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Abstract

This paper deals with multiparametric nonlinear integer problems where the
optimization variables belong to a finite set and where the cost function and
the constraints depend in an arbitrary nonlinear fashion on the optimization
variables and in a linear fashion on the parameters. We examine the main the-
oretical properties of the optimizer and of the optimum as a function of the
parameters, and propose a solution algorithm. The methodology is employed
to investigate properties of quantized optimal control laws and optimal perfor-
mance, and to obtain their explicit representation as a function of the state
vector.

1 Introduction

In several control synthesis problems the number of possible control actions is fi-
nite, a situation usually referred to as quantization of the input signals. While in
most applications the quantization introduced by analog-to-digital converters, finite
precision arithmetic units, and digital to analog converters can be safely neglected
by treating the control variables as continuous, in some problems this assumption
may lead to an unacceptable deterioration of the closed-loop performance. Exam-
ples of control problems that must handle quantization range from more traditional
mechanical problems (e.g., problems involving stepping motors) and hydraulic prob-
lems (e.g., with on/off valves), to new problems in communications, such as the one
dealt with in [1], where quantized control is used to coordinate adaptation of multi-
media applications and hardware resource, in order to provide user-preferable QoS
requirements under resource contention and energy constraints.

It is therefore worthwhile to devise methods that take into account phenomena of
quantization, either for the analysis of the effect of quantization of the input signal,
or for the synthesis of quantized control laws. Both research topics are currently
receiving a growing attention [2–9], especially in the field of hybrid systems because
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of the interactions between a continuous dynamical system and a discrete quantized
controller.

Among other approaches, receding horizon optimal control ideas were proposed
for synthesizing quantized control laws for linear systems with quantized inputs
and quadratic optimality criteria. In [10], the authors ensure practical stability
properties1, by forcing the terminal state to belong to a special invariant set [6],
they deal with state constraints, and propose on-line mixed-integer optimization for
the implementation of the control law. In the absence of state-constraints, in [11]
the authors show that the control law can be equivalently rewritten as a piecewise
affine mapping.

Ideas for solving optimal control problems as an explicit function of the state
vector were proposed earlier for linear systems [12–15], nonlinear systems [16], hy-
brid systems [17, 18], and uncertain linear systems [19]. These approaches rely on
multiparametric solvers, namely solution algorithms that are able to express the op-
timizer vector (=the optimal input) as a function of a certain number of parameters
(=the current states). The first method for solving multiparametric linear programs
dates back to Gal and Nedoma [20]. The book [21] is an excellent reference for
properties of generic nonlinear multiparametric problems.

Optimal control problems where all decision variables are quantized and where
cost function and constraints depend on a real-valued state vector can be handled
by multiparametric integer programming solvers. The first approaches to parametric
integer programming were limited to scalar parameters [22], we refer the interested
reader to the excellent annotated bibliographic survey [23] for more details.

A multiparametric integer solver for linear objectives and linear constraints was
developed in [24, 25]. The algorithm finds the lexicographic minimum of the set of
integer points which lie inside a convex polyhedron that depend linearly on one or
more integral parameters, and is based on parameterized Gomory’s cuts followed by
a parameterized dual simplex method. An alternative method based on a contraction
algorithm for multiparametric integer linear programming problems was proposed
in [26]. Algorithms for solving a special class of multiparametric nonlinear integer
programming problems were investigated in [27].

In this paper we propose a method for solving a quite general class of multipara-
metric nonlinear integer problems where: (1) the cost function and the constraints
depend linearly on a vector of parameters, (2) they depend in an arbitrary non-
linear fashion on the optimization variables, and (3) these are restricted to belong
to a finite set. Because of feature (2), the use of relaxation to non-quantized opti-
mization variables and branching, which is the approach of most multiparametric
mixed-integer solvers, would be inappropriate here.

The paper is organized as follows. After examining in Section 2 the main the-
oretical properties of the optimizer and optimum as a function of the parameters,
we propose a solver in Section 3. Multiparametric integer programming is used in
Section 4 in the context of quantized optimal control. Numerical results are finally
reported in Section 5.

1As underlined in [2], the classical concept of stability must be replaced in a quantized context
by “practical” stability
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2 Multiparametric Nonlinear Integer Programming

We consider the following multiparametric optimization problem:

V ∗(θ) � min
x∈Q

f1(x) + f ′2(x)θ

s.t. g1(x) ≤ g′2(x)θ,
θ ∈ Θ

(1)

where: x ∈ R
n is the optimization vector, which is constrained to belong to the

finite set of values Q = {q1, . . . , qN}, qi ∈ R
n, ∀i = 1, . . . , N ; θ ∈ R

m is a vector of
parameters, lying in the polyhedron Θ = {θ ∈ R

m : Tθ ≤ S} ⊆ R
m; f1 : R

n �→ R,
f2 : R

n �→ R
m, g1 : R

n �→ R
p, g2 : R

n �→ R
m×p are generic nonlinear functions of the

optimization variables.
A typical instance of Q is given when each component x{j} of x is restricted to

a finite set Φj = {φj1, . . . , φjNj}, j = 1, . . . , n, so that Q is the Cartesian product
Φ1 × . . . × Φn, and its cardinality N =

∏n
j=1Nj .

A solution to the multiparametric program (1) is defined as follows:

Definition 1 The feasible parameter set Θ∗ is the set of all θ ∈ Θ for which there
is a vector x ∈ Q such that g1(x) ≤ g′2(x)θ.

Definition 2 The value function V ∗ : Θ∗ �→ R is the function that associates to a
parameter vector θ ∈ Θ∗ the corresponding optimum V ∗(θ) of problem (1).

Definition 3 The optimizer set function X∗ : Θ∗ �→ 2Q is the function that asso-
ciates to a parameter vector θ ∈ Θ∗ the corresponding set of optimizers X∗(θ) =
{x ∈ Q : f1(x) + f ′2(x)θ = V ∗(θ)} of problem (1).

Definition 4 The optimizer function x∗ : Θ∗ �→ Q is the function that associates
to a parameter vector θ ∈ Θ∗ the lexicographic2 minimum x∗(θ) of X∗(θ).

The following Lemma 1 and Theorem 1 establish the main properties of the
multiparametric solution to problem (1).

Lemma 1 Consider problem (1) without inequality constraints. Then V ∗ : Θ �→ R

is a concave piecewise affine function, and x∗ : Θ �→ R
n is a piecewise constant

function.

Proof. In the absence of inequality constraints, V ∗(θ) = mini=1,...,N{f1(qi)+θ′f2(qi)}
and by Schechter’s result [28] it follows that V ∗ is a piecewise affine concave function
over a polyhedral partition of Θ, where the hyperplanes defining the partition have
either the form (f2(qi)− f2(qj))′θ ≤ f1(qj)− f1(qi) or T {h}θ ≤ S{h} ({h} denotes the
hth row or component).

Example 2.1 For the parametric integer problem

V ∗(θ) � min
x∈{0,1}

(1− x)3 + xθ (2)

2The lexicographic order is referred to the order of the elements of Q. For example, if X∗(θ) =
{qi, qj} ⊆ Q and i < j, then x∗(θ) = qi.
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(n = m = 1, Q = {0, 1}, Θ = R) we have

V ∗(θ) = min{1, θ} =
{
θ if θ ≤ 1
1 if θ > 1,

x∗(θ) =
{

1 if θ ≤ 1
0 if θ > 1.

The value function V ∗ is piecewise affine and concave over Θ∗ = R, and is depicted
in Figure 1(a). �

Next Theorem 1 establishes the main properties of the multiparametric solution
of problem (1) with inequality constraints.

Theorem 1 Let Θ∗ ⊆ Θ ⊆ R
m be the feasible parameter set of (1), and let V ∗ : Θ �→

R, x∗ : Θ �→ Q the corresponding value function and optimizer function, respectively.
Then Θ∗ is the (possibly nonconvex3) union of at most N convex polyhedra, and
V ∗, x∗ are a piecewise affine and a piecewise constant function, respectively, of the
parameters over a partition of Θ∗ in at most 2N − 1 (possibly nonconvex) polyhedra.

Proof. For each i ∈ {1, . . . , N} the linear inequality constraints g′2(qi)θ ≥ g1(qi)
and Tθ ≤ S define a (possibly empty) polyhedron Pi in R

m. Then, Θ∗ =
⋃N

i=1 Pi.
Consider now the set C of all combinations of indices I = {i1, . . . , iK}, i1 ≥ 1, iK ≤
N , K ≤ N , ij < ij+1, ∀j ∈ {1, . . . ,K − 1}, without permutations and repetitions
(e.g.: for N = 3 the combinations {1, 2}, {2, 1}, {1, 1, 2}, {1, 2, 1}, {1, 2, 2}, {2, 1, 1},
{2, 1, 2}, {2, 2, 1} are only taken once as {1, 2}). The number of elements of C is∑N

k=1

(N
k

)
= 2N − 1. Then, for K = 1, . . . , N consider the (possibly nonconvex)

polyhedral sets

Ri1...iK = {θ ∈ R
m : θ ∈ Pj , ∀j ∈ {i1, . . . , iK} and θ �∈ Ph, ∀h �∈ {i1, . . . , iK}}

(for instance, forN = 2 we have R1 = P1\(P1∩P2), R2 = P2\(P1∩P2), R12 = P1∩P2;
another example is reported in Figure 2, where it can be noticed that R1, R4, R14

are nonconvex polyhedral sets, and that R1, R4 are also disconnected).
Define C̄ ⊆ C as the subset of indices I for which RI is nonempty (although RI

may not be full dimensional). As
⋃

I∈C̄ RI = Θ∗, the sets RI define a partition of
Θ∗ into a finite number of (possibly nonconvex) polyhedra.

On each set RI , we have

V ∗(θ) = min
i∈I
{f1(qi) + f ′2(qi)θ}, ∀θ ∈ RI , (3)

and by Lemma 1 we conclude that V ∗ is a concave piecewise affine function of θ over
RI . Hence, V ∗ is piecewise affine over Θ∗. For each given θ ∈ RI the corresponding
optimizer is defined as x∗(θ) = qj, where j = min{i ∈ I : f1(qi) + f ′2(qi)θ = V ∗(θ)},
and where minimization is necessary to obtain the lexicographic minimum in case
of multiple optima. �

3We use here the following definition of nonconvex polyhedral set: A set Ω ⊆ R
m is a nonconvex

polyhedral set if Ω is nonconvex and Ω =
⋃s

i=1 Ωi, where each set Ωi is a convex polyhedron and
Ωi ∩ Ωj is not full dimensional, ∀i, j = 1, . . . , s, i �= j.
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V ¤(µ)

µ1

(a) Example 2.1

V ¤(µ)

µ11

2

(b) Example 2.2

Figure 1: Value function for Examples 2.1 and 2.2

The proof of Theorem 1 is based on the enumeration of all possible subsets of
Q that are feasible for problem (1), and provides a worst-case upper-bound to the
complexity of the multiparametric solution. Fortunately, in general, the number
of regions RI that are useful for characterizing the solution is much smaller, for
two reasons. First, emptiness of RI for several combinations I; second, because of
optimality considerations: if for some combination I and j �∈ I we have f1(qi) +
f ′2(qi)θ ≤ f1(qj) + f ′2(qj)θ for all i ∈ I and for all θ ∈ RI∪{j}, then RI∪{j} is
not needed to characterize the solution (RI is sufficient). The above feasibility and
optimality considerations will be exploited in Section 3 to derive a solution algorithm
for problem (1).

Example 2.2 If we add the linear constraint

x ≤ 2θ (4)

to problem (2), the solution changes to

V ∗(θ) =
{

1 if θ < 1
2 or θ ≥ 1

θ if 1
2 ≤ θ < 1

(5a)

x∗(θ) =
{

0 if θ < 1
2 or θ ≥ 1

1 if 1
2 ≤ θ < 1.

(5b)

In this case the value function is piecewise affine over Θ∗ = {θ ∈ R : θ ≥ 0} and
has a discontinuity for θ = 1

2 , as depicted in Figure 1(b). �

Remark 2.1 If equality constraints of the form h1(x) + h′2(x)θ = 0 are considered
in problem (1), the set of feasible parameters Θ∗ (or subsets of it) may not be full
dimensional. In fact, as the optimizer function x∗(θ) ∈ Q can only assume a finite
number N of values, equality constraints h1(x∗(θ)) + h′2(x

∗(θ))θ = 0 would force θ
to lie on a finite number of hyperplanes. More precisely, if x∗(θ) = qi on some subset
Θ∗

i ⊆ Θ∗, the dimension of Θ∗
i is m− rank(h2(qi)). In particular, when h2 is an n-

by-m full-rank matrix function on Q, Θ∗ reduces to a lattice. Note that, instead, in
multiparametric mixed-integer problems the continuous components of the optimizer
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µ1

µ2
R1

R4

R2

R14

R13

R4

R134 ´ R34

Figure 2: Example of a partition of Θ∗ into (possibly nonconvex and disconnected)
regions RI , where RI is the set of all θ ∈ Θ such that g1(qi) ≤ g′2(qi)θ if and only if
i ∈ I

may vary in a nonconstant fashion with the parameter θ, therefore allowing the
satisfaction of equality constraints on full dimensional subsets of Θ. The above
considerations have important implications when formulating finite-time optimal
control problems with equality constraints on the terminal state, as discussed later
in Section 4. �

Remark 2.2 The piecewise linearity result for the value function of problem (1),
in spite of the general nonlinear form of f1, f2, g1, g2, should not be surprising, as
problem (1) can be reformulated as

V ∗(θ) � min
i∈{1,...,N}

f1i + f ′2iθ

s.t. g1i ≤ g′2iθ,
θ ∈ Θ

(6)

where f1i � f1(qi), f2i � f2(qi), g1i � g1(qi), g2i � f2(qi) become constant data of
the problem, for all i = 1, . . . , N . �

3 A Multiparametric Nonlinear Integer Programming
Solver

Multiparametric programming solvers have been proposed for several classes of prob-
lems: linear [20,29,30], quadratic [12,15], mixed-integer linear (see [17] and references
therein). A complete theory for general nonlinear multiparametric programming
was developed in [21]. Most of the solvers rely upon the fact that the optimizer is a
piecewise affine function of the parameters defined over convex polyhedra. On the
other hand, Theorem 1 provides a characterization of the solution over a partition
of nonconvex (in general) polyhedra. Although nonconvex polyhedra may be split
into several convex components, this approach would largely increase the number
of partitions. Moreover, mixed-integer solvers rely on the relaxation of integer con-
straints, an approach that cannot be followed in our context due to the arbitrary
nonlinear dependence on the optimization variables.

Parametric programming solvers especially tailored to problems where all the
variables are integer were proposed by several authors, as surveyed in [23], although
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most of them deal with scalar parameters. A multiparametric integer solver for linear
objectives and linear constraints was developed in [24], which finds the lexicographic
minimum of the set of integer points which lie inside a convex polyhedron that
depend linearly on one or more integral parameters. An alternative method based
on a contraction algorithm for multiparametric integer linear programming problems
was proposed in [26]. In [27] the authors present algorithms for solving a special
class of multiparametric nonlinear integer programs, where f1(x) = −

∑n
i=1 f

i
1(x

{i}),
g
{j}
1 (x) =

∑n
i=1 g

ij
1 (x{i}) + b, f i

1 and gij
1 are non-decreasing functions, ∀i = 1, . . . , n

and ∀j = 1, . . . , p, f2(x) ≡ 0, g2(x) ≡ G2 is a constant diagonal matrix (i.e., the jth
component of θ only perturbs the jth constraint, and therefore p = m), Q = {x ∈
Z

n : x− ≤ x ≤ x+}, and Θ = [0, 1]m.
In this paper we deal with a more general class of multiparametric nonlinear

integer problems of the form (1), for which the aforementioned methods are not
applicable. A direct application of the ideas used to prove Theorem 1 would lead
to fully enumerating all 2N − 1 possible combinations of indices I ∈ C, test for
nonemptiness of RI , and characterize the value function and the optimizer on RI

according to (3). We provide here a more efficient solution method.
Before proceeding further, for any set of indices I = {i1, . . . , iK} ⊆ {1, . . . , N},

where N is the cardinality of Q, let PI �
⋂

i∈I Pi, where Pi = {θ ∈ Θ : g1(qi) ≤
g′2(qi)θ}. Note that RI ⊆ PI . Moreover, denote by Vi : R

m ∈ R the linear function
that maps θ to Vi(θ) = f1(qi) + f ′2(qi)θ, i = 1, . . . , N .

The method we propose here is based on two simple considerations. Let I =
{i1 . . . iK} ⊆ {1, . . . , N} and j any index such that j ∈ {iK + 1, . . . , N}. The first
consideration relates to feasibility: if PI is empty, then PI∪{j} is certainly empty. The
second relates to optimality: we can avoid considering a polyhedral region PI∪{j}
if Vj(θ) ≥ Vi(θ) for all i ∈ I and for all θ ∈ PI∪{j}, or if PI∪{j} ⊂ PI∪{h} and
Vj(θ) ≥ Vh(θ) for all θ ∈ PI∪{h}.

Based on the above considerations, a recursive algorithm for determining the
feasible parameter set Θ∗, its subpartition, the value function V ∗, and the optimizer
function x∗, is summarized by Algorithm 3.1.

The algorithm builds an optimality tree T , as depicted in Figure 3, where each
node is characterized by a sequence I = I0 ∪ {j} and a polyhedron WI0,j = {θ ∈
Θ : g1(qi) ≤ g2(qi)′θ, ∀i ∈ I, Vj(θ) ≤ Vi(θ), ∀i ∈ I0}, where I0 is the sequence
characterizing the father node.

The root node corresponds to I = ∅, W∅ = Θ. The maximum depth of the tree is
N = |Q|. The maximum number of nodes is 2N . Clearly, T is always unbalanced by
construction: a feasible combination {i1, i2, i3} will be always child of {i1, i2} rather
than {i2, i3}; in particular {N} will always be a leaf node.

As the number of nodes in T depends not only on f1, f2, g1, g2, and on the
number N of elements of Q, but also on the order of the elements of Q, at Step 2. the
elements qj that are infeasible for all θ ∈ Θ (i.e., Pj is an empty convex polyhedron)
are eliminated, and the remaining ones pre-ordered by increasing values of f1(qj). An
alternative is to consider the value f1(qj)+minθ{f ′2(qj)θ subject to g1(qj) ≤ g′2(qj)θ}
as an ordering criterion, which can be easily computed via linear programming for
each feasible element qj ∈ Q.

At step 5.2.1. the set WI0,j represents the set of all vectors θ for which qj is
feasible, qi is feasible for all i ∈ I0, and that have a cost smaller than the cost at the
father node (and, by induction, than the cost at all parent nodes). At step 5.2.2.,
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1. T ← {root node};
2. Remove the elements of Q that are infeasible for all θ ∈ Θ and order the remaining elements by

increasing cost f1;

3. Execute examine(T ,root node,∅);
4. End.

5. Function examine(T ,node,I0);

5.1. If I0 �= ∅ then let i← largest element of I0, otherwise let i← 0;

5.2. For j ∈ {i + 1, . . . , N}:
5.2.1. Let WI0,j = {θ ∈ PI0 : g1(qj) ≤ g2(qj)

′θ, Vj(θ) ≤ Vi(θ), ∀i ∈ I0};
5.2.2. If WI0,j �= ∅ and the set {h : i + 1 ≤ h < j, WI0,j ⊆ WI0,h, and Vj(θ) ≥ Vh(θ),

∀θ ∈ WI0,j} = ∅:
5.2.2.1 Append child node nodej to node in T ;

5.2.2.2 Execute examine(T ,nodej ,I0 ∪ {j});
5.3. End.

Algorithm 3.1: Multiparametric integer programming solver.

the algorithm determines if a child node must be generated. A node is not generated
if WI0,j is empty or if it is included in WI0,h for some “brother” node labeled by
I0∪{h} already considered so far, and if everywhere on WI0,j the cost Vj(θ) is larger
than Vh(θ).

After the execution of Algorithm 3.1 and the construction of the tree T , the
multiparametric solution can be simplified by removing branches from T according
to a criterion similar to the one in Step 5.2.2.: for each node nodej characterized by
I0 ∪ {j}, we can check if there exists a “brother” node nodeh, j < h ≤ N , such that
WI0,j ⊆ WI0,h and Vj(θ) ≥ Vh(θ), ∀θ ∈ WI0,j. If this happens, nodej and its whole
sub-tree can be safely removed, without affecting the multiparametric solution.

Remark 3.1 Complexity and suboptimality of the multiparametric solution can be
traded off with minor modifications to Algorithm 3.1. In fact, given a suboptimality
tolerance ε ≥ 0, we can modify the optimality requirement in Step 5.2.1. by imposing
that Vj(θ) ≤ Vi(θ) − ε, so that a child node is added only if the cost improves at
least by ε, and, similarly, in Step 5.2.2. by asking that Vj(θ) ≥ Vh(θ)− ε. �

3.1 Evaluation of the Solution

The tree structure T constructed by Algorithm 3.1 can be immediately used for
storing the multiparametric solution in the form (7), and for evaluating the optimal
value and the optimizer for a given θ ∈ R

m, as detailed in the recursive Algorithm 3.2.
During the execution of Algorithm 3.2, children nodes must be visited in lex-

icographic order, namely if j < h, the node corresponding to the sequence I =
{i1, . . . , ik, j} must be visited before the node corresponding to the sequence I =
{i1, . . . , ik, h}. This ordering comes naturally by the way Algorithm 3.1 constructs
tree T . At Step 2.2., one can avoid evaluating the whole inclusion θ ∈ PI . Indeed,
only checking θ ∈ PiM , where iM � max(I), is enough, as the remaining conditions
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I=f2g I=f3g I=f4g

I=f1;2g I=f1;3g I=f1;4g I=f2;3g I=f2;4g

I=f1;3;4g

I=f1g

I=f3;4g

I=;

I=f1;2;3g I=f1;2;4g I=f2;3;4g

q1 feasible ) q2 infeasible

P3 µ P1

V3(µ) ¸ V1(µ)

8µ 2 P3

Figure 3: Optimality tree T , related to the partition depicted in Figure 2

θ ∈ Pi, by recursion, were already checked for all i ∈ I \ {iM}. Moreover, only the
inequalities of PiM which are not redundant on PI\{iM} need to be evaluated, which
allows one to save memory space and computation time. In view of the above consid-
erations, and since qiM is always the optimizer, only iM = max(I) needs to be stored
in the node, rather than the whole sequence I. Moreover, all the constraints defining
PiM belong to a finite constraint store, so that rather than memorizing copies of the
same constraints one can memorize pointers to entries of such a constraint store.

Remark 3.2 Multiparametric linear, quadratic, and mixed-integer linear solvers
partition the set of feasible parameters Θ∗ into the union of convex polyhedral sets
with nonoverlapping interiors [12,13,15,17,20]. A potential drawback of this type of
representation is that when the number of polyhedra is large the evaluation of the
solution may be computationally expensive, because to determine which polyhedron
contains a given parameter vector θ may require (in the worst case) evaluating the
defining inequalities of all polyhedra. A useful approach to overcome this problem
was taken in [31], where the authors suggested to organize a given polyhedral parti-
tion on a search tree, so that the amount of computation for evaluating the solution
is on average logarithmic in the number of polyhedra.

Here we have taken a different approach by expressing the solution as a multi-
level conditional expression (i.e., as a tree of nested conditionals), similarly to what
is done in [25] for multiparametric integer linear programming4. In fact, the multi-

4In [25] the authors denominate a multi-level conditional expression a quast.
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1. [V ∗(θ), x∗(θ)]←eval(T ,root node,θ);

2. Function [V ∗, x∗]←eval(T ,node,θ);

2.1. Let V ∗ ← +∞, x∗ ← ∅;
2.2. If θ ∈ PI :

2.2.1. Let I ← combination associated with node;

2.2.2. Let c← number of children of node; Let i← 0;

2.2.3. While i < c and V ∗ = +∞:

2.2.3.1 i← i + 1;

2.2.3.2 Let nodei ← i-th child of node;

2.2.3.3 [V ∗, x∗]←eval(T ,nodei,θ);

2.2.4. If V ∗ = +∞ and I �= ∅:
2.2.4.1 Let i∗ ← largest element of I ;

2.2.4.2 Let x∗ ← qi∗ , V ∗ ← f1(qi∗) + f ′
2(qi∗)θ;

2.3. Return [V ∗, x∗];

2.4. End.

Algorithm 3.2: Evaluation of the optimal value V ∗(θ) and of the lexicographic min-
imum x∗(θ)

parametric solution can be written as:

if θ ∈ Θ then
if H1θ ≤ K1 then

...
if Hiθ ≤ Ki then

x∗(θ) = qi
...

elseif Hkθ ≤ Kk then
...

else
problem is infeasible

end
else

solution is undefined (θ �∈ Θ)
end

(7)

where H(), K(), are (possibly empty) matrices/vectors of suitable dimensions. �

Example 3.1 The solution reported in (5) can be obtained by running Algorithm 3.1
for Θ = {θ : ‖θ‖∞ ≤ 10}, with Q = {1, 0} (the elements q1, q2 of Q are ordered by
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increasing cost f1(qi)), and arranged as follows:

if
[

1−1

]
θ ≤ [ 10

10 ] then
if −2θ ≤ −1 then

if −θ ≤ −1 then
x∗(θ) = q2, V ∗(θ) = (1− q2)3 + q2θ, where q2 = 0

else
x∗(θ) = q1, V ∗(θ) = (1− q1)3 + q1θ, where q1 = 1

end
elseif −2θ ≤ 0 then

x∗(θ) = q2, V ∗(θ) = (1− q2)3 + q2θ, where q2 = 0
else

problem is infeasible
end

else
solution is undefined (because ‖θ‖∞ > 10)

end

(8)

Note that (8) is not a minimal multi-level conditional expression. Determining ways
for ensuring the minimality of the multilevel conditional solution is a topic that
remains to be investigated. �

4 Explicit Quantized Optimal Control

Consider the following linear discrete time invariant system

x(t+ 1) = Ax(t) +Bu(t) (9)

where x ∈ R
nx, u ∈ U � {ū1, ū2, . . . , ūL}, ūi ∈ R

nu are the levels of quantization,
and (A,B) is a stabilizable pair. Starting from the initial state x(0), we wish to
control the final state x(T ) to a target set Ω while satisfying the constraints

Āx(t) + B̄u(t) ≤ C̄, t = 0, . . . , T − 1. (10)

Constraints (10) are generic linear constraints on input and state variables. A typical
instance are box constraints of the form xmin ≤ xk ≤ xmax (constraints of the form
umin ≤ uk ≤ umax can be immediately taken into account by simply excluding from
U those values ūi outside the bounds). We assume that the set Ω is a full-dimensional
polyhedral terminal set for the state vector, as in case of non full-dimensional sets Ω,
the set Θ of initial states x(0) for which (10) are feasible may be lower-dimensional,
for instance if Ω = {0}, corresponding to the constraint x(T ) = 0, Θ would be a
lattice. In the following subsections we show how the multiparametric integer solver
developed earlier can be used to derive explicit optimal control laws based on the
minimization of a quadratic or linear performance index.
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4.1 Quadratic Quantized Optimal Control

Consider the following optimal control problem:

min
U

{
J(U, θ) = x′TPxT +

T−1∑
k=0

(
x′kQxk + u′kRuk

)}
(11a)

s.t.




x0 = θ
xk+1 = Axk +Buk, k = 0, . . . , T − 1,
Āxk + B̄uk ≤ C̄, k = 0, . . . , T − 1,
xT ∈ Ω
uk ∈ U � {ū1, . . . , ūL}

(11b)

where R = R′ > 0, Q = Q′ ≥ 0, P ≥ 0 are matrices of suitable dimensions, θ repre-
sents a generic initial condition, U � [u′0 u

′
1 . . . u

′
T−1]

′ ∈ R
mT is the set of free control

moves, U ∈ Q, where Q � UT = U × . . . × U , and U∗(θ) � [u∗′0 u∗′1 . . . u∗′T−1](θ)
′ is

the minimizer (or, in case of multiple optima, the lexicographic minimum of the set
of optimizers).

It is immediate to cast problem (11) as an integer quadratic program (IQP).
Indeed, by substituting xk = Akx(t)+

∑k−1
j=0 A

jBuk−1−j, Eq. (11a) can be rewritten
as

min
U

{
1
2U

′HU + U ′F ′θ + 1
2θ

′Y θ
}

subj. to GU ≤W + Eθ
U ∈ Q

(12)

where the column vector U � [u′0, . . . , u
′
T−1]

′ ∈ R
mT is the optimization vector,

H = H ′ > 0, and H, F , Y , G, W , E are easily obtained from Q, R, and (11a).
The optimization problem (11) is an IQP which depends on the initial state

θ. The multiparametric nonlinear integer programming algorithm developed earlier
can be conveniently used to compute the piecewise constant solution U∗(x0) to the
optimal control problem (11). In fact, after taking apart the quadratic term 1

2θ
′Y θ

that does not affect the optimizer U∗(θ), problem (12) can be recast in the form (1)
by setting f1(U) = 1

2U
′HU , f2(U) = FU , g1(U) = GU −W , g2(U) = E′.

The following result immediately follows by Theorem 1.

Corollary 1 Consider the optimal control problem (11), parameterized by the initial
condition x0 = θ. Then

(i) The set of parameters Θ∗ ⊆ R
nx for which a solution to (11) exists is the union

of at most LT convex polyhedra.

(ii) The value function V ∗ : R
nx ∈ R is a piecewise quadratic function of x0 (more

exactly, the sum of a convex quadratic and a piecewise affine function) over a
partition of Θ∗ in at most 2LT − 1 (possibly nonconvex) polyhedra.

(iii) The optimizer function U∗ : R
nx ∈ UT is a piecewise constant function of x0

defined over the same partition of Θ∗.

Moreover, in the absence of inequality constraints Āxk + B̄uk ≤ C̄, k = 0, . . . , T −1,
and xT ∈ Ω, V ∗ is the sum of a convex quadratic and a piecewise affine concave
function of x0.
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4.2 Linear Quantized Optimal Control

Consider the following optimal control problem:

min
U

{
J(U, θ) = ‖PxT ‖∞ +

T−1∑
k=0

(‖Qxk‖∞ + ‖Ruk‖∞)

}
(13a)

s.t.(11b) (13b)

where R, Q, P are full-rank matrices with nR, nQ, and nP rows, respectively, and a
suitable number of columns, and θ, U , U , Q, and U∗(θ) are defined as above.

Similarly to [17], problem (13) can be cast as an integer linear program (ILP).
To this end, we introduce the following constraints

εut ≥ ±R{j}ut, ∀j = 1, . . . , nR, ∀t = 0, . . . , T − 1
εxt ≥ ±Q{j}xt, ∀j = 1, . . . , nQ, ∀t = 0, . . . , T − 1
εxT ≥ ±P {j}xT , ∀j = 1, . . . , nP ,

(14)

where {j} denotes the jth row. By substituting again xk = Akx(t)+
∑k−1

j=0 A
jBuk−1−j,

and by letting E = [εx0ε
u
0 . . . εxT−1ε

u
T−1ε

x
T ], problem (13) can be rewritten as

min
U,E

{
εxT +

∑T−1
t=1 εxt + εut

}
subj. to G

[
U
E
]
≤W +Eθ

E ≥ 0[
U
E
]
∈ Q ×QE ,

(15)

where QE ⊂ R
2T+1 is also a finite set, as, at optimality, for each optimal component

of E at least one of the constraints (14) is active, so that also the components
of E are indeed quantized. Therefore, the optimization problem (13) is an ILP
which depends on the initial state θ, and the multiparametric integer programming
algorithm developed earlier may be used to compute the explicit piecewise constant
solution

[
U∗
E∗

]
(x0). A corollary of Theorem 1 similar to Corollary 1 may be easily

stated.
On the other hand, the approaches of [26] and of [24], that are specialized for

multiparametric integer linear problems may be more suitable here. Alternatively,
since continuous relaxations of (15) are multiparametric linear programs, it may be
more convenient to treat E as continuous variables and solve (15) by using multi-
parametric mixed-integer linear solvers, as done in [17] for the generic case of hybrid
systems with continuous and discrete inputs.

4.3 Explicit Quantized Receding Horizon Control

A useful way for transforming the U∗(θ) into a closed-loop control law is to adopt
the so called receding horizon philosophy. The receding horizon controller is defined
as

u(t) = u∗0(x(t)), (16)

where u∗0(x(t)) is the first element of the minimizer U∗(x(t)) of the finite-time quan-
tized optimal control problem, initialized at the current state θ = x(t).

An immediate corollary of Corollary 1 is that the control law (16) is a piecewise
constant law defined over a polyhedral partition. Criteria for selecting the terminal
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set Ω in order to guarantee practical stability properties of the quantized control
law (16) were analyzed in [10].

Remark 4.1 As only the first part u∗0(x(t)) of the minimizer U∗(x(t)) is of interest,
after the execution of Algorithm 3.1 the multiparametric solution can be simplified
by removing subtrees of T where the first optimal move u∗0 is the same in all nodes
(in depth search of such subtrees would just serve to determine u∗1, . . . , u

∗
N−1). �

4.4 Logic-Based Constraints

A Boolean expression is inductively defined by the grammar

φ ::= X|¬φ1|φ1 ∨ φ2|φ1 ⊕ φ2|φ1 ∧ φ2|
φ1 ← φ2|φ1 → φ2|φ1 ↔ φ2|(φ1),

(17)

where X ∈ {0, 1} is a Boolean variable, and the logic operators ¬ (not), ∨ (or),
∧ (and), ← (implied by), → (implies), ↔ (iff) have the usual semantics. Every
Boolean expression can be rewritten in conjunctive normal form (CNF), which is
defined by the following grammar:

φ ::= ψ|φ ∧ ψ, (18)
ψ ::= ψ1 ∨ ψ2|¬X|X. (19)

By generalizing results of [32–34], in [35] the authors illustrated techniques for
equivalently expressing arbitrary Boolean functions by a set of linear inequalities
over 0-1 variables. In particular, by first converting a Boolean formula into CNF
(a task that can be performed automatically by using one of the several avail-
able techniques), by letting the CNF have the form

∧m�
j=1

(∨
i∈Pj

Xi
∨∨

i∈Nj
¬Xi

)
,

Nj , Pj ⊆ {1, . . . , �}, ∀j = 1, . . . ,m�, the corresponding set of integer linear inequali-
ties is 


1 ≤

∑
i∈P1

Xi +
∑

i∈N1
(1 −Xi),

...
1 ≤

∑
i∈Pm

Xi +
∑

i∈Nm
(1−Xi),

(20)

that define a polyhedron PCNF ⊂ R
�.

As a consequence, Boolean constraints involving 0-1 variables x = [X1 . . . Xn]
and 0-1 parameters θ = [Xn+1 . . . Xn+m], � = n+m, having the form

gB(x, θ) = 0 (21)

where gB is an arbitrary Boolean function, can be translated into linear inequalities

Agx ≤ cg +Bgθ. (22)

Clearly, (22) fits the general multiparametric integer programming framework (1)
with Q = {0, 1}n, and Θ = {0, 1}m ⊂ [0, 1]m.
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N 25 36 49 64 81 100 121

Nodes in T 14 14 20 23 30 32 38

Algorithm 3.1 1.42 s 2.06 s 3.15 s 5.11 s 7.93 s 10.22 s 13.79 s

Algorithm 3.2 2.13 ms 2.37 ms 2.45 ms 2.89 ms 3.40 ms 3.78 ms 4.23 ms

Enumeration 14.27 ms 20.05 ms 26.98 ms 35.17 ms 44.63 ms 59.94 ms 65.65 ms

Table 1: Computational experience for Problem (23): number N of elements of Q,
number of nodes in T generated by Algorithm 3.1 and required CPU time, CPU
time for evaluating the solution using Algorithm 3.2 and using enumeration (CPU
times are averaged over 1089 values of θ uniformly distributed over Θ)

5 Examples

Example 5.1 Consider the multiparametric integer problem

V ∗(θ) � min
x∈Q

x3
1 + |x2|

s.t.




1 0
0.3090|x2| 0.9511|x1|
−0.8090 0.5878

−0.8090| sin(x1/5)| −0.5878|x2|
0.3090 −0.9511
−1 0




(1− 1
2

√
x2

1 + x2
2)
[
x1

x2

]

−




6.7506
3.1557
5.0342
4.4299
6.4565

0



≤




2.6210 1.1543
−0.4353 2.9194
−4.8150 4.2181
3.2141 2.3821
−0.5530 −3.2373

0 0




(1− 1
2

√
x2

1 + x2
2)
[
θ1
θ2

]

−10 ≤ θ1, θ2 ≤ 10
(23)

where Q is obtained by gridding the square [0, 2] × [0, 2] with a grid-step of 2
n ,

n = 4, 5, . . . , 10, leading to N = (n + 1)2 elements in Q. In Table 1 we report the
computation time required by Algorithms 3.1 and 3.2, and compare the latter with
the time required for computing the optimal solution by enumeration. In Figure 4
we show the value function when the grid step is 0.2 (Q contains N = 121 elements).

�

Example 5.2 Consider the following optimal reliability design problem proposed
in [27, Example 4]:

max z = (1− (1− 0.6)x
{1}

)(1− (1− 0.9)x
{2}

)(1− (1− 0.55)x
{3}

)(1− (1− 0.75)x
{4}

)

s.t.
[

6.2 3.8 6.5 5.3
9.5 5.5 3.8 4.0

]
x ≤

[
50 + 15θ{1}

50 + 20θ{2}

]
x ∈ Q = {x ∈ Z

4 : 1 ≤ x ≤ x̄}
Θ = {θ ∈ R

2 : 0 ≤ θ ≤ 1}.
(24)

In (24) we have added the upper bound x̄, obtained via linear programming by
maximizing x{j} with respect to (x, θ) subject to the linear inequality constraints
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Figure 4: Value function for problem (1) when Q contains N = 121 elements

in (24) and to θ ∈ Θ, for j = 1, 2, 3, 4, and by rounding off the result to the nearest
smaller or equal integer, which provides x̄ = [5 9 7 9]′.

The set Q contains 2835 elements, of which 2484 are infeasible. Algorithm 3.1
is executed in 24.95 s, and provides the solution depicted in Figure 5. The solution
coincides with the one reported in [27, Figure 3]. The corresponding optimality tree
consists of 18 nodes, where all nodes are leaf nodes, except the root node. �

Example 5.3 Consider an extremely simplified version of the problem of landing a
spacecraft on a planet, where we consider only the vertical motion described by the
equations {

mdv
dt = −βv + u
dh
dt = v,

(25)

where h is the height from ground, v the vertical velocity, and the overall force u
acting on the spacecraft is given by

u =



−mg thruster off
0 thruster on (gravity compensation)
mg double thruster on.

(26)

By choosing the parameters β = 1, m = 1, g = 1 (units are omitted here, as the
parameters have no particular meaning in this example), and by discretizing the
dynamics with a sampling time Ts = 1, we obtain the discrete-time linear model

x(t+ 1) =
[

1 0.6321
0 0.3679

]
x(t) +

[
0.7358
1.2642

]
u(t), (27)

where u(t) ∈ U � {−1, 0, 1}, and x = [ h
v ]. We wish to design a controller that brings

the height of the spacecraft and its velocity to zero while satisfying the constraints

h ≥ 0
v ≥ −v̄, (28)
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Figure 5: Partition associated with the solution to Problem (24) (the level of dark-
ness is proportional to the value of V ∗(θ), which is piecewise constant over each
region). The exact definition of the inequalities defining the partition and the cor-
responding optimal values are reported in [27, p. 250]

where v̄ = 1.5. To this end, we consider the finite-time optimal control problem

min
u0,u1

x′2Px2 +
1∑

k=0

(
x′kQxk + u′kRuk

)
s.t. x1 ≥

[
0−v

]
u0, u1 ∈ {−1, 0, 1},

where R = 10, Q = [ 1 0
0 1 ], and P ≈ [ 3.1240 1.5677

1.5677 2.3241 ] solves the Riccati equation P =
(A+BKLQ)′P (A+BKLQ) +K ′

LQRKLQ +Q, KLQ = −(R+B′PB)−1B′PA.
The mp-IQP problem associated with the optimal control law (29) has the

form (12) with θ = x0 and

H =
[

0.7675 0.2924
0.2924 0.6323

]
, F =

[
0.2160 0.2132
0.1477 0.1468

]

G =




−0.7358 0
−1.2642 0

1 0
−1 0
0 1
0 −1



, W =




0
1.5
1
1
1
1



, E =




1 0.6321
0 0.3679
0 0
0 0
0 0
0 0



,

where we have neglected the constant term 1
2θ

′Y θ. By running Algorithm 3.1 on
Θ = {θ : ‖θ‖∞ ≤ 15}, the multiparametric solution is computed in 0.85 s on a
Pentium III 800 Mhz running Matlab 5.3, and the associated tree T consists of 24
nodes and has a depth of 5 levels, as depicted in Figure 6. The number of inequalities
associated with each node varies between one and four. An evaluation of the value
function V ∗ takes an average of 1.36 ms (this value is obtained by averaging over
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Figure 6: Optimality tree associated with the optimal control problem (29). For
each node is reported the number of linear inequalities that must be checked at that
node during the on-line evaluation of the solution for a given x0

a grid of 4225 samples of Θ), against about 6.01 ms needed to compute V ∗ by
enumeration. Even from this simple problem where the number of elements of Q is
only N = 9, it is clear the advantage of having an explicit representation of V ∗.

We compare now the solution U∗(θ) of the integer quadratic problem with the
quantization Û(θ) to the nearest (in Euclidean norm) feasible point in Q of the
solution U∗

QP(θ) of the continuous quadratic program minU ∈ R
mT {1

2U
′HU + θ′F ′U

subject to GU ≤ W + Eθ}. The partition associated with U∗
QP(θ), obtained in

0.22 s using the algorithm reported in [15], is depicted in Figure 7(b), while the
partition associated with U∗(θ) is depicted in Figure 7(a). In Figure 8, we report
the difference V̂ (θ) − V ∗(θ), where V̂ (θ) = 1

2 Û
′(θ)HÛ(θ) + θ′F ′Û(θ), and V ∗(θ) is

the optimal value function for the integer quadratic program; clearly V ∗(θ) ≤ V̂ (θ),
for all θ ∈ Θ∗.

By implementing the multiparametric solution in a receding horizon fashion, we
obtain the trajectories plotted in Figure 9, that show the closed-loop behavior of
the system for the initial condition x(0) = [ 10

0 ].
�

6 Conclusions

For multiparametric nonlinear integer problems where the cost function and the
constraints depend in an arbitrary nonlinear fashion on the optimization variables
and in a linear fashion on the parameters, and where the optimization variables
only belong to a finite set, we have characterized the main theoretical properties of
the solution and proposed a solution algorithm. The methodology was employed to
investigate properties of quantized optimal control laws and to obtain their explicit
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Figure 7: Comparison between the solutions of the continuous and of the integer
multiparametric quadratic program

representation as a function of the state vector. A potential benefit to the presented
methodology may Techniques based on the integration of multiparametric and dy-
namic programming are currently under investigation for solving quantized optimal
control problems

An interesting topic for further research is the problem of obtaining minimal
representations of the multiparametric solution, and the application of the multi-
parametric nonlinear integer programming algorithm to other classes of quantized
optimal control problems. .
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