < Vmpc(z) < as(||z]|eo) for all z € Xfp(N). Let 2,41 denote the solution of the perturbed system
(9b)-(4) obtained as indicated before part (i) of the proof. Then, by optimality, propertyi(R1),.+1 € F» and
from inequality (5) it follows that:

Vupc(Zr+1) — Vpc(zk) < J(Fpt1, Wog1) — J @k, u) = —L(2g 5, ug ) + F@nyg1) — F@EN-1/k41)+

N—2
+ L@EN-1/k+15 hax(EN—1/5+1)) + F(En—1/841) — F@ky/p) + Z (L(@ipa1, Qa1 (0 + 1)) = L7 g wih g j5)) <
i=0

N—2
< —L(@g g ugyp) + F@ENyg1) — F@EN-1/k+1) + LEN-1/k+1, hax(EN—1/k+1)) + EN T+ 11Qllee D 1P)llwklloo <
p=0

< —az(l|zklloo) + o(lwklloo),

whereas ([[]|o) = ar([]|oc) = 2] ando(wrfloo) = (0¥ ! + [Qlloc Xp=g" 1) |w ]l Hence, it
follows thatV\pc satisfies the hypothesis of Lemma 4.5, thereby establishing ISS for the closed-loop system.

Note the following aspects regarding Theorem 5.1: (i) In the above proof we showed that thetg lexish
such thata||z||cc < Vumpc(z) < bljz| for all z € X¢(NN). This implies that the hypothesis of Theorem 4.3 is
sufficient forexponential stability in¥'s (V') for co-norms MPC and PWA prediction models, even tholgc
is not continuous ot (V) in general; (i) ISS is no longer achieved via the above reasoning if the tightened
set of constraints (10) is employed for general PWA systems, i.e. Whgrint($2;) for all j € S, due to the
fact that the setX;, i > 1, do not contain the origin in this case. Future work deals with the implementation of
this idea for general PWA systems via a dual-mode MPC scheme. (iii) One has to make a trade off in ensuring
that the disturbance does not affect the predicted mode sequence on one hand, and in keeping the tightening of tf
constraints (10) as mild as possible on the other hand. This problem may be tackled by making the state constraint
time varying, i.e. such tha; — X for all i > 1 whenw, — 0 ask — oo (an estimate of the disturbance may
be required) or by incorporating a local feedback which ensured|that- B; K || is small for allj € S (and
hencey is small) and by using the MPC control in order to ensure constraint satisfaction for the local controller in
X¢(N). These approaches make the object of future research.

6 Conclusions

In this paper we have presented an overview of the stability and robust stability theory for nonlinear MPC while
focusing on the application and the extension of the classical results to non-smooth nonlinear systems. A stability
theorem has been developed, which unifies many previous results. Robust stability issues have also been address
and the input-to-state stability result of [10] was applied to non-smooth nonlinear MPC. The potential of these
results for hybrid MPC has been illustrated for a particular class of PWA systems.
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