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Abstract— This paper proposes robust simulation
of piecewise linear systems as a tool for the analysis
of nonlinear electronic circuits. Rather than comput-
ing the evolution of a single trajectory, robust simula-
tion computes the evolution from a set of initial con-
ditions in the state space, for all forcing input signals
within a given class. We describe here a tool to per-
form this analysis using mathematical programming.
Among various applications, the tool allows to esti-
mate the domain of attraction of equilibria, and to
determine if some design speci£cations — expressed
themselves in terms of reachability of subsets of the
state-space — are met. A test of the tool on Chua’s
circuit is presented.

I. INTRODUCTION

In the last decades several tools and packages have
been developed for simulating nonlinear electronic
circuits, based on research efforts in both modeling
and numerical integration techniques. For a particu-
lar initial electrical condition of the circuit and a given
input signal, simulation computes the expected behav-
ior of voltages and currents, which allows to check if
the circuit satis£es the design speci£cations.

On the other hand, in many situations is important
to know if the speci£cations are met for a whole set of
initial conditions and forcing input signals. For linear
circuits, classical frequency domain analysis provides
a full answer. For nonlinear circuits, such techniques
are not directly applicable.

An approximate answer can be given by gridding
the set of initial conditions and input signals, and by
running a large number of simulations, although (i) in
nonlinear circuits is not obvious how to sample such
sets, (ii) some critical evolution might be overlooked,
and (iii) the less the desired coarseness of results, the
more the simulation effort.

As an alternative tool, in this paper we propose ro-
bust simulation: given a set of initial conditions and
a class of input signals, we determine the time evolu-

tions of all the resulting voltages and currents on the
circuit. This type of analysis is also called reachabil-
ity analysis in systems theory, and formal veri£cation
in real-time and embedded systems engineering [1].
The main applications of robust simulation are the as-
sessment of the satisfaction of design speci£cations,
for instance guaranteeing that certain maximum cur-
rent levels are never exceeded, and the approximation
of the domain of attraction of certain DC equilibrium
conditions.

Mainly based on a piecewise linear (PWL) descrip-
tion of the circuit, several techniques have been pro-
posed for determining the DC solutions of nonlinear
circuits [2]. PWL systems are in fact a natural way
of modeling nonlinear circuits. More generally, PWL
systems can model a large number of physical pro-
cesses, from systems with static nonlinearities (e.g.,
nonlinear resistors), to nonlinear dynamics approxi-
mated with arbitrary accuracy via multiple lineariza-
tions at different operating points. PWL systems are
also known in the control and software engineering
literature as hybrid systems, where the term hybrid
stems from the interaction between continuous dy-
namics and logic (i.e., switches). PWL systems have
been also successfully applied for stability analysis of
cellular neural networks [3].

This paper proposes the reachability analysis tool
developed in [4], [5] and applied in [6] for veri£cation
of safety requirements in process control systems, to
perform robust simulation of PWL circuits. The tool
is based on a discrete-time description of the circuit
and relies on mathematical programming techniques.

II. PWL SYSTEMS

Switched systems [7], [8], [9] are de£ned by a par-
tition of the state space into polyhedral regions, each
one being associated to a different continuous dynam-



ics:

Σ :

{
x(t + 1) = Aix(t) + Biu(t) + fi

for x(t) ∈ Ci � {x : Hix ≤ Ki}
(1)

where x ∈ X ⊆ R
n, u ∈ R

m, {Ci}s−1
i=0 is a polyhedral

partition of the sets of states X , and fi is a constant
vector. For instance, a simple circuit composed of the
series of a voltage source u(t), a reactive component,
and a piecewise linear resistor can be rewritten in the
form (1) by writing one Kirchhoff’s voltage law for
each linear piece of the characteristics of the resistor.

A trajectory is the collection of vectors {x(0), . . . ,
x(t), . . . } satisfying the difference equation (1).
Without additional hypotheses on continuity of the
piecewise af£ne state-update mapping, system (1) is
not well posed in general, as the state-update function
is twice (or more times) de£ned over common bound-
aries of sets Ci (the boundaries will be also referred to
as guardlines). This is a technical issue which can be
avoided as in [9].

In [10] the authors show that PWL systems are
equivalent to the mixed logical dynamical (MLD) sys-
tems introduced in [4]. These are hybrid systems de-
£ned by the interaction of logic, £nite state machines,
and linear discrete-time systems. The MLD form is
based on the idea of transforming logic relations into
mixed-integer linear inequalities [11], [12].

III. PROBLEM DEFINITION

A. Robust Simulation

Consider a PWL system (1), a polyhedral set of ini-
tial conditions X (0), a bounded polyhedral set of forc-
ing input signals U , and a time horizon T . Robust sim-
ulation amounts to £nding the reach set X (t,X (0)),
namely the set of states reached at time t starting from
any x ∈ X (0) and by applying any input u(k) ∈ U ,
k ≤ t−1, or, in other words, all the possible evolu-
tions at time t, for all t ≤ T . The term robust sim-
ulation was also adopted in [13], where simulation
of entire set evolutions was proposed for stability and
performance analysis of nonlinear control systems.

B. Reachability Analysis

Given a collection of disjoint polyhedral target sets
Z1, Z2, . . . , ZL, reachability analysis amounts to de-
termine (i) if Zj is reachable from X (0) within t ≤ T
steps for some input sequence {u(0), . . . , u(t−1)} ⊆
U ; (ii) if yes, the subset of initial conditions XZj (0) of
X (0) from which Zj can be reached within T steps;
(iii) for any x1 ∈ XZj (0) and x2 ∈ Zj , the input se-

quence {u(0), . . . , u(t−1)} ⊆ U , t ≤ T , which
drives x1 to x2.

Subsets of X (0) leading to none of the target sets
Zj will be labeled as non-classi£able in T steps. Typ-
ically, non-classi£able subsets shrink and eventually
disappear for increasing T .

In a typical application Z1, . . . , ZL represent sets
of infeasible states leading to dangerous conditions
(for instance, an excessive current in a component,
or an excessive voltage at the terminals of a capac-
itor). In this case, the PWL model (1) is no longer
valid, namely there is an empty intersection between
the set Ci and the set of critical conditions. By letting
Xinf � R

n\⋃s−1
i=0 Ci, we give the following

De£nition 1: The set X (0) ⊆ R
n of initial con-

ditions is said to belong to the domain of infeasibil-
ity in T steps IT (0) if ∀x(0) ∈ X (0) there exists t,
0 ≤ t ≤ T such that x(t) ∈ Xinf .
The problem is equivalent to verify that for all initial
conditions and input the system behaves in a safe, that
is, to what is called formal veri£cation of safety in the
software engineering language.

C. Stability Characterization

Given a stable DC solution xe of the PWL sys-
tem (1), the stability characterization problem con-
sists of estimating the domain of attraction of xe, and
can be recast as a reachability analysis problem. For
simplicity of exposition, assume that the system is au-
tonomous (Bi = 0 for all i = 0, . . . , s−1)1, and that
xe belongs to the interior of one of the sets of the
partition, say C0. Denote by D∞(0)(xe) ⊆ R

n the
(unknown) domain of attraction of xe. Given an (ar-
bitrarily large) bounded set X (0) of initial conditions,
we want to characterize D∞(0)(xe)

⋂X (0). A neces-
sary condition for xe to be asymptotically stable is that
the matrix A0 associated with the region C0 is strictly
Hurwitz. Under this assumption, we can compute an
invariant set in C0. In particular, we compute the max-
imum output admissible set (MOAS) X∞(xe) ⊆ C0.
X∞(xe) is the largest invariant set contained in C0,
which by [14, Th.4.1] is a polyhedron with a £nite
number of facets, and is computed through a £nite
number of linear programs (LPs) [14]2. An estimate
of the domain of attraction D∞(0)(xe) is obtained by

1Robust stability questions in the presence of disturbances
u(t) ∈ U , where U is a given bounded set, can be similarly for-
mulated.

2If the effect of perturbations u(t) ∈ U ⊆ R
m, where U is a

given bounded set of disturbances and B0 �= 0, has to be taken
into account X∞ is the largest invariant set under disturbance ex-
citation, and can be computed as proposed in [15].



solving a reachability analysis problem over T steps
from X (0) to Z1 = X∞(xe). This clearly only pro-
vides an inner approximation of D∞(0)(xe), as initial
conditions leading to trajectories that enter the region
X∞(xe) in a number of steps larger than T are ruled
out. More precisely, we provide the following

De£nition 2: The set X (0) ⊆ R
n of initial condi-

tions is said to belong to the domain of attraction in T
steps DT (0)(xe) if ∀x(0) ∈ X (0) the corresponding
£nal state x(T ) ∈ X∞(xe).
Clearly, DT (0) ⊆ DT+1(0) ⊆ D∞(0), and DT (0) →
D∞(0) as T → ∞. Given a set of initial condi-
tions X (0), we aim at £nding subsets of X (0) which
are safely asymptotically stable (X (0)

⋂DT (0)), and,
eventually, subsets which lead to infeasibility in
T steps (X (0)

⋂ IT (0)). Subsets of X (0) leading to
none of the two previous cases are again labeled as
non-classi£able in T steps.

IV. COMPLEXITY

The undecidability of reachability analysis in the
context of formal veri£cation of hybrid automata was
proved in [16], [17]. However, the problem stated
above is decidable, as we assume a £nite time horizon
T and work in discrete time.The reason for focusing
on £nite-time reachability is that the time-horizon T
has a clear meaning, namely those states which are
reachable in more than T steps are in practice un-
reachable. Nevertheless, the problem is NP-hard. To
see this, for simplicity consider that in (1) fi = 0,
for all i = 0, . . . , s−1, and the system is autonomous
(Bi = 0 for all i = 0, . . . , s−1). Its evolution is

x(t) = Ai(t−1)Ai(t−2) · · ·Ai(0)x(0) (2)

where i(k) ∈ {0, . . . , s−1} is the index such that
Hi(k)x(k) ≤ Ki(k), k = 0, . . . , t−1, is satis-
£ed. The previous questions of reachability can be
answered once all the switching sequences I(t) �
{i(0), . . . , i(t−1)} leading to Z1, or Z2, . . . , or ZL

from X (0) are known. In fact, it is enough to check
that the reach set at each time t ≤ T ,

X (t,X (0)) � Ai(t−1)Ai(t−2) · · ·Ai(0)X (0) ,

satis£es X (t,X (0)) ∩ Zj �= ∅ for all admissible
switching sequences I(T ). However, the number of
all possible switching sequences I(T ) is combinato-
rial with respect to T and s, and any enumeration
method would be impractical. Below we recall the
veri£cation algorithm proposed in [5] to avoid such
an enumeration.

V. VERIFICATION ALGORITHM

In order to determine admissible switching se-
quences I(t), we need to exploit the special structure
of the PWL system (1). This allows an easy com-
putation of the reach set, as long as the evolution re-
mains within a single region Ci. Whenever the reach
set crosses a guardline and enters a new region Cj , a
new reach set computation based on the j-th linear
dynamics is computed, as shown in Fig. 1.

Assume X (0) ⊂ Ci is a convex polyhedral set.
Computing the evolution X (T,X (0)) requires: (i)
the reach set X (t,X (0), Ci), i.e. the set of evolu-
tions at time t in Ci from X (0); (ii) crossing detec-
tion of the guardlines Ph � X (t,X (0), Ci)

⋂ Ch �= ∅,
∀h = 0, . . . , i−1, i+1, . . . , s−1; (iii) elimination of
redundant constraints and approximation of the poly-
hedral representation of the new regions Ph (approx-
imation is desirable, as the number of facets of Ph

can grow linearly with time); (iv) detection of empti-
ness of X (t,Ph, Ci) — all the evolutions have crossed
the guardlines — and detection of X (t,Ph, Ci) ⊆ Zj ,
j = 1, . . . , L (these will be referred to as fathoming
conditions); (v) detection of X (t,Ph, Ci) ∩ Zj �= ∅,
j = 1, . . . , L (reachability detection).

Note that in case of stability characterization tasks,
the fathoming conditions become X (t,Ph, Ci) ⊆ X∞,
and detection of full infeasibility X (t,Ph, Ci) ⊆ Xinf .

A. Reach Set Computation

Let the set of initial conditions be de£ned by the
polyhedral representation X (0) � {x : S0x ≤ T0}.
The subset Si(t,X (0)) of X (0) whose evolution lies
in Ci for t steps is given by

Si(t,X (0)) =


x ∈ R

n:

S0x ≤ T0

HiA
k
i x ≤ Si−Hi

k−1∑
j=0

Aj
ifi

k = 0, . . . , t




(3)

As Si(t,X (0)) is a polyhedral set, the reach set
X (t,X (0), Ci) is a polyhedral set as well. In the pres-
ence of input signals, Si(t,X (0)) = {x ∈ R

n :
S0x ≤ T0, Hi(Ak

i x+
∑k−1

j=0 Aj
i [Biu(k−1−j)+fi]) ≤

Si, k = 0, . . . , t}, is a polyhedron in the augmented
space of tuples (x, u(0), . . . , u(t − 1)). A compact
explicit representation of the set X (t,X (0), Ci) (as in-
equalities over the £nal state x(t)) can be computed
by a geometric projection procedure, for which ef£-
cient tools exist, e.g. [18], although the implicit repre-
sentation (3) suf£ces for our purposes.



Fig. 1. Reach set evolution, guardline crossing, outer ap-
proximation of a new intersection

Fig. 2. Graph of evolution G

B. Guardline Crossing Detection

Switching detection amounts to £nding all pos-
sible new regions Ch entered by the reach set at
the next time step, i.e. nonempty sets Ph �
X (t,X (0), Ci)

⋂ Ch, h �= i. Rather than enumerat-
ing and checking nonemptiness for all h = 0, . . . , i−
1, i + 1, . . . , s − 1, in [5] the authors exploit the
equivalence between PWL systems and MLD models
and solve the switching detection problem via branch
and bound methods for mixed-integer linear program-
ming.

C. Approximation of Intersection

The computation of the reach set proceeds in each
region Ch from each new intersection Ph. A new
reach set computation is started from Ph, unless Ph

is contained in some larger subset of Ch which has
already been explored. As in principle the number
of facets of Ph grows linearly with time, the algo-
rithm in [5] approximates Ph as the union of hyper-

rectangles, as set inclusion between hyper-rectangles
reduces to a simple comparison of the coordinates of
the vertices, based on the iterative linear programming
method [19].

D. Fathoming

In Sect. V-A we showed how to compute the evo-
lution of the reach set X (t,Ph, Ci) inside a region
Ci. The computation is stopped once one of the fath-
oming conditions listed above happens, namely: (i)
the set X (t,Ph, Ci) is empty, which means that the
whole evolution has left region Ci; (ii) X (t,Ph, Ci) ⊆
Zj , j = 1, . . . , L, i.e., the target set Zj has been
reached by all possible evolutions from Ph; (iii) t >
T . The fathoming conditions (i)–(ii) can be easily
checked through linear programming.

E. Graph of Evolution

The result of the exploration algorithm detailed in
the previous sections can be conveniently stored in
a graph G (Fig. 2). The nodes of G represent sets
from which a reach set evolution is computed, and
an oriented arc of G connects two nodes if a transi-
tion exists between the two correspoding sets. Each
arc has an associated weight which represents the
time-steps needed for the transition. The graph has
initially no arc, and nonempty initial set X (0) and
Zj , j = 1, . . . , L as nodes. When a new intersection
X (t,X (0), Ci)

⋂ Ch is detected, it is approximated
by a collection of hyper-rectangles, as described in
Sect. V-C. Each hyper-rectangle becomes a new node
in G, and is connected by a weighted arc from X (0).
In addition, each hyper-rectangle is pushed on a stack
of sets to be explored.

When the veri£cation algorithm terminates, the ori-
ented paths on G from initial node X (0) to terminal
nodes Zj , j = 1, . . . , L determine a superset of feasi-
ble switching sequences I(t) = {i(0), . . . , i(t − 1)}.
In fact, because of the outer approximation of new in-
tersections Ph, not all switching sequences are fea-
sible. Feasibility can be easily tested via linear pro-
gramming.

VI. APPLICATION EXAMPLE

As a simple application example we apply the ro-
bust simulation procedure described above to Chua’s
circuit, certainly one among the most thoroughly stud-
ied PWL electronic systems. We consider the follow-



Fig. 3. Set evolution. Dashed lines represent guardlines,
darkness level is proportional to evolution time

ing adimensional equations describing the system


ẋ1 = α(x2 − x1 − f(x1))
ẋ2 = x1 − x2 + x3

ẋ3 = −βx2

f(x1) = bx1 + 1
2
(a − b)[|x1 + 1| − |x1 − 1|].

The system is clearly PWL and has 3 equilibrium
points, namely

x0 = [0, 0, 0]�, x1,2 = ±[−ξ, 0, ξ]�
(
ξ = b−a

b+1

)
.

For the parameter values α = 5, β = 100/7, a =
−8/7, b = −5/7, x0 is unstable while x1,2 are stable
(ξ = 3/2). We obtain the corresponding discrete-time
PWL form (1) by sampling the state-space equations
in the three regions with Ts = 0.25 s. The choice of
this sampling time ensures that the characteristics of
the original continuous-time system are preserved.

Fig. 3 shows the x1-x2 view of a set evolution for
which the initial set is a 2×2 square laying perpendic-
ular to the x3 axis and centered on x1, and T = 20.
The algorithm partitions the evolving set into a col-
lection of (polyhedral) equivalence classes formed by
continuous states giving rise to the same switching se-
quence. Indeed, we note that adjacent set trajectories
have different darkness levels, corresponding to dif-
ferent evolution times.
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