
The MPC Simulink Library

User’s Guide
Version 1

A. Bemporad
M. Morari

 N. L. Ricker

MPC Simulink Library

How to Contact A. Bemporad:

Dept. of Information Engineering
University of Siena

Via Roma, 56

53100 Siena, Italy

http://www.dii.unisi.it/~bemporad/

bemporad@dii.unisi.it

The MPC Simulink Library
 COPYRIGHT 2000 by A. Bemporad, M. Morari, and N. L. Ricker
The software described in this document is covered by the MPC Tools license agreement. The software may be
used or copied only under the terms of the license agreement. This manual may be photocopied and reproduced,
but no part may be included in any other document without prior written consent from the authors.
U.S. GOVERNMENT: If Licensee is acquiring the Programs on behalf of any unit or agency of the U.S.
Government, the following shall apply: (a) For units of the Department of Defense: the Government shall have
only the rights specified in the license under which the commercial computer software or commercial software
documentation was obtained, as set forth in subparagraph (a) of the Rights in Commercial Computer Software
or Commercial Software Documentation Clause at DFARS 227.7202-3, therefore the rights set forth herein shall
apply; and (b) For any other unit or agency: NOTICE: Notwithstanding any other lease or license agreement
that may pertain to, or accompany the delivery of, the computer software and accompanying documentation, the
rights of the Government regarding its use, reproduction, and disclosure are as set forth in Clause 52.227-19
(c)(2) of the FAR.
MATLAB, Simulink, Handle Graphics, and Real-Time Workshop are registered trademarks and Stateflow and
Target Language Compiler are trademarks of The MathWorks, Inc.
Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: Jan 2000 Draft

✉MAIL

INTERNET

@
FAX

E-MAIL

vi

Preface

Disclaimer

State of Development
The MPC Simulink Library is in a developmental (beta) stage. It is not an official MathWorks product. It has been tested
extensively, but it is likely that some problems remain. Please review all calculations with a critical eye.

We will also be improving features in response to your comments.

In Case of Difficulty
This beta version of the MPC Simulink Library is not being supported by The MathWorks. If you encounter a problem,
please check the FAQ (see "Updates" below). If that doesn’t help, please send a detailed description by e-mail to A.
Bemporad at the following address:

bemporad@dii.unisi.it

He would also be happy to have your suggestions for improvements in the usability of the MPC Simulink Library, its
documentation, and the MPC Toolbox in general.

Updates
The FAQ and latest beta version of the MPC Simulink Library will be maintained for download at

http://www.dii.unisi.it/~bemporad/toolbox/mpclib.html

Acknowledgements
We appreciate the help of Federica Rusconi, Domenico Mignone, Carles Pedret Ferre, Adrian Toller, Konrad Stadler,
Tobias Raithel, Kazuro Tsuda, Jay Lee, Pascal Gahinet, and Greg Wolodkin.

1
Introduction

MPC Simulink Library Overview 1-2
Options . 1-2

Starting the MPC Simulink Library 1-3
System Requirements . 1-3
Installation . 1-3
Quick Start . 1-4
Leisurely Start . 1-4

MPC Fundamentals . 1-5

1 Introduction

1-2

MPC Simulink Library Overview
The MPC Simulink Library is designed to help you analyze and simulate Model Predictive
Control (MPC) modules within any Simulink description of the environment.

Options
The MPC Simulink Library supports four controller blocks, to be connected in feedback
with the system to regulate. Each block receives output measurements and returns the
control input action to the system. The four blocks are the following:

• Regulator. The MPC block regulates the output of the system to zero.

• Controller. An additional reference signal is received by the MPC controller. The output
of the system will track such a signal.

• Controller with Measured Disturbance Rejection. An additional information about
measured input disturbance signals entering the system is received by the MPC
controller and taken into account in the computation of the control action.

• Controller with Anticipation. Reference and measured disturbance signals are read from
file. This allows knowing future samples when computing the control action.

Starting the MPC Simulink Library

1-3

Starting the MPC Simulink Library

System Requirements
You’ll need the following MATLAB software:

• MPC Toolbox for MATLAB Version 5, including the MPC Simulink Library files
(which are currently an add-on to the standard MPC Tools release).

• MATLAB Version 5.3 or greater.

• Simulink Version 3.0 or greater.

• Control Toolbox.

Installation

1 Make a backup copy of your MPC Tools directory (which should be located in your
MATLAB directory, e.g., MATLAB/toolbox/mpc). This will allow you to restore your
original state if the GUI installation interferes in some unexpected way.

2 Download the latest version of the MPC Simulink Library from

http://control.ethz.ch/~bemporad/toolbox/mpclib.html

It’s a ZIP archive. Extract the contents using one of the many available utility programs
(e.g., WinZip). This should create a new mpclib directory within the mpc directory.

IMPORTANT: The ZIP archive is not a full version of MPC Tools. You must have
existing mpc/mpccmds and mpc/mpcdemos directories. The files from the archive only
update these directories.

3 Set your MATLAB Path so the new mpc/mpclib directory is included. Verify that the
original mpc/mpccmds and mpc/mpcdemos directories are also on the path.

4 Type “mpclib” in the MATLAB Command window. You should see the MPC
Simulink Library.

5 If it doesn’t work or you have other problems, see section In Case of Difficulty in the
preface to this document.

1 Introduction

1-4

Quick Start

1 Type “mpclibdemo” in the command window.

2 Choose one of the tutorial examples.

3 Examine the Simulink MDL file and the Matlab M file for the demo.

4 Try it with your own applications!

Leisurely Start
The following sections of this document provide tutorial examples and additional details.
If possible, work through the steps in MATLAB/Simulink as you read.

MPC Fundamentals

1-5

MPC Fundamentals
This section reviews MPC concepts and defines key terms. If you’re already familiar with
MPC you may prefer to read Chapter 2, “MPC Worksheet Basics” next.

Overview: single-input, single-output (SISO) MPC
Figure 1-1 shows a situation in which MPC is trying to hold a single variable, , at a target
value, r, by adjusting the “manipulated variable” (or “actuator”) u. See Table 1-1 for a brief
description of the signals appearing in Figure 1-1.

The box labeled “plant” is the real process or mechanism that produces . It responds to
changes in u as well as to two types of disturbance signals: measured, v, and unmeasured,
d. (Some applications have unmeasured disturbances only; the v signal is optional.)

The unmeasured disturbance represents the usual mysterious events that upset plant
operation, causing variations in . The only sign that such an event has occured is a change
in the measured output, y.

Figure 1-1 Block diagram of a single-input, single-output MPC application.

y

y

y

+
+PlantMPC

v

r

y
d

z

y
yu

v

Measured Disturbance

Measured Output (Controlled Variable)

Noise

Setpoint

Unmeasured
Disturbance

Actuator

Plant
Output

1 Introduction

1-6

The measured disturbance also affects . The MPC block includes models of the way in
which v and u affect (symbolically, and). It uses this information to
calculate u adjustments that keep at its setpoint in spite of the (known) disturbance. This
calculation considers the effect of any known constraints on the adjustments (e.g., an
actuator at its upper or lower bound). If the models are accurate and the plant responds
quickly to u, this “feedforward” compensation counteracts the effect of v perfectly.

Table 1-1 Summary of MPC signals (see also Figure 1-1).

Symbol Description

d Unmeasured disturbance. A disturbance unknown to MPC that
affects the plant output. MPC provides feedback compensation
for such disturbances.

r Setpoint (or reference signal). The target value for the
controlled variable.

u Actuator (or manipulated variable). The signal MPC adjusts in
order to achieve its control objectives.

v Measured disturbance (optional). MPC feedforward
compensation adjusts for such disturbances as they occur to
minimize their impact on the controlled variable.

Controlled variable (or plant output). The signal to be held at
the setpoint. This is the “true” value, uncorrupted by
measurement noise.

y Measurement of the controlled variable. Used to estimate the
true value, .

z Measurement noise. Represents electrical noise, sampling
errors, drifting calibration, and other effects that reduce the
accuracy of the measurement.

y

y

y
y v y→ u y→

y

MPC Fundamentals

1-7

NOTE: One may also specify bounds on . These constraint-handling properties are a
distinguishing feature of MPC and can be particularly valuable when one has multiple
control objectives to be achieved via multiple adjustments.

In reality, however, model imperfections, plant limitations, and unmeasured disturbances
cause the measurement, y, to deviate from its expected value. Thus, MPC uses the output
measurement and a “disturbance model” () to predict future changes in . It then
uses its model to calculate appropriate adjustments (a form of “feedback”
compensation). This calculation also considers the known constraints.

Various types of “noise” can corrupt the measurement. The signal z in Figure 1-1 represents
such effects. They may vary randomly about a zero mean or exhibit a non-zero, drifting
bias. MPC uses a model in combination with its model to remove the
estimated noise component of the measurement (“filtering”).

The above feedforward/feedback actions are MPC’s “regulator” mode. MPC also has a
“servo” mode, i.e., it adjusts u such that tracks a time-varying setpoint. The tracking
accuracy depends on the plant characteristics (including constraints), the accuracy of the

 model, and whether or not future setpoint variations can be anticipated, i.e., known
in advance.

Details: SISO case

Sampling period and sampling instants
MPC operates at discrete intervals of ∆t time units, the “sampling period.” Suppose that
MPC starts at time t = 0. The “sampling instants” are the times at which MPC adjusts the
manipulated variable, u. They are integer multiples of the sampling period: 0,∆t, 2∆t, 3∆t,
..., k∆t, where the integer index, k, represents the current sampling instant.

y

d y→ y
u y→

z y→ d y→

y

u y→

1 Introduction

1-8

Figure 1-2 The MPC problem at the the sampling instant t.

An MPC sampling instant
Figure 1-2 shows the state of a hypothetical SISO MPC system which has been operating
for some time; k is the current sampling instant. The current measured output, yk, and
previous measurements, yk-1, yk-2, ..., are known and are the filled circles in Figure 1-2 (a).
The current measured disturbance, dk, and its past values are also known (not shown).

(b)

(a)

input horizon

output horizon

t t+1

futurepast

t t+1 t+m t+p

Predicted outputs y(t+k|t)

t+m t+p

Manipulated (t+)u k
Inputs

Reference r(t+k)

umin

umax

MPC Fundamentals

1-9

Figure 1-2 (b) shows MPC’s previous “moves,” uk-41, ..., uk-1, as filled circles. As is usually
the case, a “zero-order hold” receives each move from MPC and sends that value to the
plant continuously until the next sampling instant – note the resulting step-wise variations
in Figure 1-2 (b).

MPC must now calculate the current move, uk. It does so in two phases:

1 Estimation. In order to make an intelligent move, MPC needs to know the current state
of the system. This includes the true value of the controlled variable, , and any
internal plant variables that influence the future trend, , ..., . To accomplish
this MPC uses all past and current measurements and the models , ,

, and . For details, see Chapter 4, “Disturbance Detection and
Estimation”.

2 Optimization. Values of setpoints, measured disturbances, and constraints are specified
over a finite “horizon” of future sampling instants, k+1, k+2, ..., k+P, where P (a finite
integer ≥ 1) is the “prediction horizon” – see Figure 1-2 (a). MPC then computes the M
moves uk, uk+1, ... uk+M-1, where M (≥ 1, ≤ P) is the “control horizon” – see Figure 1-2
(b). In our hypothetical example, P = 9 and M = 4.

Suppose that the optimal sequence of moves is the series of four open circles in Figure 1-2
(b). MPC’s model predicts that this will result in the output sequence shown as the nine
open circles in Figure 1-2 (a).

These moves are optimal in the sense that no constraints are violated and the outputs track
the setpoint “closely.” See section Optimization for a detailed definition of optimality.

MPC sends only the move uk to the plant. The plant operates with this input until MPC’s
next sampling instant, ∆t time units later. MPC then obtains a new set of measurements and
revises completely the plan it had formulated at the previous sampling instant, thus
compensating for model error and unknown disturbances.

Prediction and control horizons
One might wonder why MPC bothers to optimize over P sampling periods into the future
and calculate M moves when it discards all but the first move. Indeed, under certain
conditions MPC gives identical results for P = M = 1 as it does for P = M = ∞. More often,
however, the horizons have an important impact. Some examples are:

yk
yk 1+ yk P+

u y→ d y→
w y→ z y→

1 Introduction

1-10

• Constraints. MPC’s current move, uk, depends on future constraints, i.e., MPC plans
ahead to avoid future constraint violations.

• Delays in the plant. Suppose that the plant includes a pure time delay; MPC’s current
move has no effect until D sampling periods into the future. Then we need P ≥ D and M
≤ P − D so that MPC can include the effect of each contemplated move in its
optimization calculations.

• Other nonminimum phase plants. Consider a SISO plant with an inverse-response, e.g.,
its unit-step response is a decrease below the initial condition followed by an increase to
a final value above the initial condition.

Experience suggests the following rules of thumb:

1 Choose the MPC sampling period such that the plant’s open-loop settling time is
approximately 20-30 sampling periods (i.e., the sampling period is approximately one
fifth of the dominant time constant).

2 Choose P to be the number of sampling periods used in step 1.

3 Use a relatively small M, e.g., 3-5.

The resulting MPC performance will usually be insensitive to minor adjustments in these
M and P values, and further “tuning” should not be necessary. If performance is poor, it is
probably due to other factors, such as modeling errors.

Blocking
In Figure 1-2 (b), M = 4 and P= 9, and MPC is optimizing the first M moves of the
prediction horizon, after which the manipulated variable remains constant for P – M = 5
sampling instants.

Figure 1-3 shows an alternative “blocked” strategy – again with M = 4 – in which the first
planned move occurs at sampling instant k, the next at k+2, the next at k+4, and the final
at k+6. A “block” is one or more successive sampling periods during which the
manipulated variable is constant. The “block durations” are the number of sampling periods
in each block. In Figure 1-3 the block durations are 2, 2, 2, and 3. (Their sum must equal P.)

MPC Fundamentals

1-11

Figure 1-3 Example of blocking with M = [2, 2, 2, 3].

As for the default (unblocked) mode, only the current move, uk, actually goes to the plant,
and MPC repeats the optimization of M moves at its next sampling instant. Thus, the signal
going to the plant actually varies every ∆t time units.

So why use blocking? When P >> M (as is generally recommended), and all M moves are
at the beginning of the horizon, the moves tend to be larger (because all but the final move
last just one sampling period). Blocking often leads to smoother adjustments, all other
things being equal.

Optimization
For a SISO plant, MPC determines its moves by solving the following optimization
problem (formulated for the kth sampling instant):

(1-1)

such that

(1-2)

Sampling Instant

u
min

u
max

Past Moves
Planned Moves

k +1 +2 +3 +4 +5 +6 +7 +8 +9-1-2-3-4

Min

uk … uk P 1–+, ,
w

y
rk i+ ŷk i+–()

2
w

u ∆uk i 1–+()
2

+[]
i 1=

P

∑

ŷk i+ f uk … uk i 1–+, ,()=

1 Introduction

1-12

(1-3)

(1-4)

(1-5)

where is the adjustment at sampling instant j, and and are
non-negative “weights.”

Equation (1-2) represents the model MPC uses to predict the controlled variable at instant
k+i. In standard MPC it is a linear function of the adjustments .

Note: The prediction is also a function of known and estimated disturbances, but
these effects are constant, i.e., independent of the adjustments. They are implicit in
Equation (1-2).

Equations (1-3) – (1-5) are optional. They specify the bounds on the manipulated variable,
the controlled variable, and the change in the manipulated variable.

When P > M (the usual case), there are also P – M equality constraints of the form
, i.e., to hold the manipulated variables constant for a specified sequence

of sampling instants. This depends on the specified block durations. For example, the
situation of Figure 1-3 would have , , etc.

Choosing the optimization weights
The main difficulty in an MPC design (other than modeling) is the selection of the weights

 and in Equation (1-1). Some trial-and-error tuning is often needed. The following
guidelines may be helpful:

• A positive value of penalizes predicted deviations of the controlled variable from its
setpoint. The larger this weight, the more closely MPC tries to track the setpoint. If

, MPC ignores the setpoint.

• A positive value of penalizes planned changes in the manipulated variable. A
moderate value makes the controller “cautious,” which usually increases its “robustness”
(making it less sensitive to modeling errors – a positive effect). A large value makes it
“sluggish,” however. In the extreme as goes to infinity, MPC ignores deviations of
the controlled variable from its setpoint.

umin uk i+ umax for i = 0:P-1≤ ≤

ymin ŷk i+ ymax for i = 1:P≤ ≤

∆uk i+ ∆umax for i = 0:P-1≤

∆uj uj uj 1––= w
y

w
u

uk … uk i 1–+, ,

ŷk i+

uk j+ uk j 1–+=

uk 1+ uk= uk 3+ uk 2+=

w
y

w
u

w
y

w
y

0=

w
u

w
u

MPC Fundamentals

1-13

• In a SISO problem, only the ratio of to matters. A good strategy is to fix one of
them at unity and vary the other, testing the performance in simulations to obtain the
desired tradeoff between fast setpoint tracking (large ratio) and cautious adjustments of
the manipulated variable (small ratio). (By default, the MPC GUI sets

.)

• MPC does whatever it must in order to satisfy any “hard” inequality constraints,
equations (1-3)–(1-5). The values of and become less important when constraints
are encountered.

w
y

w
u

w
y

1 w
u, 0.1= =

w
y

w
u

1 Introduction

1-14

Model Predictive Control Simulink Library

Alberto Bemporad, Manfred Morari, Larry Ricker

December 13, 2001

This document describes a new Simulink library for the Model Predictive Control Toolbox. Please
report any bug or comment to bemporad@dii.unisi.it.

1 Description

The new MPC Simulink library contains four blocks, see Fig. 1. The MPC blocks are based on the
model shown in Fig. 2. This consist of the LTI system1

{
x(k + 1) = Ax(k) + Buu(k) + Bvv(k) + Bdd(k)

y(k) = Cx(k) + Dvv(k) + Ddd(k)
(1)

where x(k) ∈ R
n represents the state of the system, u(k)Rnu are manipulated variables (MV) or

command inputs, v(k)Rnv is a vector of measured disturbances (MD), d(k) ∈ R
nd are unmeasured

disturbances (UD), and y(k) ∈ R
ny is the output vector, which is composed of measured outputs

(MY) ym(k) and unmeasured outputs (UY) yu(k). Note that the matrix Du is assumed to be zero,
i.e. no direct feedthrough of MVs on the output vector. 2

The unmeasured disturbance d(k) is modeled as the output of the LTI system
{

xd(k + 1) = Fxd(k) + Gn(k)
d(k) = Hxd(k) + Kn(k)

(3)

System (3) is driven by the random Gaussian noise n(k), which has zero mean and unit covariance
matrix. For instance, a step-like unmeasured disturbance is modeled as the output of an integrator.

1If continuous time models are supplied, internally these are sampled with the controller’s sampling time
2This assumption is justified by the following argument. Let Ts be the sampling time. The time τk required by

the controller to compute u(k) after ym(k) = ym(kTs) has been acquired, is always finite. Then, u(t) ≡ u(k) for
kTs + τk ≤ t < (k + 1)Ts + τk+1. By assuming that zero-order holders are present in the control system, a direct
feedthrough would give a contribution on ym(k) of the form Duu(kTs) = Duu(k − 1). Therefore, the model can be
described as �

x(k + 1) = Ax(k) + Buu(k) + Bvv(k) + Bdd(k)
y(k) = Cx(k) + Duu(k − 1) + Dvv(k) + Ddd(k)

(2)

By extending the state x(k) to include u(k − 1), one returns to the form (1).

1

Figure 1: MPC Simulink Library.

The MPC controller selects the input u(k) by solving the optimization problem


min
∆u(k|k),...,∆u(m−1+k|k)

p−1∑
i=0


 ny∑

j=1

|wy
i+1,j [yj(k + i + 1|k) − rj(k + i + 1)] |2+

nu∑
j=1

|w∆u
i,j ∆uj(k + i|k)|2 +

nu∑
j=1

|wu
i,j [uj(k + i|k) − utarget,j(k)] |2


 + ρεε

2

subj. to




umin
i −εV u,min

i ≤ u(k + i|k) ≤ umax
i +εV u,max

i

∆umin
i −εV ∆u,min

i ≤ ∆u(k + i|k) ≤ ∆umax
i +εV ∆u,max

i , i = 0, . . . , p − 1
ymin

i −εV y,min
i ≤ y(k + i + 1|k) ≤ ymax

i +εV y,max
i

∆u(k + j|k) = 0, j = m, . . . , p
ε ≥ 0

(4)
with respect to the sequence of input increments {∆u(k|k), . . . ,∆u(m − 1 + k|k)} and the slack
variable ε. In (4), ∗(k + i|k) denotes the value predicted for time k + i based on the information
available at time k; r(k) is the current sample of the output reference. While only the measured
outputs are connected to the MPC Simulink block, r(k) is a reference for all the outputs (measured
and unmeasured). When the reference r is not known in advance, the current reference r(k) is used
over the whole prediction horizon, namely r(k + i + 1) ≡ r(k) in (4). The exploitation of future
references in MPC is referred to as anticipative action, and is only possible when the reference is
read from file during simulation. A similar anticipative action can be performed with respect to
measured disturbances v(k), namely v(k + i) = v(k) if the measured disturbance is not known in

2

Model
Outputsy(k)

(SS, TF, ZPK)

Manipulated Variables u(k)

Unmeasured
Disturbances

d(k)

Measured Disturbances v(k)

x(k)

Disturbance

Model

(SS, TF, ZPK)

n(k)

x (k)d

Figure 2: Model used by the MPC block for prediction/state estimation.

advance (e.g. is coming from another Simulink block) or v(k + i) is obtained from a file. In the
prediction, d(k + i) is instead obtained by setting n(k + i) ≡ 0 in (3).

In (4), the constraints on u, ∆u, and y are relaxed by introducing the slack variable ε ≥ 0. The
vectors V u,min, V u,max V ∆u,min, V ∆u,max V y,min, and V y,max represent violation multipliers, and
vary continuously between 0 and 1. When V u,max

i = 0, the upper bound ui ≤ umax becomes a hard
constraint (otherwise is called soft constraint, as it may be violated). By default, input and input-
variation constraints are treated as hard constraints (V u,min = V u,max = V ∆u,min = V ∆u,max = 0),
while output constraints are considered as soft constraints with V y,min = V y,max = 1. Hard output
constraints (V y,min = 0 or V y,max = 0) may lead the MPC controller to get stuck because of
infeasibility of the optimization problem. Infeasibility might in fact occur when model and plant
mismatch significantly, or just because of numerical round off. To prevent infeasibility of the
MPC problem, a warning message is produced if V y,min and V y,max are smaller than 10−6, and
automatically adjusted at that value. By default, ρε = 105 maxp−1

i=0 {wu
i , w∆u

i , wy
i+1}.

utarget(k) is a set-point for the input vector; 3 wy
i , wu

i , w∆u
i are nonnegative row vectors of

weight coefficients; and umin
i , umax

i , ∆umin
i , ∆umax

i , ymin
i , ymax

i are vectors of lower/upper bounds.
Only ∆u(k|k) is actually used to compute u(k). The remaining samples ∆u(k + i|k) are dis-

carded, and a new optimization problem based on ym(k + 1) is solved at the next sampling step
k + 1.

As the true states x(k), xd(k) are not available to the controller, predictions are obtained from
the state estimates x̂(k), x̂d(k). These are computed from the measured output ym(k) by the linear
state observer[

x̂(k|k)
x̂d(k|k)

]
=

[
x̂(k|k − 1)
x̂d(k|k − 1)

]
+ L [ym(k) − Cmx̂(k|k − 1) − Dvmv(k) − DdmHx̂d(k|k − 1)]

where ∗m denotes the rows of C,D relative to measured outputs, and

x̂(k + 1|k) = Ax̂(k|k) + Buu(k) + Bvv(k) + BdHx̂d(k|k)
x̂d(k + 1|k) = Fxd(k|k)

3One typically uses utarget if the number of inputs is greater than the number of outputs, as a lower-priority
set-point.

3

To prevent numerical difficulties in the absence of unmeasured disturbances, the gain L is designed
as the Kalman gain for the extended model

[
x(k + 1)
xd(k + 1)

]
=

[
A BdH
0 F

] [
x(k)
xd(k)

]
+

[
Bu

0

]
u(k) +

[
Bv

0

]
v(k) +

[
BdK

G

]
n(k) + Iξ(k) (5)

ym(k) =
[

Cm DdmH
] [

x(k)
xd(k)

]
+ Dvmv(k) + DdmKn(k) + ζ(k)

where ξ, ζ are additional unmeasured disturbances having covariance matrix S1 and S2 respectively,
the covariance matrix of n is assumed to be I, and ξ, ζ, n are considered independent. Note that
d(k) models both state disturbances and output disturbances (Bd = 0, Dd �= 0).

Table 1: MPC blocks.
Block Description Inputs
MPC Regulator Regulate the output to the origin ym(t)
MPC Controller Track an arbitrary output set-point r(t) ym(t), r(t)
MPC Controller+MD Track an arbitrary output set-point r(t) ym(t), r(t), v(t)

and reject a measured input disturbance v(t)
MPC Controller+Anticipation Same as MPC Controller+MV, but r(t), v(t) ym(t)

are read from a .MAT file

The algorithm implemented in the MPC block uses different procedures depending on the pres-
ence of constraints. If all the bounds are infinite, then the problem (4) is solved analytically, oth-
erwise a Quadratic Programming (QP) solver is used. The matrices associated with the quadratic
optimization problem are reported in Appendix A.

Since soft output constraints are used, the QP problem should never be infeasible. For robust-
ness, in case this should happen for some reason, the previous optimal sequence is applied, i.e.
u(k + 1) = u(k) + ∆u(k + 1|k), and a warning message is given.

2 Parameters and Dialog Box

The parameters of the MPC block are entered through the mask reported in Fig. 3 by double-
clicking the MPC block, and are described in Table 2.

Table 2: MPC block parameters.
Parameter Description Type Default
model LTI model used for predictions LTI object mandatory
p prediction horizon Real 10
moves (blocking) moves Real or Array p
limits upper and lower bounds on u,∆u, y Cell Array of Arrays Inf
weights weights on u − utarget, ∆u, y − r Cell Array of Arrays {0,.1,1}
filename MAT file containing r, v String "
MPCadd additional MPC parameters Structure []

4

Figure 3: Mask of MPC block.

• model is an LTI object which is used for predictions and Kalman filtering, where model.b
collects Bu, Bv, Bd (in general the columns can be scrambled, see mvindex, mdindex below),
and similarly model.d collects Du = 0, Dv, Dd.

• p≥ 1 is the prediction horizon. The case p=Inf is not implemented yet.

• moves is either a number m ≤p of free moves (i.e. ∆u(k+i|k) = 0 for i = m, . . . ,p), or a vector
of blocking moves (see e.g. CMPC.M in the MPC Toolbox Reference Guide or Appendix A).

• limits is a cell array of the form {Umin,Umax,DUmin,DUmax,Ymin,Ymax}, where Umin[i,:]
= (umin

i)′ (and similarly for the other matrices, cfr. ulim in CMPC.M).

5

• weights is a cell array of the form {Uweight,DUweight,Yweight}, where Uweight[i,:]
= wu

i (and similarly for the other matrices) 4.

• filename is only present in the MPC block with anticipation, and specifies the MAT file where
the reference r(t) and the measured disturbance v(t) signals are stored. The format is the
same as in the From File Simulink block. The first variable saved in the MAT file is loaded
from disk and is used to build the reference and measured disturbance signals. The variable is
a matrix whose first row is a vector of times t, the following ny rows are the reference r(t), and
the following nv rows are the measured disturbance v(t). Missing rows are treated as zeros.
The signals are resampled with the MPC controller sampling time and stored in the MPC
block memory. The first (last) sample is used for simulation time before (after) the specified
range of t. Note that the same MAT file should be used for generating the actual signals r, v
in the simulation, so that the MPC block has a consistent information (see Figure 6).

• MPCadd is a structure containing the fields indicated in Table 3.

Table 3: Structure of additional MPC parameters.
Field Description Type Default
utarget set-point for manipulated variables Array 0
mvindex indices of manip. vars (within input vector) Array [1:nu]
mdindex indices of meas. disturb. (within input vector) Array []
myindex indices of meas. outputs (within output vector) Array [1:ny]
noisemodel LTI model for unmeasured disturbances Array []
covmat estimator covariance matrices Cell Array of Arrays {}
rhoeps weight on slack variable ρε Real 105 maxp−1

i=0 {wu
i , w∆u

i , wy
i+1}

violation violation multipliers {V u,min, . . . , V y,max} Cell {0, 0, 0, 0, 1, 1}
x0 initial state estimate x̂(0) Array zeros
u1 initial past input u(−1) Array zeros
ts controller sampling time Real model.Ts

– MPCadd.utarget is a row vector of set-points for the input vector, as described above.

– MPCadd.mvindex and MPCadd.mdindex are row vectors indicating the position of MV and
MD variables (u, v) within the overall input vector, for instance Bu =model.b(:,MPCadd.
mvindex).

– MPCadd.myindex is a row vector indicating the positions of MY variables ym within the
output vector y.

– MPCadd.noisemodel is an LTI object which is used for estimating the unmeasured dis-
turbance d(k) (see (3) and Fig. 2). If empty, step-like unmeasured disturbances are
assumed by default, i.e. one integrator for each unmeasured disturbance.

– MPCadd.covmat is a cell array defining the covariance matrices S1, S2 for the additional
disturbances ξ(t), ζ(t) defined in (5). By default, if MPCadd.covmat={} then step distur-

4If Umin, Uweight have a number of rows smaller than p, the last row is automatically repeated (the same for the
other limit and weight matrices)

6

bances are added on each output (i.e. integrators driven by white noise of unit covari-
ance matrix), S1 = I, S2 = I (if there are no unmeasured disturbances), or S1 = .001I,
S2 = .1I (if there are unmeasured disturbances). If MPCadd.covmat={S1,S2}, then S1
(S2) can be either [] (default value), a scalar (S1 =S1I), or a matrix.

– MPCadd.rhoeps is the weight ρε on the slack variable ε representing the violation of
the constraints. The larger ρε with respect to input and output weights, the more the
constraint violation is penalized. Although the same variable ε is used for softening all
output constraints, different penalties can be induced by scaling the output components
differently. For instance, if the constraint y1 > 0 is much more important than the
constraint −1 ≤ y2 ≤ 1, the first row of the C and D matrices of the model can be
multiplied by a large scalar, the constraints ymin

1 , ymax
1 by the same scalar, and the

output measurement and reference signal amplified by the same amount before being
connected to the MPC controller, for consistency. Note that the output weights must
be rescaled as well, accordingly.

– MPCadd.violation is a cell array of violation multipliers {V u,min V u,max, V ∆u,min,
V ∆u,max, V y,min, V y,max}. As for the cell array limits and weights, the violation
multipliers can be time-varying. By default, MPCadd.violation={0, 0, 0, 0, 1, 1}, corre-
sponding to hard input and input-variation constraints on all inputs, and soft output
constraints with equal degree of violation concern on all outputs.

– MPCadd.x0 is the initial value for the state estimate x̂(0), and u1 the initial value of the
input u at time −1 (as u(0) = ∆u(0) + u(−1), nonzero values for u1 might be needed if
there are tight limits on ∆u). The default is x̂(0) = 0.

– MPCadd.ts is the sampling time of the controller: the MPC algorithm is executed every
MPCadd.ts units of time. If MPCadd.ts is not given, then MPCadd.ts is automatically
inherited from the sampling time model.Ts. If MPCadd.ts �=model.Ts, then the model
is resampled with sampling time MPCadd.ts.

3 Example 1

The script EX1.M prepares the parameters to simulate the Simulink model MPC EX1.MDL, depicted
in Fig. 4.

% 3x1 system
%
% MV=[1], MD=[2], UD=[3]
% Y=[1]

% Prepare parameters for mpc_ex1

% True plant & true initial state
sys=ss(tf({1,1,1},{[1 .5 1],[1 1],[.7 .5 1]}));
A=sys.a;
B=sys.b;

7

Figure 4: Simulink model MPC EX1.MDL.

C=sys.c;
D=sys.d;

x0=[0 0 0 0 0]’;

Ts=.2; %Sample time
Tstop=30; %Simulation time

% prediction model
model=c2d(sys,Ts);

p=10;

8

moves=3;

umin=0;
umax=1;
dumin=-Inf;
dumax=Inf;
ymin=-Inf;
ymax=Inf;

limits={umin,umax,dumin,dumax,ymin,ymax};
weights={[0],[.1],[1]};

clear MPCadd
MPCadd.mvindex=[1];
MPCadd.mdindex=[2];

open_system(’mpc_ex1.mdl’)
sim(’mpc_ex1’,Tstop)

The LTI system model used for the MPC block is obtained by sampling the LTI continuous
time system sys. This is also used as the plant to be controlled in Fig. 4. The reference trajectory
r(t) is a unit step. A step measured disturbance v(t) of intensity 1 appears at time t = 10, while a
step unmeasured disturbance d(t) of intensity −0.5 appears at time t = 20. The input variable u(t)
is constrained within the range [0, 1]. The input and output trajectories are reported in Fig. 5.

3.1 Anticipative Action

The script EX1A.M simulates the Simulink model MPC EX1A.MDL, depicted in Fig. 6, which is a
modified version of MPC EX1.MDL where r and v signals are read from the MAT file RV.MAT, and
MPC uses an anticipative action. Note that the same MAT file is used for generating the actual
signals r, v in the simulation.

% Reference and measured disturbance signals
time=0:Ts:Tstop;
trv=[time;

zeros(size(0:Ts:5)),ones(size(5+Ts:Ts:Tstop))
zeros(size(0:Ts:10)),ones(size(10+Ts:Ts:Tstop))];

save rv trv

The input and output trajectories are reported in Fig. 7.

9

(a) Output y(t) and reference r(t). (b) Manipulated variable u(t).

(c) Measured disturbance v(t). (d) Unmeasured disturbance d(t).

Figure 5: Trajectories obtained running EX1.M.

4 Example 2

The script EX2NL.M prepares the parameters to simulate the Simulink model MPC EX2NL.MDL, de-
picted in Fig. 8.

% MIMO (3x2) SYSTEM: MV=[1 2 3], MY=[1 2]
% UD=[5 6]

% Prepare parameters for mpc_ex2nl

10

Figure 6: Simulink model MPC EX1A.MDL.

% Nonlinear model
sys=’nl3x2’;

% Linearize the model at (0,0)
[A,B,C,D]=linmod2(sys);

Ts=.2; %Sample time
model=c2d(ss(A,B,C,D),Ts); %Convert to discrete time
clear A B C D

p=5; %Prediction horizon
moves=2; %Free control moves

11

(a) Output y(t) and reference r(t). (b) Manipulated variable u(t).

(c) Measured disturbance v(t). (d) Unmeasured disturbance d(t).

Figure 7: Trajectories obtained running EX1A.M.

% Define lower and upper bounds for u, delta u, y

umin=[-2,-1,-1];
umax=[2,1,1];
dumin=[-Inf,-Inf,-Inf];
dumax=[Inf,Inf,Inf];
ymin=[-Inf,-Inf];
ymax=[Inf,Inf];

12

Figure 8: Simulink model MPC EX2NL.MDL.

limits={umin,umax,dumin,dumax,ymin,ymax};

% Define weights for u, delta u, y

weights={[0 0 0],[.1 .1 .1],[1 1]};

% No noisemodel, no covmat supplied implies that
% output step disturbances will be added by default

open(’mpc_ex2nl.mdl’) % Display the Simulink model

% Run simulation

Tfinal=8;
sim(’mpc_ex2nl’,Tfinal)

The LTI system model used for the MPC block is obtained by converting to discrete time
the Simulink nonlinear model NL3X2.MDL depicted in Fig. 9. A copy of NL3X2.MDL is also used

13

Figure 9: Simulink model NL3X2.MDL.

as the plant to be controlled in Fig. 8. In order to take into account steady-state offsets due
to the nonlinearity, a step-like unmeasured disturbances is added on each output. The reference
trajectories r1(t) and r2(t) are unit step, and r1(t) switches back to 0 at time t = 4. Constraints are
present on the input variables u1(t), u2(t), u3(t). The input and output trajectories are reported
in Fig. 10.

5 Upgrading from MPC Toolbox v1.0

• In the MPC Toolbox v1.0, the variable uwt refers to weights on increments of manipulated
variables. Here, the corresponding variable has been called DUWeight.

6 Installation

The provided file archive must be extracted into a directory (e.g. MPCBLOCK/). This directory must
be added to Matlab’s path. The archive contains the following files:

mpc1.dll
mpc2.dll
mpcbl1.tif
mpcbl2.tif
mpcbl3.tif
mpcbl4.tif
mpclib.mdl

14

(a) Outputs. (b) Inputs.

Figure 10: Trajectories obtained running EX2NL.M.

mpcsfun.m

Directory of \demos

ex1.m
ex10.m
ex11.m
ex12.m
ex1a.m
ex2nl.m
ex3.m
ex6.m
ex7.m
ex7u.m
ex9.m
mpc_ex1.mdl
mpc_ex10.mdl
mpc_ex11.mdl
mpc_ex12.mdl
mpc_ex1a.mdl
mpc_ex2nl.mdl
mpc_ex3.mdl
mpc_ex6.mdl

15

mpc_ex7.mdl
mpc_ex7u.mdl
mpc_ex9.mdl
nl3x2.mdl

Directory of \manual

mpcblock.pdf
mpcblock.ps

A Matrices for the MPC Quadratic Problem

This appendix describes the matrices built at initialization (routine MPC1.M) that will be used later
(in the routine MPC2.M) for solving the MPC optimization problem.

Assume for simplicity that the disturbance model (3) is a unit gain (d(k) = n(k) is white
Gaussian noise). Then, the prediction model is given by{

x(k + 1) = Ax(k) + Buu(k) + Bvv(k) + Bdn(k)
y(k) = Cx(k) + Dvv(k) + Ddn(k)

(6)

(if a model for unmeasured disturbances is specified, then (6) will be the augmented model (1)+(3)).
Consider for simplicity the prediction at time k = 0. We set n(i) = 0 for all prediction instants i,
and obtain

y(i|0) = C


Aix(0) +

i−1∑
h=0

Ai−1Bu


u(−1) +

h∑
j=0

∆u(j)




︸ ︷︷ ︸
u(h)

+Bvv(k)


 + Dvv(i) (7)

which gives 


y(1)
...

y(p)


 = Sxx(0) + Su1u(−1) + Su




∆u(0)
...

∆u(p − 1)


 + Hv




v(0)
...

v(p)


 (8)

where

Sx =




CA
CA2

...
CAp


 ∈ R

pny×nx , Su1 =




CBu

CBu + CABu
...∑p−1

h=0 CAhBu


 ∈ R

pny×nu

Su =




CBu 0 . . . 0
CBu + CABu CBu . . . 0

...
...

. . .
...∑p−1

h=0 CAhBu
∑p−2

h=0 CAhBu . . . CBu


 ∈ R

pny×nu

16

0 1 2 3 4 5 6 7
0

1

2

3

4
u(k)

0 1 2 3 4 5 6 7
−2

−1

0

1

2

3
∆ u(k)

Prediction time k

Figure 11: Blocking moves: inputs and input increments for moves=[2 3 2]

Hv =




CBv Dv 0 . . . 0
CABv CBv Dv . . . 0

...
...

...
. . .

...
CAp−1Bv CAp−2Bv CAp−3Bv . . . Dv


 ∈ R

pny×nv

Let m be the number of free moves, i.e., free optimization variables, that we denote by z � [z0,
. . . , zm−1]. Then, 


∆u(0)

...
∆u(p − 1)


 = JM




z0
...

zm−1




where JM ∈ R
(mnu)×(pnu) depends on the choice of blocking moves. Consider for instance the block-

ing moves depicted in Fig. 11, which corresponds to the choice moves=[2 3 2], or, equivalently,

u(0) = u(1), u(2) = u(3) = u(4), u(5) = u(6)
∆u(0) = z0, ∆u(2) = z1, ,∆u(5) = z2, ∆u(1) = ∆u(3) = ∆u(4) = ∆u(6) = 0.

Then, the corresponding matrix JM is

JM =




I 0 0
0 0 0
0 I 0
0 0 0
0 0 0
0 0 I
0 0 0




17

The file MPC1.M also defines the vector DUFree∈ R
mnu , whose j-th entry is 1 if j = knu + i and

∆ui(k) is a free move (or, in other words, if the j-th row of JM is nonzero).
The function to be optimized is

J =







u(0)
...

u(p − 1)


 −




utarget(0)
...

utarget(p − 1)







′

W2
u







u(0)
...

u(p − 1)


 −




utarget(0)
...

utarget(p − 1)





 +




∆u(0)
...

∆u(p − 1)



′

W2
∆u




∆u(0)
...

∆u(p − 1)


 +







y(1)
...

y(p)


 −




r(1)
...

r(p)






′

W2
y







y(1)
...

y(p)


 −




r(1)
...

r(p)




 + ρεε

2 (9)

where

Wu � diag
(
wu

0,1, wu
0,2, . . . , wu

0,nu
, . . . , wu

p−1,1, wu
p−1,2, . . . , wu

p−1,nu

)
,

W∆u � diag
(
w∆u

0,1 , w∆u
0,2 , . . . , w∆u

0,nu
, . . . , w∆u

p−1,1, w∆u
p−1,2, . . . , w∆u

p−1,nu

)
,

Wy � diag
(
wy

1,1, wy
1,2, . . . , wy

1,ny
, . . . , wy

p,1, wy
p,2, . . . , wy

p,ny

)

Finally, after substituting u(k), ∆u(k), y(k), J can be rewritten as

J = ρεε
2 + z′Kduz +2







r(1)
...

r(p)



′

Kr +




v(0)
...

v(p)



′

Kv + u′(−1)Ku + u′
targetKut + x′(0)Kx


 z. (10)

Let us now consider the limits on inputs, input increments, and outputs5:



ymin(1) − εV y,min(1)
...

ymin(p) − εV y,min(p)
umin(0) − εV u,min(0)

...
umin(p − 1) − εV u,min(p − 1)

∆umin(0) − εV ∆u,min(0)
...

∆umin(p − 1) − εV ∆u,min(p − 1)




≤




y(1)
...

y(p)
u(0)

...
u(p − 1)
∆u(0)

...
∆u(p − 1)




≤




ymax(1) + εV y,max(1)
...

ymax(p) + εV y,max(p)
umax(0) + εV u,max(0)

...
umax(p − 1) + εV u,max(p − 1)

∆umax(0) + εV ∆u,max(0)
...

∆umax(p − 1) + εV ∆u,max(p − 1)




5Limits that are not finite are removed, as well as the input and input-increment limits over blocked moves.

18

along with the constraint ε ≥ 0. Similarly to what was done for the cost function, we can substitute
u(k), ∆u(k), y(k), and obtain

Mzz + Mεε ≤ Mlim + Mv




v(0)
...

v(p)


 + Muu(−1) + Mxx(0) (11)

where

Mlim = [ymax(1); ymin(1); . . . ; ymax(p); ymin(p);umax(0);umin(0); . . . ;umax(p − 1);
umin(p − 1);∆umax(0);∆umin(0); . . . ;∆umax(p − 1);∆umin(p − 1)],

Mε = −[V y,max(1);V y,min(1); . . . ;V y,max(p);V y,min(p);V u,max(0);V u,min(0); . . . ;V u,max(p − 1);
V u,min(p − 1);V ∆u,max(0);V ∆u,min(0); . . . ;V ∆u,max(p − 1);V ∆u,min(p − 1)].

B On-Line Solution to the Optimization Problem

This appendix describes how the MPC optimization problem is solved at each time step k (in the
routine MPC2.M) by using the matrices built at initialization (routine MPC1.M).

B.1 Unconstrained MPC

The optimal solution is computed analytically:

z∗ = −K−1
du







r(1)
...

r(p)



′

Kr +




v(0)
...

v(p)



′

Kv + u′(−1)Ku + u′
targetKut + x′(0)Kx



′

and the MPC controller sets ∆u(k) = z0, u(k) = u(k − 1) + ∆u(k).

B.2 Constrained MPC

The optimal solution z∗, ε∗ is computed by solving the quadratic program (10)-(11), using the
DANTZGMP.M routine.

19

